
From Classical to
Runtime Aware
Architectures

Orlando, June 1, 2017

Prof. Mateo Valero
BSC Director

IEEE-CS Charles Babbage Award
In Recognition of Significant Contributions in the Field of Parallel Computing

Established in memory of Charles Babbage in
recognition of significant contributions in the
field of parallel computation. The candidate
would have made an outstanding, innovative
contribution or contributions to parallel
computation. It is hoped, but not required, that
the winner will have also contributed to the
parallel computation community through
teaching, mentoring, or community service.

Mateo Valero Named Recipient of 2017 IEEE Computer Society Charles Babbage Award
Citation: “contributions to parallel computation through brilliant technical work, mentoring PhD
students, and building on incredibly productive European research environment.”

Once upon a time …

Our Origins…

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 20071987 1988 1989 2008 200919861985 2010

IBM PP970 / Myrinet
MareNostrum
42.35, 94.21 Tflop/s

IBM RS-6000 SP & IBM p630
192+144 Gflop/s

SGI Origin 2000
32 Gflop/s

Connection Machine CM-200
0,64 Gflop/s

Convex C3800

Compaq GS-140
12.5 Gflop/s

Compaq GS-160
23.4 Gflop/s

Parsys Multiprocessor Parsytec CCi-8D
4.45 Gflop/s BULL NovaScale 5160

48 Gflop/s

Research prototypes

Transputer cluster

SGI Altix 4700
819.2 Gflops SL8500

6 Petabytes

Maricel
14.4 Tflops, 20 KW

Barcelona Supercomputing Center
Centro Nacional de Supercomputación

Spanish Government 60%

Catalan Government 30%

Univ. Politècnica de Catalunya (UPC) 10%

BSC-CNS is
a consortium
that includes

BSC-CNS objectives

Supercomputing services
to Spanish and
EU researchers

R&D in Computer,
Life, Earth and

Engineering Sciences

PhD programme,
technology transfer,
public engagement

Mission of BSC Scientific Departments

Earth
Sciences

Earth
Sciences

CASECASE

Computer
Sciences

Computer
Sciences

Life
Sciences

Life
Sciences

To influence the way machines are built, programmed and
used: computer architecture, programming models,
performance tools, Big Data, Artificial Intelligence

To develop and implement global and
regional state-of-the-art models for short-

term air quality forecast and long-term
climate applications

To understand living organisms by means of
theoretical and computational methods

(molecular modeling, genomics, proteomics)

To develop scientific and engineering software to
efficiently exploit super-computing capabilities

(biomedical, geophysics, atmospheric, energy, social
and economic simulations)

The MareNostrum 4 Supercomputer

Total peak performance
13,7 Pflops/s

12 times more powerful than MareNostrum 3

Compute
General Purpose, for current BSC workload

More than 11 Pflops/s
With 3,456 nodes of Intel Xeon V5 processors

Emerging Technologies, for evaluation
of 2020 Exascale systems

3 systems, each of more than 0,5 Pflops/s
with KLN/KNH, Power+NVIDIA, ARMv8

Storage
More than 10 PB of GPFS

Elastics Storage System

Network
IB EDR/OPA

Ethernet
Operating System: SuSE

Mare Nostrum 4

Design of Superscalar Processors

Simple interface
Sequential
program

ILP

ISA

Programs
“decoupled”

from hardware
ApplicationsApplications

Decoupled from the software stack

Latency Has Been a Problem from the
Beginning... 

• Feeding the pipeline with the right instructions:
• Software trace cache (ICS’99)
• Prophet/Critic Hybrid Branch Predictor (ISCA’04)

• Locality/reuse
• Cache Memory with Hybrid Mapping (IASTED87). Victim Cache 
• Dual Data Cache (ICS¨95)

• A novel renaming mechanism that boosts software prefetching (ICS’01)
• Virtual-Physical Registers (HPCA’98)

• Kilo Instruction Processors (ISHPC03,HPCA’06, ISCA’08)

Fe
tc

h

D
ec

od
e

R
en

am
e

In
st

ru
ct

io
n

W
in

do
w

W
ak

eu
p+

se
le

ct

R
eg

is
te

r
fil

e

By
pa

ss

D
at

a
C

ac
he

R
eg

is
te

r
W

rit
e

C
om

m
it

… and the Power Wall Appeared Later 

• Better Technologies
• Two-level organization (Locality Exploitation)

• Register file for Superscalar (ISCA’00)
• Instruction queues (ICCD’05)
• Load/Store Queues (ISCA’08)

• Direct Wakeup, Pointer-based Instruction Queue Design (ICCD’04,
ICCD’05)

• Content-aware register file (ISCA’09)
• Fuzzy computation (ICS’01, IEEE CAL’02, IEEE-TC’05). Currently known as

Approximate Computing 

Fe
tc

h

D
ec

od
e

R
en

am
e

In
st

ru
ct

io
n

W
in

do
w

W
ak

eu
p+

se
le

ct

R
eg

is
te

r
fil

e

By
pa

ss

D
at

a
C

ac
he

R
eg

is
te

r
W

rit
e

C
om

m
it

Fuzzy computation

Accuracy Size

Performance
@ Low Power

Binary
systems
(bmp)

Compresion
protocols

(jpeg)

Fuzzy
Computation

This one only used
~85% of the time
while consuming

~75% of the power

This image is the
original one

SMT and Memory Latency … 

• Simultaneous Multithreading (SMT)
• Benefits of SMT Processors:

• Increase core resource utilization
• Basic pipeline unchanged:

• Few replicated resources, other shared
• Some of our contributions:

• Dynamically Controlled Resource Allocation (MICRO 2004)
• Quality of Service (QoS) in SMTs (IEEE TC 2006)
• Runahead Threads for SMTs (HPCA 2008)

Fe
tc

h

De
co

de

Re
na

m
e

In
st

ru
ct

io
n

W
in

do
w

W
ak

eu
p+

se
le

ct

Re
gi

st
er

fil
e

By
pa

ss

Da
ta

 C
ac

he

Re
gi

st
er

W
rit

e

Co
m

m
itThread 1

Thread N

Time Predictability (in multicore and SMT processors)

• Where is it required:
• Increasingly required in handheld/desktop devices
• Also in embedded hard real-time systems (cars, planes, trains, …)

• How to achieve it:
• Controlling how resources are assigned to co-running tasks

• Soft real-time systems
• SMT: DCRA resource allocation policy (MICRO 2004, IEEE Micro 2004)
• Multicores: Cache partitioning (ACM OSR 2009, IEEE Micro 2009)

• Hard real-time systems
• Deterministic resource ‘securing’ (ISCA 2009)
• Time-Randomised designs (DAC 2014 best paper award)

QoS
spaceDefinition:

• Ability to provide a minimum performance to a task
• Requires biasing processor resource allocation

Vector Architectures… Memory Latency
and Power 

• Out-of-Order Access to Vectors (ISCA 1992, ISCA 1995)

• Command Memory Vector (PACT 1998)
• In-memory computation

• Decoupling Vector Architectures (HPCA 1996)
• Cray SX1

• Out-of-order Vector Architectures (Micro 1996)

• Multithreaded Vector Architectures (HPCA 1997)

• SMT Vector Architectures (HICS 1997, IEEE MICRO J. 1997)

• Vector register-file organization (PACT 1997)

• Vector Microprocessors (ICS 1999, SPAA 2001)

• Architectures with Short Vectors (PACT 1997, ICS 1998)
• Tarantula (ISCA 2002), Knights Corner

• Vector Architectures for Multimedia (HPCA 2001, Micro 2002)
• High-Speed Buffers Routers (Micro 2003, IEEE TC 2006)
• Vector Architectures for Data-Base (Micro 2012, HPCA2015,ISCA2016)

Statically scheduled VLIW architectures

• Power-efficient FU
• Clustering
• Widening (MICRO-98)

• μSIMD and multimedia vector units
(ICPP-05)

• Locality-aware RF
• Sacks (CONPAR-94)

• Non-consistent (HPCA95)

• Two-level hierarchical (MICRO-00)

• Integrated modulo scheduling
techniques, register allocation and spilling
(MICRO-95, PACT-96, MICRO-96, MICRO-01)

The MultiCore Era
Moore’s Law + Memory Wall + Power Wall

UltraSPARC T2
(2007)

Intel Xeon
7100 (2006)

POWER4
(2001)

Chip MultiProcessors (CMPs)

How Multicores Were Designed at the Beginning?

IBM Power4 (2001)
• 2 cores, ST
• 0.7 MB/core L2,

16MB/core L3 (off-chip)

• 115W TDP
• 10GB/s mem BW

IBM Power7 (2010)
• 8 cores, SMT4
• 256 KB/core L2

16MB/core L3 (on-chip)

• 170W TDP
• 100GB/s mem BW

IBM Power8 (2014)
• 12 cores, SMT8
• 512 KB/core L2

8MB/core L3 (on-chip)

• 250W TDP
• 410GB/s mem BW

How To Parallelize Future Applications?
• From sequential to parallel codes
• Efficient runs on manycore processors

implies handling:
• Massive amount of cores and available

parallelism
• Heterogeneous systems

• Same or multiple ISAs
• Accelerators, specialization

• Deep and heterogeneous memory hierarchy
• Non-Uniform Memory Access (NUMA)
• Multiple address spaces

• Stringent energy budget
• Load Balancing

A Really Fuzzy Space

Interconnect

L2 L2

DR
AM

DR
AM

MC

L3 L3 L3L3

M
RA

M
M

RA
M

C

C

C

CCl
us

te
r I

nt
er

co
nn

ec
t

C C

C C

C

C

C

CCl
us

te
r I

nt
er

co
nn

ec
t

C C

C C

C CA A

Living in the Programming Revolution

Multicores made the
interface to leak…

ISA /API

Parallel hardware
with multiple

address spaces
(hierarchy, transfer),

control flows, …

ApplicationsApplications

Parallel application
logic

+
Platform specificities

Applications

The efforts are
focused on

efficiently using the
underlying
hardware

ISA / API

Vision in the Programming Revolution
Need to decouple again

General purpose

Single address space

Application logic

Arch. independentApplicationsApplications

Power to the runtimePower to the runtime

PM: High-level, clean, abstract interface

History / Strategy

SMPSs V2
~2009

GPUSs
~2009

CellSs
~2006

SMPSs V1
~2007

PERMPAR
~1994

COMPSs
~2007

NANOS
~1996

COMPSs
ServiceSs

~2010

COMPSs
ServiceSs
PyCOMPSs

~2013

OmpSs
~2008

OpenMP … 3.0 …. 4.0 ….

StarSs
~2008

DDT @
Parascope
~1992

2008 2013

Forerunner of OpenMP

GridSs
~2002

OmpSs

A forerunner for OpenMP

+ Prototype
of tasking

+ Task
dependences

+ Task
priorities

+ Taskloop
prototyping

+ Task reductions
+ Dependences

on taskwaits
+ OMPT impl.

+ Multidependences
+ Commutative

+ Dependences
on taskloops

today

OmpSs: data-flow execution of sequential programs
void Cholesky(float *A) {

int i, j, k;
for (k=0; k<NT; k++) {

spotrf (A[k*NT+k]) ;
for (i=k+1; i<NT; i++)

strsm (A[k*NT+k], A[k*NT+i]);
// update trailing submatrix
for (i=k+1; i<NT; i++) {

for (j=k+1; j<i; j++)
sgemm(A[k*NT+i], A[k*NT+j], A[j*NT+i]);

ssyrk (A[k*NT+i], A[i*NT+i]);
}

}#pragma omp task inout ([TS][TS]A)
void spotrf (float *A);
#pragma omp task input ([TS][TS]A) inout ([TS][TS]C)
void ssyrk (float *A, float *C);
#pragma omp task input ([TS][TS]A,[TS][TS]B) inout ([TS][TS]C)
void sgemm (float *A, float *B, float *C);
#pragma omp task input ([TS][TS]T) inout ([TS][TS]B)
void strsm (float *T, float *B);

Decouple how we write
applications form
how they are executed

Write

Execute

Clean offloading to
hide architectural
complexities

OmpSs: …Taskified…
#pragma css task input(A, B) output(C)
void vadd3 (float A[BS], float B[BS],

float C[BS]);
#pragma css task input(sum, A) inout(B)
void scale_add (float sum, float A[BS],

float B[BS]);
#pragma css task input(A) inout(sum)
void accum (float A[BS], float *sum);

for (i=0; i<N; i+=BS) // C=A+B
vadd3 (&A[i], &B[i], &C[i]);

...
for (i=0; i<N; i+=BS) //sum(C[i])

accum (&C[i], &sum);
...
for (i=0; i<N; i+=BS) // B=sum*A

scale_add (sum, &E[i], &B[i]);
...
for (i=0; i<N; i+=BS) // A=C+D

vadd3 (&C[i], &D[i], &A[i]);
...
for (i=0; i<N; i+=BS) // E=G+F

vadd3 (&G[i], &F[i], &E[i]);

1 2 3 4

13 14 15 16

5 6 87

17

9

18

10

19

11

20

12

Color/number: order of task instantiation
Some antidependences covered by flow dependences not drawn

Write

Decouple
how we write
form
how it is executed

… and Executed in a Data-Flow Model
#pragma css task input(A, B) output(C)
void vadd3 (float A[BS], float B[BS],

float C[BS]);
#pragma css task input(sum, A) inout(B)
void scale_add (float sum, float A[BS],

float B[BS]);
#pragma css task input(A) inout(sum)
void accum (float A[BS], float *sum);

1 1 1 2

2 2 2 3

2 3 54

7

6

8

6

7

6

8

7

for (i=0; i<N; i+=BS) // C=A+B
vadd3 (&A[i], &B[i], &C[i]);

...
for (i=0; i<N; i+=BS) //sum(C[i])

accum (&C[i], &sum);
...
for (i=0; i<N; i+=BS) // B=sum*A

scale_add (sum, &E[i], &B[i]);
...
for (i=0; i<N; i+=BS) // A=C+D

vadd3 (&C[i], &D[i], &A[i]);
...
for (i=0; i<N; i+=BS) // E=G+F

vadd3 (&G[i], &F[i], &E[i]);

Write

Execute

Color/number: a possible order of task execution

OmpSs: Potential of Data Access Info
• Flat global address space seen by

programmer
• Flexibility to dynamically traverse

dataflow graph “optimizing”
• Concurrency. Critical path
• Memory access: data transfers

performed by run time

• Opportunities for automatic
• Prefetch
• Reuse
• Eliminate antidependences (rename)
• Replication management

• Coherency/consistency handled by
the runtime

• Layout changes

Processor
CPU

On-chip cache

Off-chip BW

CPU

Main Memory

PPU

User
main
program

CellSs PPU lib

SPU0

DMA in
Task execution
DMA out
Synchronization

CellSs SPU lib

Original task
code

Helper threadmain thread

Memory

User
data

Renaming

Task graph

Synchronization

Tasks

Finalization
signal

Stage in/out
data

Work
assignment

Data dependence
Data renaming

Scheduling

SPU1

SPU2

SPE threads

FUFUFU
Helper thread

CellSs implementation

IFU
REG

ISSIQRENDEC

RET
Main thread

P. Bellens, et al, “CellSs: A Programming Model for the Cell BE Architecture” SC’06.
P. Bellens, et al, “CellSs: Programming the Cell/B.E. made easier” IBM JR&D 2007

Renaming @ Cell

• Experiments on the CellSs (predecessor of OmpSs)
• Renaming to avoid anti-dependences

• Eager (similarly done at SS designs)
• At task instantiation time

• Lazy (similar to virtual registers)
• Just before task execution

P. Bellens, et al, “CellSs: Scheduling Techniques to Better Exploit Memory
Hierarchy” Sci. Prog. 2009

Main memory transfers (cold)

Main Memory transfers
(capacity)

Killed transfers

SMPSs: Stream benchmark reduction in execution time

SMPSs: Jacobi reduciton in # remanings

Data Reuse @ Cell

P. Bellens, et al, “CellSs: Scheduling Techniques to Better Exploit Memory Hierarchy” Sci. Prog. 2009

Matrix-matrix multiply

• Experiments on the CellSs
• Data Reuse
• Locality arcs in dependence graph

• Good locality but high overhead  no time improvement

Reducing Data Movement @ Cell
• Experiments on the CellSs (predecessor of

OmpSs)
• Bypassing / global software cache
• Distributed implementation

• @each SPE
• Using object descriptors managed atomically with

specific hardware support (line level LL-SC)

Main memory:
cold

Main memory:
capacity

Global
software cache

Local
software cache

P. Belens et al, “Making the Best of Temporal Locality: Just-In-Time Renaming
and Lazy Write-Back on the Cell/B.E.” IJHPC 2010

DMA Reads

GPUSs implementation
• Architecture implications

• Large local store O(GB)  large task granularity  Good
• Data transfers: Slow, non overlapped  Bad

• Cache management
• Write-through
• Write-back

• Run time implementation
• Powerful main processor and multiple cores
• Dumb accelerator (not able to perform data transfers, implement

software cache,…)

Slave threads

FUFUFU
Helper thread

IFU
REG

ISSIQRENDEC

RET
Main thread

E. Ayguade, et al, “An Extension of the StarSs Programming Model for Platforms with Multiple GPUs” Europar 2009

Prefetching @ multiple GPUs
• Improvements in runtime mechanisms (OmpSs +

CUDA)
• Use of multiple streams
• High asynchrony and overlap (transfers and kernels)
• Overlap kernels
• Take overheads out of the critical path

• Improvement in schedulers
• Late binding of locality aware decisions
• Propagate priorities

J. Planas et al, “Optimizing Task-based Execution Support on Asynchronous Devices.” Submitted

Nbody
Cholesky

34

OmpSs Ubiquity
• OmpSs @ Cell

• CellSs [SC 2006, IBM JRD 2007]
• Speculative Distributed Scheduling [IPDPS 2011]

• OmpSs @ Multicores [PPL 2011]
• OmpSs @ Clusters

• Multicores [EuroPAR 2011, IPDPS 2013-1, ICS 2013]
• Multicores+GPU [ICS 2011, IPDPS 2012]

• OmpSs @ Multicore+GPU [IPDPS 2013-2]
• OmpSs @ Zynq

• Offload computation and Nanos++ runtime acceleration [FPGA 2014]

• OmpSs @ multiple GPUs
• High asynchrony and overlap (transfers and kernels)
• Improved schedulers

35

CellSs, StarSs, OmpSs,…. papers
• P. Bellens,...“Memory – CellSs: a programming model for the Cell BE architecture.” SC 2006

• J. M. Pérez, et al. “CellSs: Making it easier to program the Cell Broadband Engine processor.” IBM
Journal of Research and Development 2007

• J. M. Pérez, et al: “A dependency-aware task-based programming environment for multi-core
architectures.” CLUSTER 2008

• P. Bellens,...“Exploiting Locality on the Cell/B.E. through Bypassing.” SAMOS 2009

• E. Ayguadé et al.:A Proposal to Extend the OpenMP Tasking Model for Heterogeneous
Architectures. IWOMP 2009

• P. Bellens, et al. “Just-in-Time Renaming and Lazy Write-Back on the Cell/B.E.” ICPP Workshops
2009

• E. Ayguadé,: “An Extension of the StarSs Programming Model for Platforms with Multiple GPUs.”
Euro-Par 2009

• P. Bellens, et al.”CellSs: Scheduling techniques to better exploit memory hierarchy.” Scientific
Programming 2009

• A. Duran, et al. “A Proposal to Extend the OpenMP Tasking Model with Dependent Tasks.”
International Journal of Parallel Programming 2009

• J.Labarta et al “BSC Vision Towards Exascale.” IJHPCA 2009

36

CellSs, StarSs, OmpSs,…. papers
• E. Ayguadé ET AL “Extending OpenMP to Survive the Heterogeneous Multi-Core Era.”

International Journal of Parallel Programming 2010

• P. Bellens, …”A Study of Speculative Distributed Scheduling on the Cell/B.E.” IPDPS 2011

• J. Labarta, et al. “Hybrid Parallel Programming with MPI/StarSs.” PARCO 2011

• J. Bueno, et al. “Programming clusters of GPUs with OMPSs. ICS 2011

• A. Duran, et al “Ompss: a Proposal for Programming Heterogeneous Multi-Core Architectures.”
Parallel Processing Letters 2011

• J. Dongarra et al, “The International Exascale Software Project roadmap” IJHPCA 2011

• V. Krishnan “OmpSs-OpenCL Programming Model for Heterogeneous Systems” LCPC 2012

• N. Vujic, “DMA-circular: an enhanced high level programmable DMA controller for optimized
management of on-chip local memories.” Conf. Computing Frontiers 2012

• A. Fernández,”Task-Based Programming with OmpSs and Its Application.” Euro-Par 2014

• Many more since 2014…

ISA / API

Runtime Aware Architectures
The runtime drives the hardware design

ApplicationsApplications

RuntimeRuntime

PM: High-level, clean, abstract interface

Task based PM
annotated by the user

Data dependencies
detected at runtime

Dynamic scheduling

“Reuse” architectural
ideas under

new constraints

Superscalar vision at Multicore level

Programmability
Wall Resilience Wall

Memory Wall Power Wall

Superscalar World
Out-of-Order, Kilo-Instruction Processor,
Distant Parallelism
Branch Predictor, Speculation
Fuzzy Computation
Dual Data Cache, Sack for VLIW
Register Renaming, Virtual Regs
Cache Reuse, Prefetching, Victim Cache
In-memory Computation
Accelerators, Different ISA’s, SMT
Critical Path Exploitation
Resilience

Multicore World
Task-based, Data-flow Graph, Dynamic
Parallelism
Tasks Output Prediction,
Speculation
Hybrid Memory Hierarchy, NVM
Late Task Memory Allocation
Data Reuse, Prefetching
In-memory FU’s
Heterogeneity of Tasks and HW
Task-criticality
Resilience
Load Balancing and Scheduling
Interconnection Network
Data Movement

Architecture Proposals in RoMoL

C C
L1 Cl

us
te

r I
nt

er
co

nn
ec

t

LM
L1
LM

C C
L1
LM

L1
LM

C C
L1
LM

L1
LM

C C
L1
LM

L1
LM

Stacked
DRAM

External
DRAM

L2

L3 cache

Cluster Interconnect
- Priority-based arbitration

- By-pass routing

Runtime Support Unit
- DVFS

- Light-weight deps tracking
- Task memoization

- Reduced data motion

Vectors
- DB, sorting

- BTrees

Cache Hierarchy
- LM usage

- Coherence
- Eviction policies

- Reductions

PI
CO

S

Runtime Management of Local Memories (LM)

LM Management in OmpSs
– Task inputs and outputs mapped to the LMs
– Runtime manages DMA transfers

8.7% speedup in execution time

14% reduction in power

20% reduction in network-on-chip traffic

0,8
0,9

1
1,1
1,2

jacobi kmeans md5 tinyjpeg vec_add vec_red

Sp
ee

du
p

Cache

Hybrid

Ll. Alvarez et al. Transparent Usage of Hybrid on-Chip Memory Hierarchies in Multicores. ISCA 2015.
Ll. Alvarez et al Runtime-Guided Management of Scratchpad Memories in Multicore Architectures. PACT 2015

C C
L1 Cl

us
te

r I
nt

er
co

nn
ec

t

LM
L1
LM

C C
L1
LM

L1
LM

C C
L1
LM

L1
LM

C C
L1
LM

L1
LM

Stacked
DRAM

External
DRAM

L2

L3 cache

PI
CO

S

Exploiting the Task Dependency Graph
(TDG) to Reduce Coherence Traffic

• To reduce coherence traffic, the
state-of-the-art applies round-robin
mechanisms at the runtime level.

• Exploiting the information
contained at the TDG level is
effective to

• improve performance
• dramatically reduce coherence

traffic (2.26x reduction with respect
to the state-of-the-art).

State-of-the-art Partition (DEP)
Gauss-Seidel TDG

DEP requires ~200GB of
data transfer across a 288
cores system

Exploiting the Task Dependency Graph
(TDG) to Reduce Coherence Traffic

• To reduce coherence traffic, the state-
of-the-art applies round-robin
mechanisms at the runtime level.

• Exploiting the information contained at
the TDG level is effective to

• improve performance
• dramatically reduce coherence traffic

(2.26x reduction with respect to the
state-of-the-art).

Graph Algorithms-Driven Partition (RIP-DEP)
Gauss-Seidel TDG

RIP-DEP requires ~90GB of
data transfer across a 18-
sockets (288 cores) system

I. Sánchez et al, Reducing Data Movements on Shared Memory
Architectures (submitted to SC’17)

• Leveraging runtime knowledge of the
HW (NUMA topology) and the SW
(task input data)

• Runtime manages co-location of data
and computation (PACT’16):

• NUMA Oblivious (DFT)
• NUMA Aware Data Allocation only (DI)
• NUMA Aware Data Allocation and Task

Scheduling (NAFT)

Runtime Managed Data Locality

P. Caheny et al., “Reducing cache coherence traffic with hierarchical
directory cache and NUMA-aware runtime scheduling.” PACT 2016

0
1
2
3
4
5
6
7
8
9

10
11

Cholesky SMI Jacobi IntHist

Sp
ee

du
p

DFT
DI
NAFT

0

0,5

1

1,5

2

2,5

3

DFT DI NAFT DFT DI NAFT DFT DI NAFT DFT DI NAFT

Cholesky SMI Jacobi IntHist

N
or

m
al

is
ed

 C
oh

er
en

ce
 T

ra
ff

ic Control
Data To Cache
Data Writeback

Reduced Data
Movement

Performance
Benefit

Runtime Managed Data Locality

• NAFT provides best
performance (6.7x
average speedup) and
lowest data movement
(4.0x average reduction)
in a real 288 core ccNUMA
SMP (16 sockets x 18
cores)

Runtime-Assisted Cache Insertion Policies

V. Dimić et al.: Runtime-Assisted Shared Cache Insertion Policies
Based on Re-Reference Intervals. EuroPAR 2017.

C CCl
us

te
r I

nt
er

co
nn

ec
t

L2

C C

C C

C CL1 L1

L3

DRAM DRAM

L1 L1

L1 L1

L1 L1

Runtime-Assisted Cache Insertion Policies
• Motivation: Improve LLC hit ratio to reduce costly

requests to memory (EuroPAR’17)
• Use information about application semantics

provided by the runtime:
• Task types
• Task data-dependency types (inputs, outputs, non-

dependencies)

• Insertion policies based on Re-Reference Intervals
• TTIP: uses probabilities per task-type to decide

insertion position
• Best probability is determined by training at the

beginning of the execution
• DTIP: gives output-dependencies a higher priority in

the cache
• Outputs will be reused by the successor task
• Input- and non-dependencies lower priority

• Average MPKI improvement over LRU: 11.2% (TTIP) and 16.8% (DTIP)

OmpSs in Heterogeneous Systems

Heterogeneous systems
• Big-little processors
• Accelerators
• Hard to program

big

little

big big

big

little little

little

Task-based programming models can adapt to these scenarios
• Detect tasks in the critical path and run them in fast cores
• Non-critical tasks can run in slower cores
• Assign tasks to the most energy-efficient HW component
• Runtime takes core of balancing the load
• Same performance with less power consumption

Criticality-Aware Task Scheduler

• CATS on a big.LITTLE processor (ICS’15)
• 4 Cortex A15 @ 2GHz
• 4 Cortex A7 @ 1.4GHz

• Effectively solves the problem of blind assignment of tasks
• Higher speedups for double precision-intensive benchmarks

• But still suffers from priority inversion and static assignment

K. Chronaki et al. Criticality-Aware Dynamic Task Scheduling for
Heterogeneous Architectures. ICS 2015.

0,7
0,8
0,9

1
1,1
1,2
1,3

Cholesky Int. Hist QR Heat AVG

Sp
ee

du
p

Original CATS

Criticality-Aware Task Acceleration
• CATA: accelerating critical tasks (IPDPS’16)

• Runtime reconfigures per-core DVFS meeting a global power budget
• Architectural Support for DVFS: Runtime Support Unit (RSU)

• Reduces reconfiguration overheads of software solution
• Serialization in DVFS reconfigurations
• User-kernel mode switches

• Runtime system notifies to the RSU task criticality and running core
• Similar hardware cost to TurboBoost

E. Castillo et al., CATA: Criticality Aware Task Acceleration for
Multicore Processors. IPDPS 2016.

80%
90%

100%
110%
120%
130%
140%
150%

Performance imprv EDP imprv

Original CATS CATA CATA+RSU

32-core system with
16 fast cores

Approximate Task Memoization (ATM)

• ATM aims to eliminate redundant tasks (IPDPS’17)
• ATM detects correlations between task inputs and outputs to

memoize similar tasks

I. Brumar et al, “ATM: Approximate Task Memoization in the
Runtime System”. IPDPS 2017.

– Static ATM achieves 1.4x
average speedup when only
applying memoization
techniques

– With task approximation,
Dynamic ATM achieves 2.5x
average speedup with an
average 0.7% accuracy loss,
competitive with an off-line
Oracle approach

Dealing with Manufacturing Variability in CPUs

D. Chasapis et al, “Runtime-Guided Mitigation of Manufacturing
Variability in Power-Constrained Multi-Socket NUMA Nodes”. ICS’16

Dealing with Manufacturing Variability in CPUs
• Manufacturing Variability of CPUs and

Power becomes performance
heterogeneity in power-constrained
environments (ICS’16)

• Typical load-balancing may not be
sufficient

• Redistributing power and number of
active cores among sockets can improve
performance • Statically trying all possible configurations

for each node imposes huge overhead
(static).

• Runtime can try different configurations
for a segment of the execution and
choose a good one for the remaining time.

• Carefully limiting the configuration space
to meaningful choices can greatly improve
performance within a single run
(exhaustive vs scoped).

TaskSuperscalar (TaskSs) Pipeline

• Hardware design for a distributed task
superscalar pipeline frontend (MICRO’10)

• Can be embedded into any manycore fabric
• Drive hundreds of threads
• Work windows of thousands of tasks
• Fine grain task parallelism

• TaskSs components:
• Gateway (GW): Allocate resources for task meta-data

• Object Renaming Table (ORT)
• Map memory objects to producer tasks

• Object Versioning Table (OVT)
• Maintain multiple object versions

• Task Reservation Stations (TRS)
• Store and track task in-flght meta-data

• Implementing TaskSs @ Xilinx Zynq (IPDPS’17)

GW

TRS

ORT

Ready Queue

OVT

TaskSs pipeline

Scheduler

C C C C
C C C C

C C C C
C C C C

Multicore Fabric

Y. Etsion et al, “Task Superscalar: An Out-of-Order Task Pipeline” MICRO-43, 2010

X. Tan et al, “General Purpose Task-Dependence Management Hardware for Task-
based Dataflow Programming Models”, IPDPS 2017

Hash Join, Sorting, Aggregation, DBMS
• Goal: Vector acceleration of data bases

• “Real vector” extensions to x86
• Pipeline operands to the functional unit (like Cray machines,

not like SSE/AVX)
• Scatter/gather, masking, vector length register
• Implemented in PTLSim + DRAMSim2

• Hash join work published in MICRO 2012
• 1.94x (large data sets) and 4.56x (cache resident data sets)

of speedup for TPC-H
• Memory bandwidth is the bottleneck

• Sorting paper published in HPCA 2015
• Compare existing vectorized quicksort, bitonic mergesort,

radix sort on a consistent platform

• Propose novel approach (VSR) for vectorizing radix sort with
2 new instructions

• Similarity with AVX512-CD instructions
(but cannot use Intel’s instructions because the
algorithm requires strict ordering)

• Small CAM
• 3.4x speedup over next-best vectorised algorithm with the

same hardware configuration due to:
• Transforming strided accesses to unit-stride
• Elminating replicated data structures

• Ongoing work on aggregations

• Reduction to a group of values, not a single scalar value
ISCA 2016

• Building from VSR work

0
2
4
6
8

10
12
14
16
18
20
22

m
vl

-8

m
vl

-1
6

m
vl

-3
2

m
vl

-6
4

m
vl

-8

m
vl

-1
6

m
vl

-3
2

m
vl

-6
4

m
vl

-8

m
vl

-1
6

m
vl

-3
2

m
vl

-6
4

m
vl

-8

m
vl

-1
6

m
vl

-3
2

m
vl

-6
4

quicksort bitonic radix vsr

sp
ee

du
p

ov
er

 sc
al

ar
 b

as
el

in
e

1 lane 2 lanes 4 lanes

Overlap Communication and Computation

• Hybrid MPI/OmpSs: Linpack example
• Extend asynchronous data-flow

execution to outer level
• Taskify MPI communication primitives

• Automatic lookahead
• Improved performance
• Tolerance to network bandwidth
• Tolerance to OS noise

P0 P1 P2

V. Marjanovic et al, “Overlapping Communication and Computation by using a
Hybrid MPI/SMPSs Approach” ICS 2010

Effects on Bandwidth

flattening
communication pattern

thus

reducing
bandwidth requirements

*simulation on application with
ring communication pattern

V. Subotic et al. “Overlapping communication and computation by
enforcing speculative data-flow”, January 2008, HiPEAC

OmpSs Runtime-based Resilience
• Suitability of OmpSs for resilience

• Asynchrony – OoO execution, Input/output annotations

• Checkpoint – restart techniques (PDP’15)
• Per-task inputs checkpointing, task replication to check outputs,

asynchronous recovery tasks

• Algorithmic Recovery Routines (SC’15)
• Conjugate Gradient (CG)
• Detection

• Memory Page Retirement
• Correction

• Algorithmic
• Computation/Recovery

overlap plus checkpointless
techniques → low overhead

O. Subasi et al, "NanoCheckpoints: A Task-Based Asynchronous Dataflow
Framework for Efficient and Scalable Checkpoint/Restart." PDP 2015.

L. Jaulmes et al, “Exploiting Asynchrony from Exact Forward Recovery for DUE in
Iterative Solvers”. SC’15. Nominated to the Best Paper award.

Related Work
• Rigel Architecture (ISCA 2009)

• No L1D, non-coherent L2, read-only, private and cluster-shared data
• Global accesses bypass the L2 and go directly to L3

• SARC Architecture (IEEE MICRO 2010)
• Throughput-aware architecture
• TLBs used to access remote LMs and migrate data accross LMs

• Runnemede Architecture (HPCA 2013)
• Coherence islands (SW managed) + Hierarchy of LMs
• Dataflow execution (codelets)

• Carbon (ISCA 2007)
• Hardware scheduling for task-based programs

• Holistic run-time parallelism management (ICS 2013)
• Runtime-guided coherence protocols (IPDPS 2014)

RoMoL … papers

• V. Marjanovic et al., “Effective communication and computation overlap with
hybrid MPI/SMPSs.” PPoPP 2010

• Y. Etsion et al., “Task Superscalar: An Out-of-Order Task Pipeline.” MICRO 2010
• N. Vujic et al., “Automatic Prefetch and Modulo Scheduling Transformations for

the Cell BE Architecture.” IEEE TPDS 2010
• V. Marjanovic et al., “Overlapping communication and computation by using a

hybrid MPI/SMPSs approach.” ICS 2010
• T. Hayes et al., “Vector Extensions for Decision Support DBMS Acceleration”.

MICRO 2012
• L. Alvarez,et al., “Hardware-software coherence protocol for the coexistence of

caches and local memories.” SC 2012
• M. Valero et al., “Runtime-Aware Architectures: A First Approach”. SuperFRI

2014
• L. Alvarez,et al., “Hardware-Software Coherence Protocol for the Coexistence of

Caches and Local Memories.” IEEE TC 2015

RoMoL … papers

• M. Casas et al., “Runtime-Aware Architectures”. Euro-Par 2015.
• T. Hayes et al., “VSR sort: A novel vectorised sorting algorithm & architecture

extensions for future microprocessors”. HPCA 2015
• K. Chronaki et al., “Criticality-Aware Dynamic Task Schedulling for

Heterogeneous Architectures”. ICS 2015
• L. Alvarez et al., “Coherence Protocol for Transparent Management of

Scratchpad Memories in Shared Memory Manycore Architectures”. ISCA 2015
• L. Alvarez et al., “Run-Time Guided Management of Scratchpad Memories in

Multicore Architectures”. PACT 2015
• L. Jaulmes et al., “Exploiting Asycnhrony from Exact Forward Recoveries for DUE

in Iterative Solvers”. SC 2015
• D. Chasapis et al., “PARSECSs: Evaluating the Impact of Task Parallelism in the

PARSEC Benchmark Suite.” ACM TACO 2016.
• E. Castillo et al., “CATA: Criticality Aware Task Acceleration for Multicore

Processors.” IPDPS 2016

RoMoL … papers

• T. Hayes et al “Future Vector Microprocessor Extensions for Data Aggregations.”
ISCA 2016.

• D. Chasapis et al., “Runtime-Guided Mitigation of Manufacturing Variability in
Power-Constrained Multi-Socket NUMA Nodes.” ICS 2016

• P. Caheny et al., “Reducing cache coherence traffic with hierarchical directory
cache and NUMA-aware runtime scheduling.” PACT 2016

• T. Grass et al., “MUSA: A multi-level simulation approach for next-generation
HPC machines.” SC 2016

• I. Brumar et al., “ATM: Approximate Task Memoization in the Runtime System.”
IPDPS 2017

• K. Chronaki et al., “Task Scheduling Techniques for Asymmetric Multi-Core
Systems.” IEEE TPDS 2017

• C. Ortega et al., “libPRISM: An Intelligent Adaptation of Prefetch and SMT
Levels.” ICS 2017

• V. Dimic et al., “Runtime-Assisted Shared Cache Insertion Policies Based on Re-
Reference Intervals.” EuroPAR 2017

• Riding on Moore’s Law (RoMoL, http://www.bsc.es/romol)
• ERC Advanced Grant: 5-year project 2013 – 2018.

• Our team:
• CS Department @ BSC
• PI: Project Coordinators:

• Researchers: Postdocs:

• Students:

• Open for collaborations!

RoMoL Team

http://www.bsc.es/romol)

Roadmaps to Exaflop

From Tianhe-2..

…to Tianhe-2A

with domestic
technology.

From K computer…

… to Post K

with domestic
technology.

From the PPP for
HPC…

to future PRACE
systems…

…with domestic
technology

with domestic
technology.

IPCEI on HPC

?

HPC is a global competition
“The country with the strongest computing capability

will host the world’s next scientific breakthroughs”.
US House Science, Space and Technology Committee Chairman

Lamar Smith (R-TX)

“Our goal is for Europe to become one of the top 3
world leaders in high-performance computing by 2020”.

European Commission President
Jean-Claude Juncker (27 October 2015)

“Europe can develop an exascale machine with
ARM technology. Maybe we need an .

consortium for HPC and Big Data”.
Seymour Cray Award Ceremony Nov. 2015

Mateo Valero

HPC: a disruptive technology for Industry

“…Europe has a unique opportunity to act and
invest in the development and deployment of High

Performance Computing (HPC) technology, Big
Data and applications to ensure the

competitiveness of its research and its industries.”

Günther Oettinger, Digital Economy & Society
Commissioner

“The transformational impact of
excellent science in research and
innovation”

Final plenary panel at ICT - Innovate, Connect,
Transform conference, 22 Oct 2015, Lisbon.

BSC and the EC

“Europe needs to develop an entire
domestic exascale stack from the
processor all the way to the system
and application software“

Mateo Valero, Director of Barcelona
Supercomputing Center

Final plenary panel at ICT - Innovate,
Connect, Transfor”m conference, 22
October 2015 Lisbon, Portugal.

the transformational impact of excellent science in
research and innovation

Mont-Blanc HPC Stack for ARM
Industrial applications

System software

Hardware

Applications

512 RiscV cores in 64 clusters, 16GF/core: 8TF
4 HBM stacks (16GB, 1TB/s each): 64GB @ 4TB/s
16 custom SCM/Flash channels (1TB, 25GB/s each): 16TB @ 0.4TB/s

BSC Accelerator RISC-V ISA

Vector Unit

· 2048b vector
· 512b alu (4clk/op)

1 GHz @ Vmin

OOO

4w Fetch
· 64KB I$
· Decoupled I$/BP
· 2 level BP
· Loop Stream Detector

4w Rename/Retire
D$

· 64KB
· 64B/line
· 128 in-flight misses
· Hardware prefetch

1MB L2 per core

D$ to L2
· 1x512b read
· 1x512b write

L2 to mesh
· 1x512b read
· 1x512b write

Cluster holds snoop
filter

interposer

cyclone

mem mem

mem mem

Flash

Flash

Flash

Flash

Flash

Flash

Flash

Flash

Flash

Flash

Flash

Flash

Flash

Flash

Flash

Flash

A D D H H H H D D A
D C C C C C C C C D
D C C C C C C C C D
H C C C C C C C C H
H C C C C C C C C H
H C C C C C C C C H
H C C C C C C C C H
D C C C C C C C C D
D C C C C C C C C D
A D D H H H H D D A

Interposer
cyclone flashmem

Package substrate

Do we need an
type consortium for HPC and Big Data?

A window of opportunity is open:
• Basic industrial and scientific know-how is available
• Excellent funding opportunities exist in H2020 at European level

and in the member state structural funds

It’s time to invest in large Flagship projects
for HPC to gain critical mass

HPC European strategy & Innovation

http://ec.europa.eu/commission/2014-2019/oettinger/blog/mateo-valero-
director-barcelona-supercomputing-center_en

http://ec.europa.eu/commission/2014-2019/oettinger/blog/mateo-valero-

MareNostrum 3

67

Are we planning to upgrade?.. Negotiating our next site ;)

www.bsc.eswww.bsc.es

THANK YOU!

http://www.bsc.eswww.bsc.es

