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IEEE-CS Charles Babbage Award
In Recognition of Significant Contributions in the Field of Parallel Computing

Established in memory of Charles Babbage in 
recognition of significant contributions in the 
field of parallel computation. The candidate 
would have made an outstanding, innovative 
contribution or contributions to parallel 
computation. It is hoped, but not required, that 
the winner will have also contributed to the 
parallel computation community through 
teaching, mentoring, or community service.

Mateo Valero Named Recipient of 2017 IEEE Computer Society Charles Babbage Award
Citation: “contributions to parallel computation through brilliant technical work, mentoring PhD
students, and building on incredibly productive European research environment.”



Once upon a time …



Our Origins…

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 20071987 1988 1989 2008 200919861985 2010

IBM PP970 / Myrinet
MareNostrum
42.35, 94.21 Tflop/s

IBM RS-6000 SP & IBM p630
192+144 Gflop/s

SGI Origin 2000
32 Gflop/s

Connection Machine CM-200
0,64 Gflop/s

Convex C3800

Compaq GS-140 
12.5 Gflop/s

Compaq GS-160
23.4 Gflop/s

Parsys Multiprocessor Parsytec CCi-8D
4.45 Gflop/s BULL NovaScale 5160

48 Gflop/s

Research prototypes

Transputer cluster

SGI Altix 4700
819.2 Gflops SL8500

6 Petabytes

Maricel
14.4 Tflops, 20 KW



Barcelona Supercomputing Center
Centro Nacional de Supercomputación

Spanish Government 60%

Catalan Government    30%

Univ. Politècnica de Catalunya (UPC)      10%

BSC-CNS is
a consortium
that includes

BSC-CNS objectives

Supercomputing services
to Spanish and
EU researchers

R&D in Computer,
Life, Earth and

Engineering Sciences

PhD programme,
technology transfer,
public engagement



Mission of BSC Scientific Departments

Earth 
Sciences

Earth 
Sciences

CASECASE

Computer
Sciences

Computer
Sciences

Life
Sciences

Life
Sciences

To influence the way machines are built, programmed and 
used: computer architecture, programming models, 
performance tools, Big Data, Artificial Intelligence

To develop and implement global and 
regional state-of-the-art models for short-

term air quality forecast and long-term 
climate applications

To understand living organisms by means of 
theoretical and computational methods 

(molecular modeling, genomics, proteomics)

To develop scientific and engineering software to 
efficiently exploit super-computing capabilities 

(biomedical, geophysics, atmospheric, energy, social 
and economic simulations)



The MareNostrum 4 Supercomputer

Total peak performance
13,7 Pflops/s 

12 times more powerful than MareNostrum 3

Compute
General Purpose, for current BSC workload

More than 11 Pflops/s
With 3,456 nodes of Intel Xeon V5 processors

Emerging Technologies, for evaluation
of 2020 Exascale systems

3 systems, each of more than 0,5 Pflops/s 
with KLN/KNH, Power+NVIDIA, ARMv8

Storage
More than 10 PB of GPFS

Elastics Storage System

Network
IB EDR/OPA

Ethernet
Operating System: SuSE



Mare Nostrum 4



Design of Superscalar Processors

Simple interface
Sequential
program

ILP

ISA

Programs 
“decoupled” 

from hardware
ApplicationsApplications

Decoupled from the software stack



Latency Has Been a Problem from the 
Beginning... 

• Feeding the pipeline with the right instructions:
• Software trace cache (ICS’99)
• Prophet/Critic Hybrid Branch Predictor (ISCA’04)

• Locality/reuse
• Cache Memory with Hybrid Mapping (IASTED87). Victim Cache 
• Dual Data Cache (ICS¨95)

• A novel renaming mechanism that boosts software prefetching (ICS’01)
• Virtual-Physical Registers (HPCA’98)

• Kilo Instruction Processors (ISHPC03,HPCA’06, ISCA’08)
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… and the Power Wall Appeared Later 

• Better Technologies
• Two-level organization (Locality Exploitation)

• Register file for Superscalar (ISCA’00)
• Instruction queues (ICCD’05)
• Load/Store Queues (ISCA’08) 

• Direct Wakeup, Pointer-based Instruction Queue Design (ICCD’04, 
ICCD’05)

• Content-aware register file (ISCA’09)
• Fuzzy computation (ICS’01, IEEE CAL’02, IEEE-TC’05). Currently known as 

Approximate Computing 
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Fuzzy computation

Accuracy Size

Performance
@ Low Power

Binary
systems
(bmp)

Compresion
protocols

(jpeg)

Fuzzy
Computation

This one only used
~85% of the time 
while consuming

~75% of the power

This image is the
original one



SMT and Memory Latency … 

• Simultaneous Multithreading (SMT)
• Benefits of SMT Processors: 

• Increase core resource utilization
• Basic pipeline unchanged: 

• Few replicated resources, other shared
• Some of our contributions:

• Dynamically Controlled Resource Allocation (MICRO 2004)
• Quality of Service (QoS) in SMTs (IEEE TC 2006)
• Runahead Threads for SMTs (HPCA 2008)
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Time Predictability (in multicore and SMT processors)

• Where is it required:
• Increasingly required in handheld/desktop devices
• Also in embedded hard real-time systems (cars, planes, trains, …)

• How to achieve it:
• Controlling how resources are assigned to co-running tasks

• Soft real-time systems
• SMT: DCRA resource allocation policy (MICRO 2004, IEEE Micro 2004)
• Multicores: Cache partitioning (ACM OSR 2009, IEEE Micro 2009)

• Hard real-time systems
• Deterministic resource ‘securing’ (ISCA 2009)
• Time-Randomised designs (DAC 2014 best paper award)

QoS
spaceDefinition:

• Ability to provide a minimum performance to a task
• Requires biasing processor resource allocation



Vector Architectures… Memory Latency 
and Power 

• Out-of-Order Access to Vectors (ISCA 1992, ISCA 1995)

• Command Memory Vector (PACT 1998)
• In-memory computation

• Decoupling Vector Architectures (HPCA 1996)
• Cray SX1

• Out-of-order Vector Architectures (Micro 1996)

• Multithreaded Vector Architectures (HPCA 1997)

• SMT Vector Architectures (HICS 1997,  IEEE MICRO J. 1997)

• Vector register-file organization (PACT 1997)

• Vector Microprocessors (ICS 1999, SPAA 2001)

• Architectures with Short Vectors (PACT 1997, ICS 1998)
• Tarantula (ISCA 2002), Knights Corner

• Vector Architectures for Multimedia (HPCA 2001, Micro 2002)
• High-Speed Buffers Routers (Micro 2003, IEEE TC 2006)
• Vector Architectures for Data-Base (Micro 2012, HPCA2015,ISCA2016)



Statically scheduled VLIW architectures

• Power-efficient FU
• Clustering
• Widening (MICRO-98)

• μSIMD and multimedia vector units 
(ICPP-05)

• Locality-aware RF
• Sacks (CONPAR-94)

• Non-consistent (HPCA95)

• Two-level hierarchical (MICRO-00)

• Integrated modulo scheduling 
techniques, register allocation and spilling
(MICRO-95, PACT-96, MICRO-96, MICRO-01)



The MultiCore Era
Moore’s Law + Memory Wall + Power Wall

UltraSPARC T2 
(2007)

Intel Xeon 
7100 (2006)

POWER4 
(2001)

Chip MultiProcessors (CMPs)



How  Multicores Were Designed at the Beginning?

IBM Power4 (2001)
• 2 cores, ST
• 0.7 MB/core L2, 

16MB/core L3 (off-chip)

• 115W TDP
• 10GB/s mem BW

IBM Power7 (2010)
• 8 cores, SMT4
• 256 KB/core L2 

16MB/core L3 (on-chip) 

• 170W TDP
• 100GB/s mem BW

IBM Power8 (2014)
• 12 cores, SMT8
• 512 KB/core L2 

8MB/core L3 (on-chip) 

• 250W TDP
• 410GB/s mem BW



How To Parallelize Future Applications?
• From sequential to parallel codes
• Efficient runs on manycore processors

implies handling:
• Massive amount of cores and available

parallelism
• Heterogeneous systems

• Same or multiple ISAs
• Accelerators, specialization

• Deep and heterogeneous memory hierarchy
• Non-Uniform Memory Access (NUMA)
• Multiple address spaces

• Stringent energy budget
• Load Balancing

A Really Fuzzy Space
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Living in the Programming Revolution

Multicores made the 
interface to leak…

ISA /API

Parallel hardware
with multiple 

address spaces 
(hierarchy, transfer), 

control flows, …

ApplicationsApplications

Parallel application 
logic 

+
Platform specificities

Applications



The efforts are 
focused on 

efficiently using the 
underlying 
hardware

ISA / API

Vision in the Programming Revolution
Need to decouple again

General purpose

Single address space

Application logic

Arch. independentApplicationsApplications

Power to the runtimePower to the runtime

PM: High-level, clean, abstract interface



History / Strategy

SMPSs V2
~2009

GPUSs
~2009

CellSs
~2006

SMPSs V1
~2007

PERMPAR
~1994

COMPSs
~2007

NANOS
~1996

COMPSs
ServiceSs

~2010

COMPSs
ServiceSs
PyCOMPSs

~2013

OmpSs
~2008

OpenMP …           3.0         ….            4.0   …. 

StarSs
~2008

DDT @
Parascope
~1992

2008 2013

Forerunner of OpenMP

GridSs
~2002



OmpSs

A forerunner for OpenMP

+ Prototype
of tasking

+ Task
dependences

+ Task
priorities

+ Taskloop
prototyping

+ Task reductions
+ Dependences

on taskwaits
+ OMPT impl.

+ Multidependences
+ Commutative

+ Dependences
on taskloops

today



OmpSs: data-flow execution of sequential programs
void Cholesky( float *A ) {

int i, j, k;
for (k=0; k<NT; k++) {

spotrf (A[k*NT+k]) ; 
for (i=k+1; i<NT; i++) 

strsm (A[k*NT+k], A[k*NT+i]); 
// update trailing submatrix
for (i=k+1; i<NT; i++) {

for (j=k+1; j<i; j++)
sgemm( A[k*NT+i], A[k*NT+j], A[j*NT+i]);

ssyrk (A[k*NT+i], A[i*NT+i]);
}

}#pragma omp task inout ([TS][TS]A)
void spotrf (float *A);
#pragma omp task input ([TS][TS]A) inout ([TS][TS]C)
void ssyrk (float *A, float *C);
#pragma omp task input ([TS][TS]A,[TS][TS]B) inout ([TS][TS]C)
void sgemm (float *A, float *B, float *C);
#pragma omp task input ([TS][TS]T) inout ([TS][TS]B)
void strsm (float *T, float *B);

Decouple how we write 
applications form
how they are executed

Write

Execute

Clean offloading to 
hide architectural
complexities



OmpSs: …Taskified…
#pragma css task input(A, B) output(C)
void vadd3 (float A[BS], float B[BS],

float C[BS]);
#pragma css task input(sum, A) inout(B)
void scale_add (float sum, float A[BS],

float B[BS]);
#pragma css task input(A) inout(sum)
void accum (float A[BS], float *sum);

for (i=0; i<N; i+=BS)             // C=A+B
vadd3 ( &A[i], &B[i], &C[i]);

...
for (i=0; i<N; i+=BS)            //sum(C[i])

accum (&C[i], &sum);
...
for (i=0; i<N; i+=BS)            // B=sum*A

scale_add (sum, &E[i], &B[i]);
...
for (i=0; i<N; i+=BS)            // A=C+D

vadd3 (&C[i], &D[i], &A[i]);
...
for (i=0; i<N; i+=BS)            // E=G+F

vadd3 (&G[i], &F[i], &E[i]);

1 2 3 4

13 14 15 16

5 6 87

17

9

18

10

19

11

20

12

Color/number: order of task instantiation
Some antidependences covered by flow dependences not drawn

Write



Decouple
how we write
form
how it is executed

… and Executed in a Data-Flow Model
#pragma css task input(A, B) output(C)
void vadd3 (float A[BS], float B[BS],

float C[BS]);
#pragma css task input(sum, A) inout(B)
void scale_add (float sum, float A[BS],

float B[BS]);
#pragma css task input(A) inout(sum)
void accum (float A[BS], float *sum);

1 1 1 2

2 2 2 3

2 3 54

7

6

8

6

7

6

8

7

for (i=0; i<N; i+=BS)             // C=A+B
vadd3 ( &A[i], &B[i], &C[i]);

...
for (i=0; i<N; i+=BS)            //sum(C[i])

accum (&C[i], &sum);
...
for (i=0; i<N; i+=BS)            // B=sum*A

scale_add (sum, &E[i], &B[i]);
...
for (i=0; i<N; i+=BS)            // A=C+D

vadd3 (&C[i], &D[i], &A[i]);
...
for (i=0; i<N; i+=BS)            // E=G+F

vadd3 (&G[i], &F[i], &E[i]);

Write

Execute

Color/number: a possible order of task execution



OmpSs: Potential of Data Access Info 
• Flat global address space seen by 

programmer
• Flexibility to dynamically traverse  

dataflow graph “optimizing”
• Concurrency. Critical path
• Memory access: data transfers 

performed by run time

• Opportunities for automatic
• Prefetch
• Reuse
• Eliminate antidependences (rename)
• Replication management

• Coherency/consistency handled by 
the runtime

• Layout changes

Processor
CPU

On-chip cache

Off-chip BW

CPU

Main Memory



PPU

User 
main 
program

CellSs PPU lib

SPU0

DMA in
Task execution
DMA out
Synchronization

CellSs SPU lib

Original task 
code

Helper threadmain thread

Memory

User
data

Renaming

Task graph

Synchronization

Tasks

Finalization 
signal

Stage in/out 
data

Work 
assignment

Data dependence 
Data renaming

Scheduling

SPU1

SPU2

SPE threads

FUFUFU
Helper thread

CellSs implementation

IFU
REG

ISSIQRENDEC

RET
Main thread

P. Bellens, et al, “CellSs: A Programming Model for the Cell BE Architecture” SC’06.
P. Bellens, et al, “CellSs: Programming the Cell/B.E. made easier” IBM JR&D 2007



Renaming @ Cell

• Experiments on the CellSs (predecessor of OmpSs)
• Renaming to avoid anti-dependences

• Eager (similarly done at SS designs)
• At task instantiation time 

• Lazy (similar to virtual registers)
• Just before task execution

P. Bellens, et al, “CellSs: Scheduling Techniques to Better Exploit Memory 
Hierarchy” Sci. Prog. 2009

Main memory transfers (cold)

Main Memory transfers 
(capacity)

Killed transfers

SMPSs: Stream benchmark reduction in execution time

SMPSs: Jacobi reduciton in # remanings



Data Reuse @ Cell

P. Bellens, et al, “CellSs: Scheduling Techniques to Better Exploit Memory Hierarchy” Sci. Prog. 2009

Matrix-matrix multiply

• Experiments on the CellSs
• Data Reuse 
• Locality arcs in dependence graph

• Good locality but high overhead  no time improvement



Reducing Data Movement @ Cell
• Experiments on the CellSs (predecessor of 

OmpSs)
• Bypassing / global software cache
• Distributed implementation

• @each SPE
• Using object descriptors managed atomically with 

specific hardware support (line level LL-SC)

Main memory:
cold

Main memory:
capacity

Global 
software cache

Local 
software cache

P. Belens et al, “Making the Best of Temporal Locality: Just-In-Time Renaming 
and Lazy Write-Back on the Cell/B.E.”  IJHPC 2010

DMA Reads



GPUSs implementation
• Architecture implications

• Large local store O(GB)  large task granularity        Good
• Data transfers: Slow, non overlapped                           Bad

• Cache management
• Write-through
• Write-back

• Run time implementation
• Powerful main processor and multiple cores
• Dumb accelerator (not able to perform data transfers, implement 

software cache,…)

Slave  threads

FUFUFU
Helper thread

IFU
REG

ISSIQRENDEC

RET
Main thread

E. Ayguade, et al, “An Extension of the StarSs Programming Model for Platforms with Multiple GPUs” Europar 2009



Prefetching @ multiple GPUs
• Improvements in runtime mechanisms (OmpSs + 

CUDA)
• Use of multiple streams
• High asynchrony and overlap (transfers and kernels)
• Overlap kernels
• Take overheads out of the critical path

• Improvement in schedulers
• Late binding of locality aware decisions
• Propagate priorities

J. Planas et al, “Optimizing Task-based Execution Support on Asynchronous Devices.”  Submitted

Nbody
Cholesky



34

OmpSs Ubiquity
• OmpSs @ Cell

• CellSs [SC 2006, IBM JRD 2007]
• Speculative Distributed Scheduling [IPDPS 2011]

• OmpSs @ Multicores [PPL 2011]
• OmpSs @ Clusters

• Multicores [EuroPAR 2011, IPDPS 2013-1, ICS 2013]
• Multicores+GPU [ICS 2011, IPDPS 2012]

• OmpSs @ Multicore+GPU [IPDPS 2013-2]
• OmpSs @ Zynq

• Offload computation and Nanos++ runtime acceleration [FPGA 2014]

• OmpSs @ multiple GPUs
• High asynchrony and overlap (transfers and kernels)
• Improved schedulers
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CellSs, StarSs, OmpSs,…. papers
• P. Bellens,...“Memory – CellSs: a programming model for the Cell BE architecture.” SC 2006

• J. M. Pérez, et al. “CellSs: Making it easier to program the Cell Broadband Engine processor.” IBM 
Journal of Research and Development 2007

• J. M. Pérez, et al: “A dependency-aware task-based programming environment for multi-core
architectures.” CLUSTER 2008

• P. Bellens,...“Exploiting Locality on the Cell/B.E. through Bypassing.” SAMOS 2009

• E. Ayguadé et al.:A Proposal to Extend the OpenMP Tasking Model for Heterogeneous
Architectures. IWOMP 2009

• P. Bellens, et al. “Just-in-Time Renaming and Lazy Write-Back on the Cell/B.E.” ICPP Workshops 
2009

• E. Ayguadé,: “An Extension of the StarSs Programming Model for Platforms with Multiple GPUs.” 
Euro-Par 2009

• P. Bellens, et al.”CellSs: Scheduling techniques to better exploit memory hierarchy.” Scientific
Programming 2009

• A. Duran, et al. “A Proposal to Extend the OpenMP Tasking Model with Dependent Tasks.” 
International Journal of Parallel Programming 2009

• J.Labarta et al “BSC Vision Towards Exascale.” IJHPCA 2009
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CellSs, StarSs, OmpSs,…. papers
• E. Ayguadé ET AL “Extending OpenMP to Survive the Heterogeneous Multi-Core Era.” 

International Journal of Parallel Programming 2010

• P. Bellens, …”A Study of Speculative Distributed Scheduling on the Cell/B.E.” IPDPS 2011

• J.  Labarta, et al. “Hybrid Parallel Programming with MPI/StarSs.” PARCO 2011

• J. Bueno, et al. “Programming clusters of GPUs with OMPSs. ICS 2011

• A. Duran, et al “Ompss: a Proposal for Programming Heterogeneous Multi-Core Architectures.” 
Parallel Processing Letters 2011

• J. Dongarra et al, “The International Exascale Software Project roadmap” IJHPCA 2011

• V. Krishnan “OmpSs-OpenCL Programming Model for Heterogeneous Systems” LCPC 2012

• N. Vujic, “DMA-circular: an enhanced high level programmable DMA controller for optimized
management of on-chip local memories.” Conf. Computing Frontiers 2012

• A. Fernández,”Task-Based Programming with OmpSs and Its Application.” Euro-Par 2014

• Many more since 2014…



ISA / API

Runtime Aware Architectures
The runtime drives the hardware design

ApplicationsApplications

RuntimeRuntime

PM: High-level, clean, abstract interface

Task based PM 
annotated by the user

Data dependencies 
detected at runtime

Dynamic scheduling

“Reuse” architectural 
ideas under

new constraints



Superscalar vision at Multicore level

Programmability 
Wall Resilience Wall

Memory Wall Power Wall

Superscalar World
Out-of-Order, Kilo-Instruction Processor, 
Distant Parallelism
Branch Predictor, Speculation
Fuzzy Computation
Dual Data Cache, Sack for VLIW
Register Renaming, Virtual Regs
Cache Reuse, Prefetching, Victim Cache 
In-memory Computation
Accelerators, Different ISA’s, SMT
Critical Path Exploitation
Resilience

Multicore World
Task-based, Data-flow Graph, Dynamic 
Parallelism
Tasks Output Prediction,
Speculation
Hybrid Memory Hierarchy, NVM
Late Task Memory Allocation
Data Reuse, Prefetching 
In-memory FU’s
Heterogeneity of Tasks and HW
Task-criticality 
Resilience
Load Balancing and Scheduling
Interconnection Network
Data Movement



Architecture Proposals in RoMoL
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Cluster Interconnect
- Priority-based arbitration

- By-pass routing

Runtime Support Unit
- DVFS

- Light-weight deps tracking
- Task memoization

- Reduced data motion

Vectors
- DB, sorting

- BTrees

Cache Hierarchy
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- Coherence
- Eviction policies

- Reductions
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Runtime Management of Local Memories (LM)

LM Management in OmpSs
– Task inputs and outputs mapped to the LMs
– Runtime manages DMA transfers

8.7% speedup in execution time

14% reduction in power

20% reduction in network-on-chip traffic

0,8
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jacobi kmeans md5 tinyjpeg vec_add vec_red
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Hybrid

Ll. Alvarez et al. Transparent Usage of Hybrid on-Chip Memory Hierarchies in Multicores. ISCA 2015.
Ll. Alvarez et al Runtime-Guided Management of Scratchpad Memories in Multicore Architectures. PACT 2015
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Exploiting the Task Dependency Graph 
(TDG) to Reduce Coherence Traffic

• To reduce coherence traffic, the 
state-of-the-art applies round-robin 
mechanisms at the runtime level.

• Exploiting the information 
contained at the TDG level is 
effective to

• improve performance
• dramatically reduce coherence 

traffic (2.26x reduction with respect 
to the state-of-the-art).

State-of-the-art Partition (DEP)
Gauss-Seidel TDG

DEP requires ~200GB of 
data transfer across a 288 
cores system



Exploiting the Task Dependency Graph 
(TDG) to Reduce Coherence Traffic

• To reduce coherence traffic, the state-
of-the-art applies round-robin 
mechanisms at the runtime level.

• Exploiting the information contained at 
the TDG level is effective to

• improve performance
• dramatically reduce coherence traffic 

(2.26x reduction with respect to the 
state-of-the-art).

Graph Algorithms-Driven Partition (RIP-DEP)
Gauss-Seidel TDG

RIP-DEP requires ~90GB of 
data transfer across a 18-
sockets (288 cores) system

I. Sánchez et al, Reducing Data Movements on Shared Memory 
Architectures (submitted to SC’17)



• Leveraging runtime knowledge of the 
HW (NUMA topology) and the SW 
(task input data)

• Runtime manages co-location of data 
and computation (PACT’16):

• NUMA Oblivious (DFT)
• NUMA Aware Data Allocation only (DI)
• NUMA Aware Data Allocation and Task 

Scheduling (NAFT)

Runtime Managed Data Locality

P. Caheny et al., “Reducing cache coherence traffic with hierarchical 
directory cache and NUMA-aware runtime scheduling.” PACT 2016
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Runtime Managed Data Locality

• NAFT provides best 
performance (6.7x 
average speedup) and 
lowest data movement 
(4.0x average reduction) 
in a real 288 core ccNUMA 
SMP (16 sockets x 18 
cores)



Runtime-Assisted Cache Insertion Policies

V. Dimić et al.: Runtime-Assisted Shared Cache Insertion Policies 
Based on Re-Reference Intervals. EuroPAR 2017.
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Runtime-Assisted Cache Insertion Policies
• Motivation: Improve LLC hit ratio to reduce costly 

requests to memory (EuroPAR’17)
• Use information about application semantics 

provided by the runtime: 
• Task types
• Task data-dependency types (inputs, outputs, non-

dependencies)

• Insertion policies based on Re-Reference Intervals
• TTIP: uses probabilities per task-type to decide 

insertion position
• Best probability is determined by training at the 

beginning of the execution
• DTIP: gives output-dependencies a higher priority in 

the cache
• Outputs will be reused by the successor task
• Input- and non-dependencies lower priority

• Average MPKI improvement over LRU: 11.2% (TTIP) and 16.8% (DTIP)



OmpSs in Heterogeneous Systems

Heterogeneous systems
• Big-little processors
• Accelerators
• Hard to program

big

little

big big

big

little little

little

Task-based programming models can adapt to these scenarios
• Detect tasks in the critical path and run them in fast cores
• Non-critical tasks can run in slower cores
• Assign tasks to the most energy-efficient HW component
• Runtime takes core of balancing the load
• Same performance with less power consumption



Criticality-Aware Task Scheduler

• CATS on a big.LITTLE processor (ICS’15)
• 4 Cortex A15 @ 2GHz
• 4 Cortex A7 @ 1.4GHz 

• Effectively solves the problem of blind assignment of tasks
• Higher speedups for double precision-intensive benchmarks

• But still suffers from priority inversion and static assignment

K. Chronaki et al. Criticality-Aware Dynamic Task Scheduling for 
Heterogeneous Architectures. ICS 2015.
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Criticality-Aware Task Acceleration
• CATA: accelerating critical tasks (IPDPS’16)

• Runtime reconfigures per-core DVFS meeting a global power budget
• Architectural Support for DVFS: Runtime Support Unit (RSU)

• Reduces reconfiguration overheads of software solution
• Serialization in DVFS reconfigurations
• User-kernel mode switches

• Runtime system notifies to the RSU task criticality  and running core
• Similar hardware cost to TurboBoost

E. Castillo et al., CATA: Criticality Aware Task Acceleration for 
Multicore Processors. IPDPS 2016.
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Approximate Task Memoization (ATM)

• ATM aims to eliminate redundant tasks (IPDPS’17)
• ATM detects correlations between task inputs and outputs to 

memoize similar tasks

I. Brumar et al, “ATM: Approximate Task Memoization in the 
Runtime  System”. IPDPS 2017.

– Static ATM achieves 1.4x 
average speedup when only 
applying memoization
techniques

– With task approximation, 
Dynamic ATM achieves 2.5x 
average speedup with an 
average 0.7% accuracy loss, 
competitive with an off-line 
Oracle approach



Dealing with Manufacturing Variability in CPUs

D. Chasapis et al, “Runtime-Guided Mitigation of Manufacturing 
Variability in Power-Constrained Multi-Socket NUMA Nodes”. ICS’16

Dealing with Manufacturing Variability in CPUs
• Manufacturing Variability of CPUs and 

Power becomes performance 
heterogeneity in power-constrained 
environments (ICS’16)

• Typical load-balancing may not be 
sufficient

• Redistributing power and number of 
active cores among sockets can improve 
performance • Statically trying all possible configurations 

for each node imposes huge overhead 
(static).

• Runtime can try different configurations 
for a segment of the execution and 
choose a good one for the remaining time. 

• Carefully limiting the configuration space 
to meaningful choices can greatly improve 
performance within a single run 
(exhaustive vs scoped). 



TaskSuperscalar (TaskSs) Pipeline

• Hardware design for a distributed task 
superscalar pipeline frontend (MICRO’10)

• Can be embedded into any manycore fabric
• Drive hundreds of threads 
• Work windows of thousands of tasks
• Fine grain task parallelism

• TaskSs components:
• Gateway (GW): Allocate resources for task meta-data

• Object Renaming Table (ORT)
• Map memory objects to producer tasks

• Object Versioning Table (OVT)
• Maintain multiple object versions

• Task Reservation Stations (TRS)
• Store and track task in-flght meta-data

• Implementing TaskSs @ Xilinx Zynq (IPDPS’17)

GW

TRS

ORT

Ready Queue

OVT

TaskSs pipeline

Scheduler

C C C C
C C C C

C C C C
C C C C

Multicore Fabric

Y. Etsion et al, “Task Superscalar: An Out-of-Order Task Pipeline”  MICRO-43, 2010

X. Tan et al, “General Purpose Task-Dependence Management Hardware for Task-
based Dataflow Programming Models”,  IPDPS 2017



Hash Join, Sorting, Aggregation, DBMS 
• Goal: Vector acceleration of data bases

• “Real vector” extensions to x86
• Pipeline operands to the functional unit (like Cray machines, 

not like SSE/AVX)
• Scatter/gather, masking, vector length register
• Implemented in PTLSim + DRAMSim2

• Hash join work published in MICRO 2012
• 1.94x (large data sets)  and 4.56x (cache resident data sets) 

of speedup for TPC-H
• Memory bandwidth is the bottleneck

• Sorting paper published in HPCA 2015
• Compare existing vectorized quicksort, bitonic mergesort, 

radix sort on a consistent platform

• Propose novel approach (VSR) for vectorizing radix sort with
2 new instructions

• Similarity with AVX512-CD instructions
(but cannot use Intel’s instructions because the
algorithm requires strict ordering)

• Small CAM
• 3.4x speedup over next-best vectorised algorithm with the

same hardware configuration due to:
• Transforming strided accesses to unit-stride
• Elminating replicated data structures

• Ongoing work on aggregations

• Reduction to a group of values, not a single scalar value
ISCA 2016

• Building from VSR work
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Overlap Communication and Computation

• Hybrid MPI/OmpSs: Linpack example
• Extend asynchronous data-flow 

execution to outer level
• Taskify MPI communication primitives

• Automatic lookahead
• Improved performance
• Tolerance to network bandwidth
• Tolerance to OS noise

P0 P1 P2

V. Marjanovic et al, “Overlapping Communication and Computation by using a 
Hybrid MPI/SMPSs Approach” ICS 2010



Effects on Bandwidth

flattening
communication pattern

thus

reducing
bandwidth requirements

*simulation on application with 
ring communication pattern

V. Subotic et al. “Overlapping communication and computation by 
enforcing speculative data-flow”, January 2008, HiPEAC



OmpSs Runtime-based Resilience
• Suitability of OmpSs for resilience

• Asynchrony – OoO execution, Input/output annotations

• Checkpoint – restart techniques (PDP’15)
• Per-task inputs checkpointing, task replication to check outputs, 

asynchronous recovery tasks

• Algorithmic Recovery Routines (SC’15)
• Conjugate Gradient (CG)
• Detection

• Memory Page Retirement
• Correction

• Algorithmic 
• Computation/Recovery 

overlap plus checkpointless
techniques → low overhead

O. Subasi et al, "NanoCheckpoints: A Task-Based Asynchronous Dataflow 
Framework for Efficient and Scalable Checkpoint/Restart." PDP 2015.

L. Jaulmes et al, “Exploiting Asynchrony from Exact Forward Recovery for DUE in 
Iterative Solvers”. SC’15. Nominated to the Best Paper award.



Related Work
• Rigel Architecture (ISCA 2009)

• No L1D, non-coherent L2, read-only, private and cluster-shared data
• Global accesses bypass the L2 and go directly to L3

• SARC Architecture (IEEE MICRO 2010)
• Throughput-aware architecture
• TLBs used to access remote LMs and migrate data accross LMs

• Runnemede Architecture (HPCA 2013)
• Coherence islands (SW managed) + Hierarchy of LMs
• Dataflow execution (codelets)

• Carbon (ISCA 2007) 
• Hardware scheduling for task-based programs 

• Holistic run-time parallelism management (ICS 2013)
• Runtime-guided coherence protocols (IPDPS 2014)



RoMoL … papers

• V. Marjanovic et al., “Effective communication and computation overlap with 
hybrid MPI/SMPSs.” PPoPP 2010

• Y. Etsion et al., “Task Superscalar: An Out-of-Order Task Pipeline.” MICRO 2010
• N. Vujic et al., “Automatic Prefetch and Modulo Scheduling Transformations for 

the Cell BE Architecture.” IEEE TPDS 2010
• V. Marjanovic et al., “Overlapping communication and computation by using a 

hybrid MPI/SMPSs approach.” ICS 2010
• T. Hayes et al., “Vector Extensions for Decision Support DBMS Acceleration”. 

MICRO 2012
• L. Alvarez,et al., “Hardware-software coherence protocol for the coexistence of 

caches and local memories.” SC 2012
• M. Valero et al., “Runtime-Aware Architectures: A First Approach”. SuperFRI

2014
• L. Alvarez,et al., “Hardware-Software Coherence Protocol for the Coexistence of 

Caches and Local Memories.” IEEE TC 2015



RoMoL … papers

• M. Casas et al., “Runtime-Aware Architectures”. Euro-Par 2015.
• T. Hayes et al., “VSR sort: A novel vectorised sorting algorithm & architecture 

extensions for future microprocessors”. HPCA 2015
• K. Chronaki et al., “Criticality-Aware Dynamic Task Schedulling for 

Heterogeneous Architectures”.  ICS 2015
• L. Alvarez et al., “Coherence Protocol for Transparent Management of 

Scratchpad Memories in Shared Memory Manycore Architectures”. ISCA 2015
• L. Alvarez et al., “Run-Time Guided Management of  Scratchpad Memories in 

Multicore Architectures”. PACT 2015
• L. Jaulmes et al., “Exploiting Asycnhrony from Exact Forward Recoveries for DUE 

in Iterative Solvers”. SC 2015
• D. Chasapis et al., “PARSECSs: Evaluating the Impact of Task Parallelism in the

PARSEC Benchmark Suite.” ACM TACO 2016.
• E. Castillo et al., “CATA: Criticality Aware Task Acceleration for Multicore 

Processors.” IPDPS 2016



RoMoL … papers

• T. Hayes et al “Future Vector Microprocessor Extensions for Data Aggregations.” 
ISCA 2016. 

• D. Chasapis et al., “Runtime-Guided Mitigation of Manufacturing Variability in 
Power-Constrained Multi-Socket NUMA Nodes.” ICS 2016

• P. Caheny et al., “Reducing cache coherence traffic with hierarchical directory 
cache and NUMA-aware runtime scheduling.” PACT 2016

• T. Grass et al., “MUSA: A multi-level simulation approach for next-generation 
HPC machines.” SC 2016

• I. Brumar et al., “ATM: Approximate Task Memoization in the Runtime System.”  
IPDPS 2017

• K. Chronaki et al., “Task Scheduling Techniques for Asymmetric Multi-Core 
Systems.” IEEE TPDS 2017

• C. Ortega et al., “libPRISM: An Intelligent Adaptation of Prefetch and SMT 
Levels.” ICS 2017

• V. Dimic et al., “Runtime-Assisted Shared Cache Insertion Policies Based on Re-
Reference Intervals.” EuroPAR 2017



• Riding on Moore’s Law (RoMoL, http://www.bsc.es/romol)
• ERC Advanced Grant: 5-year project 2013 – 2018.

• Our team:
• CS Department @ BSC
• PI: Project Coordinators:

• Researchers: Postdocs:

• Students:

• Open for collaborations!

RoMoL Team

http://www.bsc.es/romol)


Roadmaps to Exaflop

From Tianhe-2..

…to Tianhe-2A

with domestic 
technology.

From K computer…

… to Post K

with domestic 
technology.

From the PPP for 
HPC…

to future PRACE 
systems… 

…with domestic 
technology

with domestic 
technology.

IPCEI on HPC

?



HPC is a global competition
“The country with the strongest computing capability

will host the world’s next scientific breakthroughs”.
US House Science, Space and Technology Committee Chairman

Lamar Smith (R-TX)

“Our goal is for Europe to become one of the top 3 
world leaders in high-performance computing by 2020”.

European Commission President 
Jean-Claude Juncker (27 October 2015)

“Europe can develop an exascale machine with 
ARM technology. Maybe we need an                    .

consortium for HPC and Big Data”.
Seymour Cray Award Ceremony Nov. 2015    

Mateo Valero



HPC: a disruptive technology for Industry

“…Europe has a unique opportunity to act and 
invest in the development and deployment of High 

Performance Computing (HPC) technology, Big 
Data and applications to ensure the 

competitiveness of its research and its industries.”

Günther Oettinger, Digital Economy & Society
Commissioner 

“The transformational impact of 
excellent science in research and 
innovation”

Final plenary panel at  ICT - Innovate, Connect, 
Transform conference, 22 Oct 2015, Lisbon.



BSC and the EC

“Europe needs to develop an entire 
domestic exascale stack from the 
processor all the way to the system 
and application software“

Mateo Valero, Director of Barcelona 
Supercomputing Center

Final plenary panel at  ICT - Innovate, 
Connect, Transfor”m conference, 22 
October 2015 Lisbon, Portugal.

the transformational impact of excellent science in 
research and innovation



Mont-Blanc HPC Stack for ARM
Industrial applications

System software

Hardware

Applications



512 RiscV cores in 64 clusters, 16GF/core: 8TF
4 HBM stacks (16GB, 1TB/s each): 64GB @ 4TB/s
16 custom SCM/Flash channels (1TB, 25GB/s each): 16TB @ 0.4TB/s

BSC Accelerator RISC-V ISA

Vector Unit

· 2048b vector
· 512b alu (4clk/op)

1 GHz @ Vmin

OOO

4w Fetch 
· 64KB I$
· Decoupled I$/BP
· 2 level BP
· Loop Stream Detector

4w Rename/Retire 
D$

· 64KB 
· 64B/line
· 128 in-flight misses
· Hardware prefetch

1MB L2 per core

D$ to L2
· 1x512b read
· 1x512b write

L2 to mesh
· 1x512b read
· 1x512b write

Cluster holds snoop 
filter

interposer

cyclone

mem mem

mem mem

Flash

Flash

Flash

Flash

Flash

Flash

Flash

Flash

Flash

Flash

Flash

Flash

Flash

Flash

Flash

Flash

A D D H H H H D D A
D C C C C C C C C D
D C C C C C C C C D
H C C C C C C C C H
H C C C C C C C C H
H C C C C C C C C H
H C C C C C C C C H
D C C C C C C C C D
D C C C C C C C C D
A D D H H H H D D A

Interposer 
cyclone flashmem
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Do we need an
type consortium for HPC and Big Data?

A window of opportunity is open:
• Basic industrial and scientific know-how is available
• Excellent funding opportunities exist in H2020 at European level 

and in the member state structural funds

It’s time to invest in large Flagship projects 
for HPC to gain critical mass

HPC European strategy & Innovation

http://ec.europa.eu/commission/2014-2019/oettinger/blog/mateo-valero-
director-barcelona-supercomputing-center_en

http://ec.europa.eu/commission/2014-2019/oettinger/blog/mateo-valero-
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Are we planning to upgrade?.. Negotiating our next site ;)



www.bsc.eswww.bsc.es

THANK YOU!

http://www.bsc.eswww.bsc.es

