

Proceedings of
IEEE 28th International

Parallel and Distributed Processing Symposium

IPDPS 2014 Advance Program Abstracts

Los Alamitos, California

Washington • Tokyo

Copyright © 2014 by The Institute of Electrical and Electronics Engineers, Inc.

All rights reserved.

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries may photocopy
beyond the limits of US copyright law, for private use of patrons, those articles in this volume that carry a code at
the bottom of the first page, provided that the per-copy fee indicated in the code is paid through the Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

Other copying, reprint, or republication requests should be addressed to: IEEE Copyrights Manager, IEEE Service
Center, 445 Hoes Lane, P.O. Box 133, Piscataway, NJ 08855-1331.

The papers in this book comprise the proceedings of the meeting mentioned on the cover and title page. They reflect
the authors’ opinions and, in the interests of timely dissemination, are published as presented and without change.
Their inclusion in this publication does not necessarily constitute endorsement by the editors, the IEEE Computer
Society, or the Institute of Electrical and Electronics Engineers, Inc.

IEEE Computer Society Order Number P5207

BMS Part Number CFP14023-PRT
ISBN 978-0-7695-5207-1

Additional copies may be ordered from:

IEEE Computer Society IEEE Service Center IEEE Computer Society
Customer Service Center 445 Hoes Lane Asia/Pacific Office

10662 Los Vaqueros Circle P.O. Box 1331 Watanabe Bldg., 1-4-2
P.O. Box 3014 Piscataway, NJ 08855-1331 Minami-Aoyama

Los Alamitos, CA 90720-1314 Tel: + 1 732 981 0060 Minato-ku, Tokyo 107-0062
Tel: + 1 800 272 6657 Fax: + 1 732 981 9667 JAPAN
Fax: + 1 714 821 4641 http://shop.ieee.org/store/ Tel: + 81 3 3408 3118

http://computer.org/cspress
csbooks@computer.org

customer-service@ieee.org Fax: + 81 3 3408 3553
tokyo.ofc@computer.org

Individual paper REPRINTS may be ordered at: <reprints@computer.org>

Editorial production by Lisa O’Conner
Cover art production by Mark Bartosik

IEEE Computer Society

Conference Publishing Services (CPS)
http://www.computer.org/cps

2014 IEEE 28th International Parallel

& Distributed Processing Symposium

IPDPS 2014

Table of Contents

Keynote Speaker 1

Scalability-Centric HPC System Design ...3

Yutong Lu

Session 1: Algorithms for Resource Management and Awareness

Cost-Optimal Execution of Boolean Query Trees with Shared Streams ..7

Henri Casanova, Lipyeow Lim, Yves Robert, Frédéric Vivien, and Dounia Zaidouni

It’s About Time: On Optimal Virtual Network Embeddings under Temporal

Flexibilities ...8

Matthias Rost, Stefan Schmid, and Anja Feldmann

Exploiting Geometric Partitioning in Task Mapping for Parallel Computers ..9

Mehmet Deveci, Sivasankaran Rajamanickam, Vitus J. Leung, Kevin Pedretti,

Stephen L. Olivier, David P. Bunde, Umit V. Çatalyürek, and Karen Devine

Communication-Efficient Distributed Variance Monitoring and Outlier Detection

for Multivariate Time Series ...10

Mohse Gabel, Assaf Schuster, and Daniel Keren

Session 2: Big Data Processing

MobiStreams: A Reliable Distributed Stream Processing System for Mobile Devices ...13

Huayong Wang and Li-Shiuan Peh

MapReuse: Reusing Computation in an In-Memory MapReduce System ...14

Devesh Tiwari and Yan Solihin

PAGE: A Framework for Easy PArallelization of GEnomic Applications ..15

Mucahid Kutlu and Gagan Agrawal

Pythia: Faster Big Data in Motion through Predictive Software-Defined Network

Optimization at Runtime ..16

Marcelo Veiga Neves, César A.F. De Rose, Kostas Katrinis, and Hubertus Franke

Session 3: GPU

A Case for a Flexible Scalar Unit in SIMT Architecture ...19

Yi Yang, Ping Xiang, Michael Mantor, Norman Rubin, Lisa Hsu, Qunfeng Dong,

and Huiyang Zhou

Scalar Waving: Improving the Efficiency of SIMD Execution on GPUs ..20

Ayse Yilmazer, Zhongliang Chen, and David Kaeli

Power and Performance Characterization and Modeling of GPU-Accelerated Systems ...21

Yuki Abe, Hiroshi Sasaki, Shinpei Kato, Koji Inoue, Masato Edahiro, and Martin Peres

Energy Efficient HPC on Embedded SoCs: Optimization Techniques for Mali GPU ...22

Ivan Grasso, Petar Radojkovic, Nikola Rajovic, Isaac Gelado, and Alex Ramirez

Session 4: I/O, Storage, and Networking

Bursting the Cloud Data Bubble: Towards Transparent Storage Elasticity in IaaS

Clouds ...25

Bogdan Nicolae, Pierre Riteau, and Kate Keahey

Scibox: Online Sharing of Scientific Data via the Cloud ...26

Jian Huang, Xuechen Zhang, Greg Eisenhauer, Karsten Schwan, Matthew Wolf,

Stephane Ethier, and Scott Klasky

CALCioM: Mitigating I/O Interference in HPC Systems through Cross-Application

Coordination ...27

Matthieu Dorier, Gabriel Antoniu, Rob Ross, Dries Kimpe, and Shadi Ibrahim

Active Measurement of the Impact of Network Switch Utilization on Application

Performance ..28

Marc Casas and Greg Bronevetsky

Session 5: Multi-core Algorithms

Multi-resource Real-Time Reader/Writer Locks for Multiprocessors ...31

Bryan C. Ward and James H. Anderson

Remote Invalidation: Optimizing the Critical Path of Memory Transactions ..32

Ahmed Hassan, Roberto Palmieri, and Binoy Ravindran

Revisiting Asynchronous Linear Solvers: Provable Convergence Rate

through Randomization ..33

H. Avron, A. Druinsky, and A. Gupta

Accelerating MPI Collective Communications through Hierarchical Algorithms

Without Sacrificing Inter-Node Communication Flexibility ..34

Benjamin S. Parsons and Vijay S. Pai

Session 6: Computational Biology

Enabling In-Situ Data Analysis for Large Protein-Folding Trajectory Datasets ..37

Boyu Zhang, Trilce Estrada, Pietro Cicotti, and Michela Taufer

Overcoming the Limitations Posed by TCR-beta Repertoire Modeling through

a GPU-Based In-Silico DNA Recombination Algorithm ...38

Gregory Striemer, Harsha Krovi, Ali Akoglu, Benjamin Vincent, Ben Hopson,

Jeffrey Frelinger, and Adam Buntzman

Parallel Mutual Information Based Construction of Whole-Genome Networks on

the Intel (R) Xeon Phi (TM) Coprocessor ..39

Sanchit Misra, Kiran Pamnany, and Srinivas Aluru

cuBLASTP: Fine-Grained Parallelization of Protein Sequence Search on a GPU ..40

Jing Zhang, Hao Wang, Heshan Lin, and Wu-Chun Feng

Session 7: Interconnection Network

Skywalk: A Topology for HPC Networks with Low-Delay Switches ...43

Ikki Fujiwara, Michihiro Koibuchi, Hiroki Matsutani, and Henri Casanova

LFTI: A New Performance Metric for Assessing Interconnect Designs

for Extreme-Scale HPC Systems ..44

Xin Yuan, Santosh Mahapatra, Michael Lang, and Scott Pakin

An Improved Router Design for Reliable On-Chip Networks ...45

Pavan Poluri and Ahmed Louri

Energy-Efficient Time-Division Multiplexed Hybrid-Switched NoC

for Heterogeneous Multicore Systems ...46

Jieming Yin, Pingqiang Zhou, Sachin S. Sapatnekar, and Antonia Zhai

Session 8: System-Level Resource Management

Heterogeneity-Aware Workload Placement and Migration in Distributed Sustainable

Datacenters ...49

Dazhao Cheng, Changjun Jiang, and Xiaobo Zhou

Online Server and Workload Management for Joint Optimization of Electricity Cost

and Carbon Footprint Across Data Centers ..50

Zahra Abbasi, Madhurima Pore, and Sandeep K.S. Gupta

Cost-Efficient and Resilient Job Life-Cycle Management on Hybrid Clouds ...51

Hsuan-Yi Chu and Yogesh Simmhan

A Coprocessor Sharing-Aware Scheduler for Xeon Phi-Based Compute Clusters ...52

Giuseppe Coviello, Srihari Cadambi, and Srimat Chakradhar

Session 9: GPU Algorithms

Work-Efficient Parallel GPU Methods for Single-Source Shortest Paths ..55

Andrew Davidson, Sean Baxter, Michael Garland, and John D. Owens

Efficient Multi-GPU Computation of All-Pairs Shortest Paths ..56

Hristo Djidjev, Sunil Thulasidasan, Guillaume Chapuis, Rumen Andonov,

and Dominique Lavenier

An Efficient GPU General Sparse Matrix-Matrix Multiplication for Irregular Data ...57

Weifeng Liu and Brian Vinter

Improving the Performance of CA-GMRES on Multicores with Multiple GPUs ...58

Ichitaro Yamazaki, Hartwig Anzt, Stanimire Tomov, Mark Hoemmen, and Jack Dongarra

Session 10: Graph and Network Processing

How Well Do Graph-Processing Platforms Perform? An Empirical Performance

Evaluation and Analysis ...61

Yong Guo, Marcin Biczak, Ana Lucia Varbanescu, Alexandru Iosup, Claudio Martella,

and Theodore L. Willke

Complex Network Analysis Using Parallel Approximate Motif Counting ..62

George M. Slota and Kamesh Madduri

Finding Motifs in Biological Sequences Using the Micron Automata Processor ..63

Indranil Roy and Srinivas Aluru

Traversing Trillions of Edges in Real Time: Graph Exploration on Large-Scale

Parallel Machines ...64

Fabio Checconi and Fabrizio Petrini

Session 11: Modeling, Simulation, and Reliability

TBPoint: Reducing Simulation Time for Large-Scale GPGPU Kernels ..67

Jen-Cheng Huang, Lifeng Nai, Hyesoon Kim, and Hsien-Hsin S. Lee

Algorithmic Time, Energy, and Power on Candidate HPC Compute Building Blocks ...68

Jee Choi, Marat Dukhan, Xing Liu, and Richard Vuduc

Characterization of Impact of Transient Faults and Detection of Data Corruption

Errors in Large-Scale N-Body Programs Using Graphics Processing Units ..69

Keun Soo Yim

Analytically Modeling Application Execution for Software-Hardware Co-design ...70

Jichi Guo, Jiayuan Meng, Qing Yi, Vitali Morozov, and Kalyan Kumaran

Session 12: Accelerator Application Development and Optimization

Interactive Program Debugging and Optimization for Directive-Based, Efficient GPU

Computing ..73

Seyong Lee, Dong Li, and Jeffrey S. Vetter

Unified Development for Mixed Multi-GPU and Multi-coprocessor Environments

Using a Lightweight Runtime Environment ...74

Azzam Haidar, Chongxiao Cao, Asim Yarkhan, Piotr Luszczek, Stanimire Tomov,

Khairul Kabir, and Jack Dongarra

Nitro: A Framework for Adaptive Code Variant Tuning ...75

Saurav Muralidharan, Manu Shantharam, Mary Hall, Michael Garland,

and Bryan Catanzaro

Keynote Speaker 2

Reading the Tea-Leaves: How Architecture Has Evolved at the High End ...79

Peter Kogge

Session 13: Combinatorial Algorithms

New Effective Multithreaded Matching Algorithms ..83

Fredrik Manne and Mahantesh Halappanavar

A Medium-Grain Method for Fast 2D Bipartitioning of Sparse Matrices ...84

Daniël M. Pelt and Rob H. Bisseling

Bipartite Matching Heuristics with Quality Guarantees on Shared Memory Parallel

Computers ...85

Fanny Dufossé, Kamer Kaya, and Bora Uçar

BFS and Coloring-Based Parallel Algorithms for Strongly Connected Components

and Related Problems ...86

George M. Slota, Sivasankaran Rajamanickam, and Kamesh Madduri

Session 14: Large Scale Scientific Applications

Large-Scale Hydrodynamic Brownian Simulations on Multicore and Manycore

Architectures ...89

Xing Liu and Edmond Chow

Using Load Balancing to Scalably Parallelize Sampling-Based Motion Planning

Algorithms ..90

Adam Fidel, Sam Ade Jacobs, Shishir Sharma, Nancy M. Amato,

and Lawrence Rauchwerger

Petascale Application of a Coupled CPU-GPU Algorithm for Simulation and Analysis

of Multiphase Flow Solutions in Porous Medium Systems ...91

James E. McClure, Hao Wang, Jan F. Prins, Cass T. Miller, and Wu-Chun Feng

A Spatio-temporal Coupling Method to Reduce the Time-to-Solution

of Cardiovascular Simulations ..92

Amanda Randles and Efthimios Kaxiras

Session 15: Multicore and Transactional Memory

Mitigating the Mismatch between the Coherence Protocol and Conflict Detection

in Hardware Transactional Memory ...95

Lihang Zhao, Lizhong Chen, and Jeffrey Draper

Performance and Energy Analysis of the Restricted Transactional Memory

Implementation on Haswell ..96

Bhavishya Goel, Ruben Titos-Gil, Anurag Negi, Sally A. McKee, and Per Stenstrom

Runtime-Guided Cache Coherence Optimizations in Multi-core Architectures ..97

Madhavan Manivannan and Per Stenstrom

High Performance Alltoall and Allgather Designs for InfiniBand MIC Clusters ..98

Akshay Venkatesh, Sreeram Potluri, Raghunath Rajachandrasekar, Miao Luo,

Khaled Hamidouche, and Dhabaleswar K. Panda

Session 16: HPC Operating Systems and Runtime Systems

HPMMAP: Lightweight Memory Management for Commodity Operating Systems ..101

Brian Kocoloski and John Lange

Victim Selection and Distributed Work Stealing Performance: A Case Study ..102

Swann Perarnau and Mitsuhisa Sato

Power-Efficient Multiple Producer-Consumer ...103

Ramy Medhat, Borzoo Bonakdarpour, and Sebastian Fischmeister

Efficient Data Race Detection for C/C++ Programs Using Dynamic Granularity ...104

Young Wn Song and Yann-Hang Lee

Session 17: Algorithms for Distributed Computing

Improved Time Bounds for Linearizable Implementations of Abstract Data Types ...107

Jiaqi Wang, Edward Talmage, Hyunyoung Lee, and Jennifer L. Welch

DEX: Self-Healing Expanders ..108

Gopal Pandurangan, Peter Robinson, and Amitabh Trehan

Fair Maximal Independent Sets ..109

Jeremy T. Fineman, Calvin Newport, Micah Sherr, and Tonghe Wang

Session 18: Milestones at the Petascale

Balancing CPU-GPU Collaborative High-Order CFD Simulations on the Tianhe-1A

Supercomputer ..113

Chuanfu Xu, Lilun Zhang, Xiaogang Deng, Jianbin Fang, Guangxue Wang, Wei Cao,

Yonggang Che, Yongxian Wang, and Wei Liu

Shedding Light on Lithium/Air Batteries Using Millions of Threads on the BG/Q

Supercomputer ..114

Valéry Weber, Costas Bekas, Teodoro Laino, Alessandro Curioni, Adam Bertsch,

and Scott Futral

Enabling and Scaling a Global Shallow-Water Atmospheric Model on Tianhe-2 ...115

Wei Xue, Chao Yang, Haohuan Fu, Xinliang Wang, Yangtong Xu, Lin Gan, Yutong Lu,

and Xiaoqian Zhu

Overcoming the Scalability Challenges of Epidemic Simulations on Blue Waters ...116

Jae-Seung Yeom, Abhinav Bhatele, Keith Bisset, Eric Bohm, Abhishek Gupta,

Laxmikant V. Kale, Madhav Marathe, Dimitrios S. Nikolopoulos, Martin Schulz,

and Lukasz Wesolowski

Session 19: Storage and Reliability

POD: Performance Oriented I/O Deduplication for Primary Storage Systems in

the Cloud ...119

Bo Mao, Hong Jiang, Suzhen Wu, and Lei Tian

Pipelined Compaction for the LSM-Tree ...120

Zigang Zhang, Yinliang Yue, Bingsheng He, Jin Xiong, Mingyu Chen, Lixin Zhang,

and Ninghui Sun

EDM: An Endurance-Aware Data Migration Scheme for Load Balancing in SSD

Storage Clusters ..121

Jiaxin Ou, Jiwu Shu, Youyou Lu, Letian Yi, and Wei Wang

Session 20: Map/Reduce and Big Data

Characterization and Optimization of Memory-Resident MapReduce on HPC Systems ..125

Yandong Wang, Robin Goldstone, Weikuan Yu, and Teng Wang

MIC-SVM: Designing a Highly Efficient Support Vector Machine for Advanced

Modern Multi-core and Many-Core Architectures ...126

Yang You, Shuaiwen Leon Song, Haohuan Fu, Andres Marquez,

Maryam Mehri Dehnavi, Kevin Barker, Kirk W. Cameron, Amanda Peters Randles,

and Guangwen Yang

BigKernel—High Performance CPU-GPU Communication Pipelining for Big

Data-Style Applications ..127

Reza Mokhtari and Michael Stumm

DataMPI: Extending MPI to Hadoop-Like Big Data Computing ..128

Xiaoyi Lu, Fan Liang, Bing Wang, Li Zha, and Zhiwei Xu

Session 21: Network Algorithms

An Efficient Method for Stream Semantics over RDMA ..131

Patrick MacArthur and Robert D. Russell

Collaborative Network Configuration in Hybrid Electrical/Optical Data Center

Networks ...132

Zhiyang Guo and Yuanyuan Yang

Optimizing Bandwidth Allocation in Flex-Grid Optical Networks with Application

to Scheduling ..133

Hadas Shachnai, Ariella Voloshin, and Shmuel Zaks

Balancing On-Chip Network Latency in Multi-application Mapping

for Chip-Multiprocessors ..134

Di Zhu, Lizhong Chen, Siyu Yue, Timothy M. Pinkston, and Massoud Pedram

Keynote Speaker 3

Astrophysical Applications of Machine Learning at Scale and under Duress ...137

Joshua Bloom

Best Papers Session

Scalable Single Source Shortest Path Algorithms for Massively Parallel Systems ...141

Venkatesan T. Chakaravarthy, Fabio Checconi, Fabrizio Petrini, and Yogish Sabharwal

A New Scalable Parallel Algorithm for Fock Matrix Construction ...142

Xing Liu, Aftab Patel, and Edmond Chow

ReDHiP: Recalibrating Deep Hierarchy Prediction for Energy Efficiency ...143

Xun Li, Diana Franklin, Ricardo Bianchini, and Frederic T. Chong

F2C2-STM: Flux-Based Feedback-Driven Concurrency Control for STMs ...144

Kaushik Ravichandran and Santosh Pande

Session 22: Performance Characterization and Optimization

Identifying Code Phases Using Piece-Wise Linear Regressions ..147

Harald Servat, Germán Llort, Juan González, Judit Giménez, and Jesús Labarta

Auto-Tuning Dedispersion for Many-Core Accelerators ...148

Alessio Sclocco, Henri E. Bal, Jason Hessels, Joeri van Leeuwen,

and Rob V. van Nieuwpoort

RCMP: Enabling Efficient Recomputation Based Failure Resilience for Big Data

Analytics ...149

Florin Dinu and T.S. Eugene Ng

A Step towards Energy Efficient Computing: Redesigning a Hydrodynamic

Application on CPU-GPU ..150

Tingxing Dong, Veselin Dobrev, Tzanio Kolev, Robert Rieben, Stanimire Tomov,

and Jack Dongarra

Session 23: Multithreading and Concurrency

Using Multiple Threads to Accelerate Single Thread Performance ...153

Zehra Sura, Kevin O’Brien, and Jose Brunheroto

Active Measurement of Memory Resource Consumption ...154

Marc Casas and Greg Bronevetsky

Locating Parallelization Potential in Object-Oriented Data Structures ..155

Korbinian Molitorisz, Thomas Karcher, Alexander Bieleš, and Walter F. Tichy

Session 24: Numerical Algorithms

An Accelerated Recursive Doubling Algorithm for Block Tridiagonal Systems ..159

Sudip K. Seal

Designing LU-QR Hybrid Solvers for Performance and Stability ...160

Mathieu Faverge, Julien Herrmann, Julien Langou, Bradley R. Lowery, Yves Robert,

and Jack Dongarra

Effectively Exploiting Parallel Scale for All Problem Sizes in LU Factorization ...161

Md Rakib Hasan and R. Clint Whaley

Anatomy of High-Performance Many-Threaded Matrix Multiplication ..162

Tyler M. Smith, Robert van de Geijn, Mikhail Smelyanskiy, Jeff R. Hammond,

and Field G. Van Zee

Session 25: Performance Impacts of Hardware Acceleration

Comparative Performance Analysis of Intel (R) Xeon Phi (TM), GPU, and CPU: A

Case Study from Microscopy Image Analysis ...165

George Teodoro, Tahsin Kurc, Jun Kong, Lee Cooper, and Joel Saltz

A Framework for Lattice QCD Calculations on GPUs ..166

F.T. Winter, M.A. Clark, R.G. Edwards, and B. Joó

Improving Communication Performance and Scalability of Native Applications

on Intel Xeon Phi Coprocessor Clusters ...167

Karthikeyan Vaidyanathan, Kiran Pamnany, Dhiraj D. Kalamkar, Alexander Heinecke,

Mikhail Smelyanskiy, Jongsoo Park, Daehyun Kim, Aniruddha Shet, G, Bharat Kaul,

Balint Joo, and Pradeep Dubey

Computational Co-design of a Multiscale Plasma Application: A Process and Initial

Results ..168

Joshua Payne, Dana Knoll, Allen McPherson, William Taitano, Luis Chacon,

Guangye Chen, and Scott Pakin

Session 26: Programming Models and Tools

UPC++: A PGAS Extension for C++ ...171

Yili Zheng, Amir Kamil, Michael B. Driscoll, Hongzhang Shan, and Katherine Yelick

An Evaluation of One-Sided and Two-Sided Communication Paradigms

on Relaxed-Ordering Interconnect ...172

Khaled Z. Ibrahim, Paul H. Hargrove, Costin Iancu, and Katherine Yelick

Scaling Irregular Applications through Data Aggregation and Software Multithreading ..173

Alessandro Morari, Antonino Tumeo, Daniel Chavarría-Miranda, Oreste Villa,

and Mateo Valero

Generalizing Run-Time Tiling with the Loop Chain Abstraction ..174

Michelle Mills Strout, Fabio Luporini, Christopher D. Krieger, Carlo Bertolli,

Gheorghe-Teodor Bercea, Catherine Olschanowsky, J. Ramanujam, and Paul H.J. Kelly

Session 27: Algorithms for High Performance Computing

s-Step Krylov Subspace Methods as Bottom Solvers for Geometric Multigrid ...177

Samuel Williams, Mike Lijewski, Ann Almgren, Brian Van Straalen, Erin Carson,

Nicholas Knight, and James Demmel

Reconstructing Householder Vectors from Tall-Skinny QR ..178

Grey Ballard, James Demmel, Laura Grigori, Mathias Jacquelin, Hong Diep Nguyen,

and Edgar Solomonik

Petascale General Solver for Semidefinite Programming Problems with Over Two

Million Constraints ...179

Katsuki Fujisawa, Toshio Endo, Yuichiro Yasui, Hitoshi Sato, Naoki Matsuzawa,

Satoshi Matsuoka, and Hayato Waki

Optimization of Multi-level Checkpoint Model for Large Scale HPC Applications ...180

Sheng Di, Mohamed Slim Bouguerra, Leonardo Bautista-Gomez, and Franck Cappello

Session 28: Scalable Algorithms

Evaluating the Impact of SDC on the GMRES Iterative Solver ..183

James Elliott, Mark Hoemmen, and Frank Mueller

A Multi-core Parallel Branch-and-Bound Algorithm Using Factorial Number System ..184

Mohand Mezmaz, Rudi Leroy, Nouredine Melab, and Daniel Tuyttens

Optimizing Sparse Matrix-Multiple Vectors Multiplication for Nuclear Configuration

Interaction Calculations ..185

Hasan Metin Aktulga, Aydin Buluç, Samuel Williams, and Chao Yang

Session 29: Resilience and Reliability

FMI: Fault Tolerant Messaging Interface for Fast and Transparent Recovery ..189

Kento Sato, Adam Moody, Kathryn Mohror, Todd Gamblin, Bronis R. de Supinski,

Naoya Maruyama, and Satoshi Matsuoka

Designing Bit-Reproducible Portable High-Performance Applications ...190

Andrea Arteaga, Oliver Fuhrer, and Torsten Hoefler

F-SEFI: A Fine-Grained Soft Error Fault Injection Tool for Profiling Application

Vulnerability ...191

Qiang Guan, Nathan Debardeleben, Sean Blanchard, and Song Fu

Author Index ...192

Keynote Speaker 1

IPDPS 2014

3

Scalability-Centric HPC System Design

Yutong Lu

National University of Defense Technology, China

Since scalability is one of the major challenges for advanced HPC systems in the post-petascale and
exascale era, innovative integrated technology designs are needed for new architecture as well as
associated software stacks. We need to explore the capability of cpu, accelerator, interconnection, I/O
storage system, and till whole system. This talk will discuss the way of scalability-centric HPC system
hardware and software design related to the computation, communication, data procession, and fault
tolerance. The experiences on the design and implementation of Tianhe systems will also be given.
Furthermore, some investigations on architecture and software design for the next generation HPC system
will be presented. In general, a co-design approach should be followed throughout the research and
development activities to deliver a whole system for scalable computing, to support the large-scale
domain applications efficiently.

Session 1: Algorithms for Resource Management
and Awareness

IPDPS 2014

7

Cost-Optimal Execution of Boolean Query Trees with Shared Streams

Henri Casanova1, Lipyeow Lim1, Yves Robert2,3, Frédéric Vivien2, and Dounia Zaidouni2

1University of Hawai‘i at Manoa, Honolulu, USA
{henric|lipyeow}@hawaii.edu

2´École Normale Supérieure de Lyon & INRIA, France
{Yves.Robert|Frederic.Vivien|Dounia.Zaidouni}@ens-lyon.fr

3University of Tennessee, Knoxville, USA

The processing of queries expressed as trees of boolean operators applied to predicates on sensor data
streams has several applications in mobile computing. Sensor data must be retrieved from the sensors,
which incurs a cost, e.g., an energy expense that depletes the battery of a mobile query processing device.
The objective is to determine the order in which predicates should be evaluated so as to shortcut part of
the query evaluation and minimize the expected cost. This problem has been studied assuming that each
data stream occurs at a single predicate. In this work we remove this assumption since it does not
necessarily hold in practice. Our main results are an optimal algorithm for single-level trees and a proof of
NP-completeness for DNF trees. For DNF trees, however, we show that there is an optimal predicate
evaluation order that corresponds to a depth-first traversal. This result provides inspiration for a class of
heuristics. We show that one of these heuristics largely outperforms other sensible heuristics, including a
heuristic proposed in previous work.

8

It’s About Time: On Optimal Virtual Network Embeddings
under Temporal Flexibilities

Matthias Rost*, Stefan Schmid*†, and Anja Feldmann*

∗Internet Network Architectures, Technische Universität Berlin, Germany
†Telekom Innovation Laboratories, Germany

Distributed applications often require high-performance networks with strict connectivity guarantees. For
instance, many cloud applications suffer from today’s variations of the intra-cloud bandwidth, which
leads to poor and unpredictable application performance. Accordingly, we witness a trend towards virtual
networks (VNets) which can provide resource isolation. Interestingly, while the problem of where to
embed a VNet is fairly well-understood today, much less is known about when to optimally allocate a
VNet. This however is important, as the requirements specified for a VNet do not have to be static, but
can vary over time and even include certain temporal flexibilities. This paper initiates the study of the
temporal VNet embedding problem (TVNEP). We propose a continuous-time mathematical programming
approach to solve the TVNEP, and present and compare different algorithms. Based on these insights, we
present the CSM-Model which incorporates both symmetry and state-space reductions to significantly
speed up the process of computing exact solutions to the TVNEP. Based on the CSM-Model, we derive a
greedy algorithm OGA to compute fast approximate solutions. In an extensive computational evaluation,
we show that despite the hardness of the TVNEP, the CSM-Model is sufficiently powerful to solve
moderately sized instances to optimality within one hour and under different objective functions (such as
maximizing the number of embeddable VNets). We also show that the greedy algorithm exploits
flexibilities well and yields good solutions. More generally, our results suggest that already little time
flexibilities can improve the overall system performance significantly.

9

Exploiting Geometric Partitioning in Task Mapping for Parallel Computers

Mehmet Deveci*, Sivasankaran Rajamanickam†, Vitus J. Leung†, Kevin Pedretti†,
Stephen L. Olivier†, David P. Bunde‡, Umit V. Çatalyürek*, and Karen Devine†

∗The Ohio State University, Columbus, Ohio
† Sandia National Laboratories, Albuquerque, New Mexico

‡Knox College, Galesburg, IL

We present a new method for mapping applications’ MPI tasks to cores of a parallel computer such that
communication and execution time are reduced. We consider the case of sparse node allocation within a
parallel machine, where the nodes assigned to a job are not necessarily located within a contiguous block
nor within close proximity to each other in the network. The goal is to assign tasks to cores so that
interdependent tasks are performed by "nearby" cores, thus lowering the distance messages must travel,
the amount of congestion in the network, and the overall cost of communication. Our new method applies
a geometric partitioning algorithm to both the tasks and the processors, and assigns task parts to the
corresponding processor parts. We show that, for the structured finite difference mini-app Mini Ghost,
our mapping method reduced execution time 34% on average on 65,536 cores of a Cray XE6. In a
molecular dynamics mini-app, Mini MD, our mapping method reduced communication time by 26% on
average on 6144 cores. We also compare our mapping with graph-based mappings from the LibTopoMap
library and show that our mappings reduced the communication time on average by 15% in MiniGhost
and 10% in MiniMD.

10

Communication-Efficient Distributed Variance Monitoring and Outlier
Detection for Multivariate Time Series

Moshe Gabel and Assaf Schuster

Department of Computer Science
Technion – Israel Institute of Technology

Haifa, Israel
{mgabel,assaf}@cs.technion.ac.il

Daniel Keren

Computer Science Department
University of Haifa

Haifa, Israel
dkeren@cs.haifa.ac.il

Modern scale-out services are comprised of thousands of individual machines, which must be
continuously monitored for unexpected failures. One recent approach to monitoring is latent fault
detection, an adaptive statistical framework for scale-out, load-balanced systems. By periodically
measuring hundreds of performance metrics and looking for outlier machines, it attempts to detect subtle
problems such as misconfigurations, bugs, and malfunctioning hardware, before they manifest as machine
failures. Previous work on a large, real-world Web service has shown that many failures are indeed
preceded by such latent faults. Latent fault detection is an offline framework with large bandwidth and
processing requirements. Each machine must send all its measurements to a centralized location, which is
prohibitive in some settings and requires data-parallel processing infrastructure. In this work we adapt the
latent fault detector to provide an online, communication- and computation-reduced version. We utilize
stream processing techniques to trade accuracy for communication and computation. We first describe a
novel communication-efficient online distributed variance monitoring algorithm that provides a
continuous estimate of the global variance within guaranteed approximation bounds. Using the variance
monitor, we provide an online distributed outlier detection framework for non-stationary multivariate
time series common in scale-out systems. The adapted framework reduces data size and central
processing cost by processing the data in situ, making it usable in wider settings. Like the original
framework, our adaptation admits different comparison functions, supports non-stationary data, and
provides statistical guarantees on the rate of false positives. Simulations on logs from a production system
show that we are able to reduce bandwidth by an order of magnitude, with below 1% error compared to
the original algorithm.

Session 2: Big Data Processing

IPDPS 2014

13

MobiStreams: A Reliable Distributed Stream Processing System
for Mobile Devices

Huayong Wang and Li-Shiuan Peh

MIT
Massachusetts, USA

huayongw@smart.mit.edu
peh@csail.mit.edu

Multi-core phones are now pervasive. Yet, existing applications rely predominantly on a client-server
computing paradigm, using phones only as thin clients, sending sensed information via the cellular
network to servers for processing. This makes the cellular network the bottleneck, limiting overall
application performance. In this paper, we propose Mobi Streams, a Distributed Stream Processing
System (DSPS) that runs directly on smartphones. Mobi Streams can offload computing from remote
servers to local phones and thus alleviate the pressure on the cellular network. Implementing DSPS on
smartphones faces significant challenges: 1) multiple phones can readily fail simultaneously, and 2) the
phones' ad-hoc WiFi network has low bandwidth. Mobi Streams tackles these challenges through two
new techniques: 1) token-triggered check pointing, and 2) broadcast-based check pointing. Our
evaluations driven by two real world applications deployed in the US and Singapore show that migrating
from a server platform to a smartphone platform eliminates the cellular network bottleneck, leading to
0.78~42.6X throughput increase and 10%~94.8% latency decrease. Also, Mobi Streams’ fault tolerance
scheme increases throughput by 230% and reduces latency by 40% vs. prior state-of-the-art fault-tolerant
DSPSs.

14

MapReuse: Reusing Computation in an In-Memory MapReduce System

Devesh Tiwari

Oak Ridge National Laboratory
tiwari@ornl.gov

Yan Solihin

North Carolina State University
solihin@ncsu.edu

MapReduce programming model is being increasingly adopted for data intensive high performance
computing. Recently, it has been observed that in data-intensive environment, programs are often run
multiple times with either identical or slightly-changed input, which creates a significant opportunity for
computation reuse. Recognizing the opportunity, researchers have proposed techniques to reuse
computation in disk-based MapReduce systems such as Hadoop, but not for in-memory MapReduce
(IMMR) systems such as Phoenix. In this paper, we propose a novel technique for computation reuse in
IMMR systems, which we refer to as MapReuse. MapReuse detects input similarity by comparing their
signatures. It skips re-computing output from a repeated portion of the input, computes output from a new
portion of input, and removes output that corresponds to a deleted portion of the input. MapReuse is built
on top of an existing IMMR system, leaving it largely unmodified. MapReuse significantly speeds up
IMMR, even when the new input differs by 25% compared to the original input.

15

PAGE: A Framework for Easy PArallelization of GEnomic Applications

Mucahid Kutlu and Gagan Agrawal

Department of Computer Science and Engineering
Ohio State University
Columbus, OH, 43210

Email: kutlu@cse.ohio-state.edu
Email: agrawal@cse.ohio-state.edu

With the availability of high-throughput and low-cost sequencing technologies, an increasing amount of
genetic data is becoming available to researchers. There is clearly a potential for significant new scientific
and medical advances by analysis of such data, however, it is imperative to exploit parallelism and
achieve effective utilization of the computing resources to be able to handle massive datasets. Thus,
frameworks that can help researchers develop parallel applications without dealing with low-level details
of parallel coding are very important for advances in genetic research. In this study, we develop a
middleware, PAGE, which supports ‘map reduce-like’ processing, but with significant differences from a
system like Hadoop, to be useful and effective for parallelizing analysis of genomic data. Particularly, it
can work with map functions written in any language, thus allowing utilization of existing serial tools
(even those for which only an executable is available) as map functions. Thus, it can greatly simplify
parallel application development for scenarios where complex data formats and/or nuanced serial
algorithms are involved, as is often the case for genomic data. It allows parallelization by partitioning by-
locus or partitioning by-chromosome, provides different scheduling schemes, and execution models, to
match the nature of algorithms common in genetic research. We have evaluated the middleware system
using four popular genomic applications, including VarScan, Unified Genotyper, Realigner Target
Creator, and Indel Realigner, and compared the achieved performance against with two popular
frameworks (Hadoop and GATK). We show that our middleware outperforms GATK and Hadoop and it
is able to achieve high parallel efficiency and scalability.

16

Pythia: Faster Big Data in Motion through Predictive Software-Defined
Network Optimization at Runtime

Marcelo Veiga Neves and César A.F. De Rose

Pontifical Catholic University of Rio Grande do Sul
Porto Alegre, Brazil

Email: marcelo.neves@acad.pucrs.br

Kostas Katrinis

IBM Research – Ireland
Dublin, Ireland

Email: katrinisk@ie.ibm.com

Hubertus Franke

IBM TJ Watson Research Center
Yorktown Heights, NY, US
Email: frankeh@us.ibm.com

The rise of Internet of Things sensors, social networking and mobile devices has led to an explosion of
available data. Gaining insights into this data has led to the area of Big Data analytics. The MapReduce
framework, as implemented in Hadoop, is one of the most popular frameworks for Big Data analysis. To
handle the ever-increasing data size, Hadoop is a scalable framework that allows dedicated, seemingly
unbound numbers of servers to participate in the analytics process. Response time of an analytics request
is an important factor for time to value/insights. While the compute and disk I/O requirements can be
scaled with the number of servers, scaling the system leads to increased network traffic. Arguably, the
communication-heavy phase of MapReduce contributes significantly to the overall response time, the
problem is further aggravated, if communication patterns are heavily skewed, as is not uncommon in
many MapReduce workloads. In this paper we present a system that reduces the skew impact by
transparently predicting data communication volume at runtime and mapping the many end-to-end flows
among the various processes to the underlying network, using emerging software-defined networking
technologies to avoid hotspots in the network. Dependent on the network oversubscription ratio, we
demonstrate reduction in job completion time between 3% and 46% for popular MapReduce benchmarks
like Sort and Nutch.

Session 3: GPU

IPDPS 2014

19

A Case for a Flexible Scalar Unit in SIMT Architecture

Yi Yang1, Ping Xiang2, Michael Mantor3, Norman Rubin3, Lisa Hsu3,
Qunfeng Dong4, and Huiyang Zhou2

1NEC Labs

Princeton, NJ
yyang@nec-labs.com

2NCSU

Raleigh, NC
{pxiang, hzhou}@ncsu.edu

3AMD Inc.
Orlando, FL

{Michael.Mantor, norman.rubin, Lisa.Hsu}@amd.com

4Dept of Central Hardware Huawei
Shanghai, China

Qunfeng.dong@ieee.org

The wide availability and the Single-Instruction Multiple-Thread (SIMT)-style programming model have
made graphics processing units (GPUs) a promising choice for high performance computing. However,
because of the SIMT style processing, an instruction will be executed in every thread even if the operands
are identical for all the threads. To overcome this inefficiency, the AMD’s latest Graphics Core Next
(GCN) architecture integrates a scalar unit into a SIMT unit. In GCN, both the SIMT unit and the scalar
unit share a single SIMT style instruction stream. Depending on its type, an instruction is issued to either
a scalar or a SIMT unit. In this paper, we propose to extend the scalar unit so that it can either share the
instruction stream with the SIMT unit or execute a separate instruction stream. The program to be
executed by the scalar unit is referred to as a scalar program and its purpose is to assist SIMT-unit
execution. The scalar programs are either generated from SIMT programs automatically by the compiler
or manually developed by expert developers. We make a case for our proposed flexible scalar unit
through three collaborative execution paradigms: data prefetching, control divergence elimination, and
scalar-workload extraction. Our experimental results show that significant performance gains can be
achieved using our proposed approaches compared to the state-of-art SIMT style processing.

20

Scalar Waving: Improving the Efficiency of SIMD Execution on GPUs

Ayse Yilmazer, Zhongliang Chen, and David Kaeli

Electrical and Computer Engineering Department
Northeastern University

Boston, USA
yilmazer@ece.neu.edu, zhonchen@ece.neu.edu, kaeli@ece.neu.edu

GPUs take advantage of uniformity in program control flow and utilize SIMD execution to obtain
execution efficiency. In SIMD execution, threads are batched into SIMD groups to share a common
program counter and execute identical instructions on SIMD pipelines. Previous research has shown that
there is a significant number of scalar instructions - instructions where different threads in a SIMD group
execute using the same input operands and generate the exact same output - present in a range of
applications. GPUs eliminate redundant fetches and decodes by utilizing a shared common pipeline front-
end. However, most GPUs do not handle scalar instruction efficiently, allowing these instructions to be
redundantly executed by the threads in a SIMD group. In this paper, we propose to use scalar execution to
eliminate redundant execution of scalar instructions. We introduce scalar waving as a mechanism to batch
scalar operations possessing the same PC and execute them as a group on SIMD lanes for efficiency. We
also propose simultaneous execution of dynamically-formed scalar waves with SIMD groups to overcome
the under-utilization of SIMD lanes when encountering divergence. We evaluate our work using 22
different GPU benchmarks taken from 4 different benchmark suites. We evaluate a range of
configurations using timing simulation. Our results show that scalar waving can obtain up to a 25%
improvement in performance on average. Our experiments also provide insight into the amount of
performance gain that we can expect with scalar waving as a function of the scalar content, occupancy,
and memory characteristics of the target application.

21

Power and Performance Characterization and Modeling
of GPU-Accelerated Systems

Yuki Abe1, Hiroshi Sasaki1, Shinpei Kato2, Koji Inoue1, Masato Edahiro2, and Martin Peres3

1Kyushu University
Fukuoka, Japan

abe@soc.ait.kyushu-u.ac.jp
sasaki@soc.ait.kyushu-u.ac.jp

inoue@ait.kyushu-u.ac.jp

2Nagoya University
Nagoya, Japan

shinpei@is.nagoya-u.ac.jp
eda@is.nagoya-u.ac.jp

3Laboratoire Bordelais de Recherche en Informatique
Bordeaux, France

martin.peres@labri.fr

Graphics processing units (GPUs) provide an order-of-magnitude improvement on peak performance and
performance-per-watt as compared to traditional multicore CPUs. However, GPU-accelerated systems
currently lack a generalized method of power and performance prediction, which prevents system
designers from an ultimate goal of dynamic power and performance optimization. This is due to the fact
that their power and performance characteristics are not well captured across architectures, and as a result,
existing power and performance modeling approaches are only available for a limited range of particular
GPUs. In this paper, we present power and performance characterization and modeling of GPU-
accelerated systems across multiple generations of architectures. Characterization and modeling both play
a vital role in optimization and prediction of GPU-accelerated systems. We quantify the impact of voltage
and frequency scaling on each architecture with a particularly intriguing result that a cutting-edge Kepler-
based GPU achieves energy saving of 75% by lowering GPU clocks in the best scenario, while Fermi-
and Tesla-based GPUs achieve no greater than 40% and 13%, respectively. Considering these
characteristics, we provide statistical power and performance modeling of GPU-accelerated systems
simplified enough to be applicable for multiple generations of architectures. One of our findings is that
even simplified statistical models are able to predict power and performance of cutting-edge GPUs within
errors of 20% to 30% for any set of voltage and frequency pair.

22

Energy Efficient HPC on Embedded SoCs: Optimization Techniques
for Mali GPU

Ivan Grasso*†, Petar Radojković*, Nikola Rajović*, Isaac Gelado*, and Alex Ramirez*‡

∗ Barcelona Supercomputing Center, Barcelona, Spain
† Institute of Computer Science, University of Innsbruck, Austria

‡ Universitat Politècnica de Catalunya, Barcelona, Spain

A lot of effort from academia and industry has been invested in exploring the suitability of low-power
embedded technologies for HPC. Although state-of-the-art embedded systems-on-chip (SoCs) inherently
contain GPUs that could be used for HPC, their performance and energy capabilities have never been
evaluated. Two reasons contribute to the above. Primarily, embedded GPUs until now, have not
supported 64-bit floating point arithmetic - a requirement for HPC. Secondly, embedded GPUs did not
provide support for parallel programming languages such as OpenCL and CUDA. However, the situation
is changing, and the latest GPUs integrated in embedded SoCs do support 64-bit floating point precision
and parallel programming models. In this paper, we analyze performance and energy advantages of
embedded GPUs for HPC. In particular, we analyze ARM Mali-T604 GPU - the first embedded GPUs
with OpenCL Full Profile support. We identify, implement and evaluate software optimization techniques
for efficient utilization of the ARM Mali GPU Compute Architecture. Our results show that, HPC
benchmarks running on the ARM Mali-T604 GPU integrated into Exynos 5250 SoC, on average, achieve
speed-up of 8.7X over a single Cortex-A15 core, while consuming only 32% of the energy. Overall
results show that embedded GPUs have performance and energy qualities that make them candidates for
future HPC systems.

Session 4: I/O, Storage, and Networking

IPDPS 2014

25

Bursting the Cloud Data Bubble: Towards Transparent Storage Elasticity
in IaaS Clouds

Bogdan Nicolae

IBM Research, Ireland
bogdan.nicolae@ie.ibm.com

Pierre Riteau

University of Chicago, USA
priteau@uchicago.edu

Kate Keahey

Argonne National Laboratory, USA
keahey@mcs.anl.gov

Storage elasticity on IaaS clouds is an important feature for data-intensive workloads: storage
requirements can vary greatly during application runtime, making worst-case over-provisioning a poor
choice that leads to unnecessarily tied-up storage and extra costs for the user. While the ability to adapt
dynamically to storage requirements is thus attractive, how to implement it is not well understood.
Current approaches simply rely on users to attach and detach virtual disks to the virtual machine (VM)
instances and then manage them manually, thus greatly increasing application complexity while reducing
cost efficiency. Unlike such approaches, this paper aims to provide a transparent solution that presents a
unified storage space to the VM in the form of a regular POSIX file system that hides the details of
attaching and detaching virtual disks by handling those actions transparently based on dynamic
application requirements. The main difficulty in this context is to understand the intent of the application
and regulate the available storage in order to avoid running out of space while minimizing the
performance overhead of doing so. To this end, we propose a storage space prediction scheme that
analyzes multiple system parameters and dynamically adapts monitoring based on the intensity of the I/O
in order to get as close as possible to the real usage. We show the value of our proposal over static worst-
case over-provisioning and simpler elastic schemes that rely on a reactive model to attach and detach
virtual disks, using both synthetic benchmarks and real-life data-intensive applications. Our experiments
demonstrate that we can reduce storage waste/cost by 30-40% with only 2-5% performance overhead.

26

Scibox: Online Sharing of Scientific Data via the Cloud

Jian Huang†, Xuechen Zhang†, Greg Eisenhauer†, Karsten Schwan†, Matthew Wolf†*,
Stephane Ethier§, and Scott Klasky*

† Georgia Institute of Technology, § Princeton Plasma Physics Laboratory,
* Oak Ridge National Laboratory

{jhuang95, xczhang, eisen, schwan, mwolf}@cc.gatech.edu, {ethier}@pppl.gov,
{klasky}@ornl.gov

Collaborative science demands global sharing of scientific data. But it cannot leverage universally
accessible cloud-based infrastructures like Drop Box, as those offer limited interfaces and inadequate
levels of access bandwidth. We present the Scibox cloud facility for online sharing scientific data. It uses
standard cloud storage solutions, but offers a usage model in which high end codes can write/read data
to/from the cloud via the APIs they already use for their I/O actions. With Scibox, data upload/download
volumes are controlled via Data Reduction-functions stated by end users and applied at the data source,
before data is moved, with further gains in efficiency obtained by combining DR-functions to move
exactly what is needed by current data consumers. We evaluate Scibox with science applications and their
representative data analytics - the GTS fusion and the combustion image processing - demonstrating the
potential for ubiquitous data access with substantial reductions in network traffic.

27

CALCioM: Mitigating I/O Interference in HPC Systems through
Cross-Application Coordination

Matthieu Dorier*, Gabriel Antoniu†, Rob Ross‡, Dries Kimpe‡, and Shadi Ibrahim†

∗ENS Cachan Brittany
IRISA, Rennes, France

 matthieu.dorier@irisa.fr

†INRIA Rennes Bretagne-Atlantique
Rennes, France

 {gabriel.antoniu, shadi.ibrahim}@inria.fr

‡Argonne National Laboratory
 IL 60439, USA

 {rross, dkimpe}@mcs.anl.gov

Unmatched computation and storage performance in new HPC systems have led to a plethora of I/O
optimizations ranging from application-side collective I/O to network and disk-level request scheduling
on the file system side. As we deal with ever larger machines, the interference produced by multiple
applications accessing a shared parallel file system in a concurrent manner becomes a major problem.
Interference often breaks single-application I/O optimizations, dramatically degrading application I/O
performance and, as a result, lowering machine wide efficiency. This paper focuses on CALCioM, a
framework that aims to mitigate I/O interference through the dynamic selection of appropriate scheduling
policies. CALCioM allows several applications running on a supercomputer to communicate and
coordinate their I/O strategy in order to avoid interfering with one another. In this work, we examine four
I/O strategies that can be accommodated in this framework: serializing, interrupting, interfering and
coordinating. Experiments on Argonne’s BG/P Surveyor machine and on several clusters of the French
Grid’5000 show how CALCioM can be used to efficiently and transparently improve the scheduling
strategy between two otherwise interfering applications, given specified metrics of machine wide
efficiency.

28

Active Measurement of the Impact of Network Switch Utilization
on Application Performance

Marc Casas

Barcelona Supercomputing Center
Jordi Girona, 29. Nexus II Building

08034 Barcelona

Greg Bronevetsky

Lawrence Livermore National Laboratory
7000 East Avenue

Livermore, CA, 94550

Inter-node networks are a key capability of High-Performance Computing (HPC) systems that
differentiates them from less capable classes of machines. However, in spite of their very high
performance, the increasing computational power of HPC compute nodes and the associated rise in
application communication needs make network performance a common performance bottleneck. To
achieve high performance in spite of network limitations application developers require tools to measure
their applications’ network utilization and inform them about how the network’s communication capacity
relates to the performance of their applications. This paper presents a new performance measurement and
analysis methodology based on empirical measurements of network behavior. Our approach uses two
benchmarks that inject extra network communication. The first probes the fraction of the network that is
utilized by a software component (an application or an individual task) to determine the existence and
severity of network contention. The second aggressively injects network traffic while a software
component runs to evaluate its performance on less capable networks or when it shares the network with
other software components. We then combine the information from the two types of experiments to
predict the performance slowdown experienced by multiple software components (e.g. multiple processes
of a single MPI application) when they share a single network. Our methodology is applied to individual
network switches and demonstrated taking 6 representative HPC applications and predicting the
performance slowdowns of the 36 possible application pairs. The average error of our predictions is less
than 10%.

Session 5: Multi-core Algorithms

IPDPS 2014

31

Multi-resource Real-Time Reader/Writer Locks for Multiprocessors

Bryan C. Ward and James H. Anderson

Dept. of Computer Science
The University of North Carolina at Chapel Hill

A fine-grained locking protocol permits multiple locks to be held simultaneously by the same task. In the
case of real-time multiprocessor systems, prior work on such protocols has considered only mutex
constraints. This unacceptably limits concurrency in systems in which some resource accesses are read-
only. To remedy this situation, a variant of a recently proposed fine-grained protocol called the real-time
nested locking protocol (RNLP) is presented that enables concurrent reads. This variant is shown to have
worst-case blocking no worse (and often better) than existing coarse-grained real-time reader/writer
locking protocols, while allowing for additional parallelism. Experimental evaluations of the proposed
protocol are presented that consider both schedulability (i.e., the ability to validate timing constraints) and
implementation-related overheads. These evaluations demonstrate that the RNLP (both the mutex and the
proposed reader/writer variant) provides improved schedulability over existing coarse-grained locking
protocols, and is practically implementable.

32

Remote Invalidation: Optimizing the Critical Path of Memory Transactions

Ahmed Hassan, Roberto Palmieri, and Binoy Ravindran

Electrical and Computer Engineering Department
Virginia Tech

Blacksburg, Virginia, USA
hassan84@vt.edu, robertop@vt.edu, binoy@vt.edu

Software Transactional Memory (STM) systems are increasingly emerging as a promising alternative to
traditional locking algorithms for implementing generic concurrent applications. To achieve generality,
STM systems incur overheads to the normal sequential execution path, including those due to spin
locking, validation (or invalidation), and commit/abort routines. We propose a new STM algorithm called
Remote Invalidation (or RInval) that reduces these overheads and improves STM performance. RInval’s
main idea is to execute commit and invalidation routines on remote server threads that run on dedicated
cores, and use cache-aligned communication between application’s transactional threads and the server
routines. By remote execution of commit and invalidation routines and cache-aligned communication,
RInval reduces the overhead of spin locking and cache misses on shared locks. By running commit and
invalidation on separate cores, they become independent of each other, increasing commit concurrency.
We implemented RInval in the Rochester STM framework. Our experimental studies on micro-
benchmarks and the STAMP benchmark reveal that RInval outperforms InvalSTM, the corresponding
non-remote invalidation algorithm, by as much as an order of magnitude. Additionally, RInval obtains
competitive performance to validation-based STM algorithms such as NOrec, yielding up to 2x
performance improvement.

33

Revisiting Asynchronous Linear Solvers: Provable Convergence Rate
through Randomization

H. Avron and A. Gupta

IBM T.J. Watson Research Center
haimav@us.ibm.com
anshul@us.ibm.com

A. Druinsky

Tel Aviv University
alexdrui@post.tau.ac.il

Asynchronous methods for solving systems of linear equations have been researched since Chazan and
Mir Anker’s pioneering 1969 paper. The underlying idea of asynchronous methods is to avoid processor
idle time by allowing the processors to continue to make progress even if not all progress made by other
processors has been communicated to them. Historically, work on asynchronous methods for solving
linear equations focused on proving convergence in the limit. Comparison of the asynchronous
convergence rate with its synchronous counterpart and its scaling with the number of processors were
seldom studied, and are still not well understood. Furthermore, the applicability of these methods was
limited to restricted classes of matrices, such as diagonally dominant matrices. We propose a randomized
shared-memory asynchronous method for general symmetric positive definite matrices. We rigorously
analyze the convergence rate and prove that it is linear, and is close to that of the method’s synchronous
counterpart if the processor count is not excessive relative to the size and sparsity of the matrix. Our work
presents a significant improvement in convergence analysis as well as in the applicability of asynchronous
linear solvers, and suggests randomization as a key paradigm to serve as a foundation for asynchronous
methods.

34

Accelerating MPI Collective Communications through Hierarchical
Algorithms Without Sacrificing Inter-Node Communication Flexibility

Benjamin S. Parsons and Vijay S. Pai

Purdue University - West Lafayette, IN
bsparson,vpai@purdue.edu

This paper presents and evaluates a universal algorithm to improve the performance of MPI collective
communication operations on hierarchical clusters with many-core nodes. This algorithm exploits shared-
memory buffers for efficient intra-node communication while still allowing the use of unmodified,
hierarchy-unaware traditional collectives for inter-node communication (including collectives like
Alltoallv). This algorithm improves on past works that convert a specific collective algorithm into a
hierarchical version and are generally restricted to fan-in, fan-out, and All gather algorithms.
Experimental results show impressive performance improvements utilizing a variety of collectives from
MPICH as well as the closed-source Cray MPT for the inter-node communication. The experimental
evaluation tests the new algorithms with as many as 65536 cores and sees speedups over the baseline
averaging 14.2x for Alltoallv, 26x for All gather, and 32.7x for Reduce-Scatter. The paper further
improves inter-node communication by utilizing multiple senders from the same shared memory buffer,
achieving additional speedups averaging 2.5x. The discussion also evaluates special-purpose extensions
to improve intra-node communication by returning shared memory or copy-on-write protected buffers
from the collective.

Session 6: Computational Biology

IPDPS 2014

37

Enabling In-Situ Data Analysis for Large Protein-Folding Trajectory Datasets

Boyu Zhang*, Trilce Estrada†, Pietro Cicotti‡, and Michela Taufer*

∗University of Delaware
{bzhang, taufer}@udel.edu

†University of New Mexico
{estrada}@cs.unm.edu

‡San Diego Supercomputer Center
{pcicotti}@sdsc.edu

This paper presents a one-pass, distributed method that enables in-situ data analysis for large protein
folding trajectory datasets by executing sufficiently fast, avoiding moving trajectory data, and limiting the
memory usage. First, the method extracts the geometric shape features of each protein conformation in
parallel. Then, it classifies sets of consecutive conformations into meta-stable and transition stages using a
probabilistic hierarchical clustering method. Lastly, it rebuilds the global knowledge necessary for the
intraand inter-trajectory analysis through a reduction operation. The comparison of our method with a
traditional approach for a villin headpiece sub domain shows that our method generates significant
improvements in execution time, memory usage, and data movement. Specifically, to analyze the same
trajectory consisting of 20,000 protein conformations, our method runs in 41.5 seconds while the
traditional approach takes approximately 3 hours, uses 6.9MB memory per core while the traditional
method uses 16GB on one single node where the analysis is performed, and communicates only 4.4KB
while the traditional method moves the entire dataset of 539MB. The overall results in this paper support
our claim that our method is suitable for in-situ data analysis of folding trajectories.

38

Overcoming the Limitations Posed by TCR Repertoire Modeling
through a GPU-Based In-Silico DNA Recombination Algorithm

Gregory Striemer*, Harsha Krovi†, Ali Akoglu*, Benjamin Vincent§, Ben Hopson¶,
Jeffrey Frelinger‡, and Adam Buntzman‡

∗Department of Electrical and Computer Engineering
University of Arizona, Tucson, AZ 85721

Email:gmstrie@email.arizona.edu, akoglu@ece.arizona.edu

† Integrated Department of Immunology
University of Colorado, Denver, CO, 80206

Email: shk8f@virginia.edu

‡Department of Immunobiology
University of Arizona, Tucson, AZ, 85719

Email: buntzman@email.arizona.edu,jfrelin@email.arizona.edu
§Department of Medicine, Division of Hematology-Oncology University of North Carolina-Chapel Hill,

NC, 27599
Email: BGVincen@unch.unc.edu

¶School of Engineering,
The University of Edinburgh, Edinburgh, EH9 3JL, UK

Email: B.Hopson@ed.ac.uk

The DNA recombination process known as V(D)J recombination is the central mechanism for generating
diversity among antigen receptors such as T-cell receptors (TCRs). This diversity is crucial for the
development of the adaptive immune system. However, modeling of all the alpha beta TCR sequences is
encumbered by the enormity of the potential repertoire, which has been predicted to exceed 10^15
sequences. Prior modeling efforts have, therefore, been limited to extrapolations based on the analysis of
minor subsets of the overall TCRbeta repertoire. In this study, we map the recombination process
completely onto the graphics processing unit (GPU) hardware architecture using the CUDA programming
environment to circumvent prior limitations. For the first time, we present a model of the mouse TCRbeta
repertoire to an extent which enabled us to evaluate the Convergent Recombination Hypothesis (CRH)
comprehensively at peta-scale level on a single GPU.

39

Parallel Mutual Information Based Construction of Whole-Genome Networks

on the Intel Xeon Phi Coprocessor

Sanchit Misra*, Kiran Pamnany*, and Srinivas Aluru†‡

∗Parallel Computing Lab
Intel Corporation, Bangalore, India,

Email: {sanchit.misra,kiran.pamnany}@intel.com

†School of Computational Science and Engineering
Georgia Institute of Technology, Atlanta, USA

Email: aluru@cc.gatech.edu

‡Dept. of Computer Science and Engineering
Indian Institute of Technology Bombay, Mumbai, India

Construction of whole-genome networks from large-scale gene expression data is an important problem
in systems biology. While several techniques have been developed, most cannot handle network
reconstruction at the whole-genome scale, and the few that can, require large clusters. In this paper, we
present a solution on the Intel (R) Xeon Phi (TM) coprocessor, taking advantage of its multi-level
parallelism including many x86-based cores, multiple threads per core, and vector processing units. We
also present a solution on the Intel (R) Xeon (R) processor. Our solution is based on TINGe, a fast
parallel network reconstruction technique that uses mutual information and permutation testing for
assessing statistical significance. We demonstrate the first ever inference of a plant whole genome
regulatory network on a single chip by constructing a 15,575 gene network of the plant Arabidopsis
thaliana from 3,137 microarray experiments in only 22 minutes. In addition, our optimization for
parallelizing mutual information computation on the Intel Xeon Phi coprocessor holds out lessons that are
applicable to other domains.

40

cuBLASTP: Fine-Grained Parallelization of Protein Sequence Search
on a GPU

Jing Zhang*, Hao Wang*, Heshan Lin*, and Wu-Chun Feng*†

∗Dept. of Computer Science and †Dept. of Electrical & Computer Engineering
Virginia Tech

Email: {zjing14, hwang121, hlin2, wfeng}@vt.edu

BLAST, short for Basic Local Alignment Search Tool, is a fundamental algorithm in the life sciences that
compares biological sequences. However, with the advent of next-generation sequencing (NGS) and
increase in sequence read-lengths, whether at the outset or downstream from NGS, the exponential
growth of sequence databases is arguably outstripping our ability to analyze the data. Though several
recent studies have utilized the graphics processing unit (GPU) to speedup the BLAST algorithm for
searching protein sequences (i.e., BLASTP), these studies used coarse-grained parallel approaches, where
one sequence alignment is mapped to only one thread. Moreover, due to the irregular memory access
patterns in BLASTP, there remain significant challenges to map the most time-consuming phases (i.e., hit
detection and ungapped extension) to the GPU using a fine-grained multithreaded approach. To address
the above issues, we propose cuBLASTP, an efficient fine-grained BLASTP implementation for the GPU
using CUDA. Our cuBLASTP realization encompasses many research contributions, including (1)
memory-access reordering to reorder hits from column-major order to diagonal-major order, (2) position-
based indexing to map a hit with a packed data structure to a bin, (3) aggressive hit filtering to eliminate
hits beyond the threshold distance along the diagonal, (4) diagonal-based parallelism and hit-based
parallelism for ungapped extension to extend sequences with different lengths in databases, and (5)
hierarchical buffering to reduce memory-access overhead for the core data structures. The experimental
results show that on a NVIDIA Kepler GPU, cuBLASTP delivers up to a 5.0-fold speedup over
sequential FSA-BLAST and a 3.7-fold speedup over multithreaded NCBI-BLAST for the overall program
execution. In addition, compared with GPU-BLASTP (the fastest GPU implementation of BLASTP to
date), cuBLASTP achieves up to a 2.8-fold speedup for the kernel execution on the GPU and a 1.8-fold
speedup for the overall program execution.

Session 7: Interconnection Network

IPDPS 2014

43

Skywalk: A Topology for HPC Networks with Low-Delay Switches

Ikki Fujiwara* and Michihiro Koibuchi*†

*National Institute of Informatics / JST
†The Graduate University for Advanced Studies (SOKENDAI)

2-1-2 Hitotsubashi, Chiyoda-ku,
Tokyo, JAPAN 101-8430

Email: fikki, koibuchig@nii.ac.jp

Hiroki Matsutani

Keio University
3-14-1 Hiyoshi, Kohoku-ku, Yokohama,

Kanagawa, JAPAN 223-8522
Email: matutani@arc.ics.keio.ac.jp

Henri Casanova

University of Hawai‘i at Manoa
1680 East-West Road, Honolulu,

HI, U.S.A. 96822
Email: henric@hawaii.edu

With low-delay switches on the horizon, end-to-end latency in large-scale High Performance Computing
(HPC) interconnects will be dominated by cable delays. In this context we define a new network
topology, Skywalk, for deploying low-latency interconnects in upcoming HPC systems. Skywalk uses
randomness to achieve low latency, but does so in a way that accounts for the physical layout of the
topology so as to lead to further cable length and thus latency reductions. Via graph analysis and discrete-
event simulation we show that Skywalk compares favorably (in terms of latency, cable length, and
throughput) to traditional low-degree torus and moderate-degree hypercube topologies, to high-degree
fully-connected Dragonfly topologies, to the HyperX topology, and to recently proposed fully random
topologies.

44

LFTI: A New Performance Metric for Assessing Interconnect Designs
for Extreme-Scale HPC Systems

Xin Yuan and Santosh Mahapatra

Department of Computer Science, Florida State University
Tallahassee, FL 32312

Email: {xyuan,mahapatr}@cs.fsu.edu

Michael Lang and Scott Pakin

Los Alamos National Laboratory
Los Alamos, New Mexico

Email: {mlang,pakin}@lanl.gov

Traditionally, interconnect performance is either characterized by simple topological parameters such as
bisection bandwidth or studied through simulation that gives detailed performance information for the
scenarios simulated. Neither of these approaches provides a good performance overview for extreme-
scale interconnects. The topological parameters are not directly related to application level
communication performance while the simulation complexity limits the number of scenarios that can be
investigated. In this work, we propose a new performance metric, called LANL-FSU Throughput Indices
(LFTI), for characterizing the throughput performance of interconnect designs. LFTI combines the
simplicity of topological parameters and the accuracy of simulation: like topological parameters, LFTI
can be derived from interconnect specification, at the same time, it directly reflects the application level
communication performance. Moreover, in cases when the theoretical throughput for each
communication pattern can be modeled efficiently for an interconnect, LFTI for the interconnect can be
computed efficiently. These features potentially allow LFTI to be used for rapid and comprehensive
evaluation and comparison of extreme-scale interconnect designs. We demonstrate the effectiveness of
LFTI by using it to evaluate and explore the design space of a number of large-scale interconnect designs.

45

An Improved Router Design for Reliable On-Chip Networks

Pavan Poluri and Ahmed Louri

Department of Electrical and Computer Engineering
University of Arizona

Tucson, USA
pavanp@email.arizona.edu
louri@email.arizona.edu

Aggressive technology scaling into the deep nanometer regime has made the Network-on-Chip (NoC) in
multicore architectures increasingly vulnerable to faults. This has accelerated the need for designing
reliable NoCs. To this end, we propose a reliable NoC router architecture capable of tolerating multiple
permanent faults. The proposed router achieves a better reliability without incurring too much area and
power overhead as compared to the baseline NoC router or other fault-tolerant routers. Reliability
analysis using Mean Time to Failure (MTTF) reveals that our proposed router is six times more reliable
than the baseline NoC router (without protection). We also compare our proposed router with other
existing fault-tolerant routers such as Bullet Proof, Vicis and RoCo using Silicon Protection Factor (SPF)
as a metric. SPF analysis shows that our proposed router is more reliable than the mentioned existing fault
tolerant routers. Hardware synthesis performed by Cadence Encounter RTL Compiler using commercial
45nm technology library shows that the correction circuitry incurs an area overhead of 31% and power
overhead of 30%. Latency analysis on a 64-core mesh based NoC simulated using GEM5 and running
SPLASH-2 and PARSEC benchmark application traffic shows that in the presence of multiple faults, our
proposed router increases the overall latency by only 10% and 13% respectively while providing better
reliability.

46

Energy-Efficient Time-Division Multiplexed Hybrid-Switched NoC
for Heterogeneous Multicore Systems

Jieming Yin, Sachin S. Sapatnekar, and Antonia Zhai

University of Minnesota, Twin Cities
Minneapolis, Minnesota 55455, USA

{jyin, zhai}@cs.umn.edu, sachin@umn.edu

Pingqiang Zhou

ShanghaiTech University
Shanghai 200031, China

zhoupq@shanghaitech.edu.cn

NoCs are an integral part of modern multicore processors, they must continuously support high-
throughput low-latency on-chip data communication under a stringent energy budget when system size
scales up. Heterogeneous multicore systems further push the limit of NoC design by integrating cores
with diverse performance requirements onto the same die. Traditional packet-switched NoCs, which have
the flexibility of connecting diverse computation and storage devices, are facing great challenges to meet
the performance requirements within the energy budget due to latency and energy consumption associated
with buffering and routing at each router. In this paper, we take advantage of the diversity in performance
requirements of on-chip heterogeneous computing devices by designing, implementing, and evaluating a
hybrid-switched network that allows the packet-switched and circuit-switched messages to share the same
communication fabric by partitioning the network through time-division multiplexing (TDM). In the
proposed hybrid-switched network, circuit-switched paths are established along frequently
communicating nodes. Our experiments show that utilizing these paths can improve system performance
by reducing communication latency and alleviating network congestion. Furthermore, better energy
efficiency is achieved by reducing buffering in routers and in turn enabling aggressive power gating.

Session 8: System-Level Resource Management

IPDPS 2014

49

Heterogeneity-Aware Workload Placement and Migration in Distributed
Sustainable Datacenters

Dazhao Cheng and Xiaobo Zhou

Department of Computer Science
University of Colorado, Colorado Springs, USA

Changjun Jiang

Department of Computer Science & Technology
Tongji University, Shanghai, China

Email addresses: dcheng@uccs.edu, cjjiang@tongji.edu.cn, xzhou@uccs.edu

While major cloud service operators have taken various initiatives to operate their sustainable data enters
with green energy, it is challenging to effectively utilize the green energy since its generation depends on
dynamic natural conditions. Fortunately, the geographical distribution of data enters provides an
opportunity for optimizing the system performance by distributing cloud workloads. In this paper, we
propose a holistic heterogeneity-aware cloud workload placement and migration approach, sCloud, that
aims to maximize the system good put in distributed self-sustainable data enters. sCloud adaptively places
the transactional workload to distributed data enters, allocates the available resource to heterogeneous
workloads in each data enter, and migrates batch jobs across data enters, while taking into account the
green power availability and QoS requirements. We formulate the transactional workload placement as a
constrained optimization problem that can be solved by nonlinear programming. Then, we propose a
batch job migration algorithm to further improve the system good put when the green power supply varies
widely at different locations. We have implemented sCloud in a university cloud test bed with real-world
weather conditions and workload traces. Experimental results demonstrate sCloud can achieve near-to-
optimal system performance while being resilient to dynamic power availability. It outperforms a
heterogeneity-oblivious approach by 26% in improving system good put and 29% in reducing QoS
violations.

50

Online Server and Workload Management for Joint Optimization
of Electricity Cost and Carbon Footprint Across Data Centers

Zahra Abbasi, Madhurima Pore, and Sandeep K.S. Gupta

IMPACT Lab (http://impact.asu.edu/)
Arizona State University, Tempe, AZ

zahra.abbasi, madhurima.pore, and sandeep.gupta@asu.edu

Internet data centers, typically distributed across the world in order to provide timely and reliable Internet
service, have been increasingly pressurized to reduce their carbon footprint and electricity cost.
Particularly, data centers will soon be required to abide by carbon capping polices which impose carbon
footprint limits to encourage brown energy conservation. We propose an online algorithm, called
OnlineCC, for minimizing the operational cost while satisfying the carbon footprint reduction target of a
set of geo-distributed data centers. OnlineCC makes use of Lyapunov optimization technique while
operating without long-term future information, making it attractive in the presence of uncertainties
associated with data center information e.g., input workload. We prove that OnlineCC achieves a near
optimal operational cost (electricity cost) compared to the optimal algorithm with future information,
while bounding the potential violation of carbon footprint target, depending on the Lyapunov control
parameter, namely V. We also give a heuristic for finding V which significantly shortens the search space
to adjust its value. Finally, we perform a trace-based simulation study and a small scale experiment to
complement the analysis. The results show that OnlineCC reduces cost by more than 18% compared to a
prediction-based online solution while resulting in equal or smaller carbon footprint.

51

Cost-Efficient and Resilient Job Life-Cycle Management on Hybrid Clouds

Hsuan-Yi Chu

Computer Science Department
University of Southern California
Los Angeles, CA 90089, U.S.A.

Email: hsuanyi@usc.edu

Yogesh Simmhan

Supercomputer Education and Research Center
Indian Institute of Science
Bangalore 560012, India

Email: simmhan@serc.iisc.in

Cloud infrastructure offers democratized access to on-demand computing resources for scaling
applications beyond captive local servers. While on-demand, fixed-price Virtual Machines (VMs) are
popular, the availability of cheaper, but less reliable, spot VMs from cloud providers presents an
opportunity to reduce the cost of hosting cloud applications. Our work addresses the issue of effective and
economic use of hybrid cloud resources for planning job executions with deadline constraints. We
propose strategies to manage a job’s life-cycle on spot and on on-demand VMs to minimize the total
dollar cost while assuring completion. With the foundation of stochastic optimization, our reusable table-
based algorithm (RTBA) decides when to instantiate VMs, at what bid prices, when to use local
machines, and when to checkpoint and migrate the job between these resources, with the goal of
completing the job on time and with the minimum cost. In addition, three simpler heuristics are proposed
as comparison. Our evaluation using historical spot prices for the Amazon EC2 market shows that RTBA
on an average reduces the cost by 72%, compared to running on only on-demand VMs. It is also robust to
fluctuations in spot prices. The heuristic, H3, often approaches RTBA in performance and may prove
adequate for ad hoc jobs due to its simplicity.

52

A Coprocessor Sharing-Aware Scheduler for Xeon Phi-Based
Compute Clusters

Giuseppe Coviello, Srihari Cadambi, and Srimat Chakradhar

NEC Laboratories America, Inc.
4 Independence Way, Suite 200

Princeton NJ 08540, USA
{giuseppe.coviello, cadambi, chak}@nec-labs.com

We propose a cluster scheduling technique for compute clusters with Xeon Phi coprocessors. Even
though the Xeon Phi runs Linux which allows multiprocessing, cluster schedulers generally do not allow
jobs to share coprocessors because sharing can cause oversubscription of coprocessor memory and thread
resources. It has been shown that memory or thread oversubscription on a many core like the Phi results
in job crashes or drastic performance loss. We first show that such an exclusive device allocation policy
causes severe coprocessor underutilization: for typical workloads, on average only 38% of the Xeon Phi
cores are busy across the cluster. Then, to improve coprocessor utilization, we propose a scheduling
technique that enables safe coprocessor sharing without resource oversubscription. Jobs specify their
maximum memory and thread requirements, and our scheduler packs as many jobs as possible on each
coprocessor in the cluster, subject to resource limits. We solve this problem using a greedy approach at
the cluster level combined with a knapsack-based algorithm for each node. Every coprocessor is modeled
as a knapsack and jobs are packed into each knapsack with the goal of maximizing job concurrency, i.e.,
as many jobs as possible executing on each coprocessor. Given a set of jobs, we show that this strategy of
packing for high concurrency is a good proxy for (i) reducing make span, without the need for users to
specify job execution times and (ii) reducing coprocessor footprint, or the number of coprocessors
required to finish the jobs without increasing make span. We implement the entire system as a seamless
add on to Condor, a popular distributed job scheduler, and show make span and footprint reductions of
more than 50% across a wide range of workloads.

Session 9: GPU Algorithms

IPDPS 2014

55

Work-Efficient Parallel GPU Methods for Single-Source Shortest Paths

Andrew Davidson and John D. Owens

University of California, Davis
aaldavidson@ucdavis.edu
jowens@ece.ucdavis.edu

Sean Baxter and Michael Garland

NVIDIA Research
sbaxter@nvidia.com

mgarland@nvidia.com

Finding the shortest paths from a single source to all other vertices is a fundamental method used in a
variety of higher-level graph algorithms. We present three parallel friendly and work-efficient methods to
solve this Single-Source Shortest Paths (SSSP) problem: Work front Sweep, Near-Far and Bucketing.
These methods choose different approaches to balance the trade off between saving work and
organizational overhead. In practice, all of these methods do much less work than traditional Bellman-
Ford methods, while adding only a modest amount of extra work over serial methods. These methods are
designed to have a sufficient parallel workload to fill modern massively-parallel machines, and select
reorganizational schemes that map well to these architectures. We show that in general our Near-Far
method has the highest performance on modern GPUs, outperforming other parallel methods. We also
explore a variety of parallel load-balanced graph traversal strategies and apply them towards our SSSP
solver. Our work-saving methods always outperform a traditional GPU Bellman-Ford implementation,
achieving rates up to 14x higher on low-degree graphs and 340x higher on scale free graphs. We also see
significant speedups (20-60x) when compared against a serial implementation on graphs with adequately
high degree.

56

Efficient Multi-GPU Computation of All-Pairs Shortest Paths

Hristo Djidjev and Sunil Thulasidasan

Los Alamos National Laboratory
Los Alamos, NM, USA

Email: {djidjev,sunil}@lanl.gov

Guillaume Chapuis, Rumen Andonov, and Dominique Lavenier

INRIA/IRISA, University of Rennes 1
Rennes, France

Email: {guillaume.chapuis,rumen.andonov,dominique.lavenier}@irisa.fr

We describe a new algorithm for solving the all-pairs shortest-path (APSP) problem for planar graphs and
graphs with small separators that exploits the massive on-chip parallelism available in today’s Graphics
Processing Units (GPUs). Our algorithm, based on the Floyd-War shall algorithm, has near optimal
complexity in terms of the total number of operations, while its matrix-based structure is regular enough
to allow for efficient parallel implementation on the GPUs. By applying a divide-and-conquer approach,
we are able to make use of multi-node GPU clusters, resulting in more than an order of magnitude
speedup over the fastest known Dijkstra-based GPU implementation and a two-fold speedup over a
parallel Dijkstra-based CPU implementation.

57

An Efficient GPU General Sparse Matrix-Matrix Multiplication
for Irregular Data

Weifeng Liu and Brian Vinter

Niels Bohr Institute
University of Copenhagen

Copenhagen, Denmark
{weifeng, vinter}@nbi.dk

General sparse matrix-matrix multiplication (SpGEMM) is a fundamental building block for numerous
applications such as algebraic multigrid method, breadth first search and shortest path problem.
Compared to other sparse BLAS routines, an efficient parallel SpGEMM algorithm has to handle extra
irregularity from three aspects: (1) the number of the nonzero entries in the result sparse matrix is
unknown in advance, (2) very expensive parallel insert operations at random positions in the result sparse
matrix dominate the execution time, and (3) load balancing must account for sparse data in both input
matrices. Recent work on GPU SpGEMM has demonstrated rather good both time and space complexity,
but works best for fairly regular matrices. In this work we present a GPU SpGEMM algorithm that
particularly focuses on the above three problems. Memory pre-allocation for the result matrix is organized
by a hybrid method that saves a large amount of global memory space and efficiently utilizes the very
limited on-chip scratchpad memory. Parallel insert operations of the nonzero entries are implemented
through the GPU merge path algorithm that is experimentally found to be the fastest GPU merge
approach. Load balancing builds on the number of the necessary arithmetic operations on the nonzero
entries and is guaranteed in all stages. Compared with the state-of-the-art GPU SpGEMM methods in the
CUSPARSE library and the CUSP library and the latest CPU SpGEMM method in the Intel Math Kernel
Library, our approach delivers excellent absolute performance and relative speedups on a benchmark suite
composed of 23 matrices with diverse sparsity structures.

58

Improving the Performance of CA-GMRES on Multicores
with Multiple GPUs

Ichitaro Yamazaki*, Hartwig Anzt*, Stanimire Tomov*, Mark Hoemmen§, and Jack Dongarra*

*University of Tennessee, Knoxville, USA

§Sandia National Laboratory, New Mexico, USA
iyamazak@eecs.utk.edu, hanzt@icl.utk.edu, tomov@eecs.utk.edu, mhoemme@sandia.gov,

and dongarra@eecs.utk.edu

The Generalized Minimum Residual (GMRES) method is one of the most widely-used iterative methods
for solving nonsymmetric linear systems of equations. In recent years, techniques to avoid
communication in GMRES have gained attention because in comparison to floating-point operations,
communication is becoming increasingly expensive on modern computers. Since graphics processing
units (GPUs) are now becoming crucial component in computing, we investigate the effectiveness of
these techniques on multicore CPUs with multiple GPUs. While we present the detailed performance
studies of a matrix powers kernel on multiple GPUs, we particularly focus on orthogonalization strategies
that have a great impact on both the numerical stability and performance of GMRES, especially as the
matrix becomes sparser or ill-conditioned. We present the experimental results on two eight-core Intel
Sandy Bridge CPUs with three NDIVIA Fermi GPUs and demonstrate that significant speedups can be
obtained by avoiding communication, either on a GPU or between the GPUs. As part of our study, we
investigate several optimization techniques for the GPU kernels that can also be used in other iterative
solvers besides GMRES. Hence, our studies not only emphasize the importance of avoiding
communication on GPUs, but they also provide insight about the effects of these optimization techniques
on the performance of the sparse solvers, and may have greater impact beyond GMRES.

Session 10: Graph and Network Processing

IPDPS 2014

61

How Well Do Graph-Processing Platforms Perform?
An Empirical Performance Evaluation and Analysis

Yong Guo*, Marcin Biczak*, Ana Lucia Varbanescu†, Alexandru Iosup*, Claudio Martella‡,
and Theodore L. Willke§

*TU Delft
The Netherlands

Email: {Yong.Guo, M.Biczak, A.Iosup}@tudelft.nl

†University of Amsterdam
The Netherlands

Email: A.L.Varbanescu@uva.nl

‡VU University Amsterdam
The Netherlands

Email: claudio.martella@vu.nl

§Systems Architecture Lab
Intel Corporation, USA

Email: theodore.l.willke@intel.com

Graph-processing platforms are increasingly used in a variety of domains. Although both industry and
academia are developing and tuning graph-processing algorithms and platforms, the performance of
graph-processing platforms has never been explored or compared in-depth. Thus, users face the daunting
challenge of selecting an appropriate platform for their specific application. To alleviate this challenge,
we propose an empirical method for benchmarking graph-processing platforms. We define a
comprehensive process, and a selection of representative metrics, datasets, and algorithmic classes. We
implement a benchmarking suite of five classes of algorithms and seven diverse graphs. Our suite reports
on basic (user-lever) performance, resource utilization, scalability, and various overhead. We use our
benchmarking suite to analyze and compare six platforms. We gain valuable insights for each platform
and present the first comprehensive comparison of graph-processing platforms.

62

Complex Network Analysis Using Parallel Approximate Motif Counting

George M. Slota and Kamesh Madduri

Department of Computer Science and Engineering
The Pennsylvania State University

University Park, PA, USA
Email: gms5016@psu.edu, madduri@cse.psu.edu

Subgraph counting forms the basis of many complex network analysis metrics, including motif and anti-
motif finding, relative graph let frequency distance, and graph let degree distribution agreements.
Determining exact subgraph counts is computationally very expensive. In recent work, we present
FASCIA, a shared-memory parallel algorithm and implementation for approximate subgraph counting.
FASCIA uses a dynamic programming-based approach and is significantly faster than exhaustive
enumeration, while generating high-quality approximations of subgraph counts. However, the memory
usage of the dynamic programming step prohibits us from applying FASCIA to very large graphs. In this
paper, we introduce a distributed-memory parallelization of FASCIA by partitioning the graph and the
dynamic programming table. We discuss a new collective communication scheme to make the dynamic
programming step memory-efficient. These optimizations enable scaling to much larger networks than
before. We also present a simple parallelization strategy for distributed subgraph counting on smaller
networks. The new additions let us use subgraph counts as graph signatures for a large network collection,
and we analyze this collection using various subgraph count-based graph analytics.

63

Finding Motifs in Biological Sequences Using the Micron Automata Processor

Indranil Roy and Srinivas Aluru

School of Computational Science and Engineering
Georgia Institute of Technology, Atlanta, GA 30332

Email: iroy@gatech.edu; aluru@cc.gatech.edu

Finding approximately conserved sequences, called motifs, across multiple DNA or protein sequences is
an important problem in computational biology. In this paper, we consider the (l, d) motif search problem
of identifying one or more motifs of length l present in at least q of the n given sequences, with each
occurrence differing from the motif in at most d substitutions. The problem is known to be NP-hard, and
the largest solved instance reported to date is (26, 11). We propose a novel algorithm for the (l, d) motif
search problem using streaming execution over a large set of Non-deterministic Finite Automata (NFA).
This solution is designed to take advantage of the Micron Automata Processor, a new technology close to
deployment that can simultaneously execute multiple NFA in parallel. We estimate the run-time for the
(39, 18) and (40, 17) problem instances using the resources available within a single Automata Processor
board. In addition to solving larger instances of the (l, d) motif search problem, the paper serves as a
useful guide to solving problems using this new accelerator technology.

64

Traversing Trillions of Edges in Real Time: Graph Exploration
on Large-Scale Parallel Machines

Fabio Checconi and Fabrizio Petrini

High Performance Analytics Department
IBM TJ Watson, Yorktown Heights, NY 10598

Email: {fchecco,fpetrin}@us.ibm.com

The world of Big Data is changing dramatically right before our eyes-from the amount of data being
produced to the way in which it is structured and used. The trend of "big data growth" presents enormous
challenges, but it also presents incredible scientific and business opportunities. Together with the data
explosion, we are also witnessing a dramatic increase in data processing capabilities, thanks to new
powerful parallel computer architectures and more sophisticated algorithms. In this paper we describe the
algorithmic design and the optimization techniques that led to the unprecedented processing rate of 15.3
trillion edges per second on 64 thousand Blue Gene/Q nodes, that allowed the in-memory exploration of a
petabyte-scale graph in just a few seconds. This paper provides insight into our parallelization and
optimization techniques. We believe that these techniques can be successfully applied to a broader class
of graph algorithms.

Session 11: Modeling, Simulation, and Reliability

IPDPS 2014

67

TBPoint: Reducing Simulation Time for Large-Scale GPGPU Kernels

Jen-Cheng Huang1, Lifeng Nai1, Hyesoon Kim2, and Hsien-Hsin S. Lee1

1School of Electrical and Computer Engineering
2School of Computer Science

Georgia Institute of Technology
{jhuang34, lnai3, hyesoon.kim, leehs}@gatech.edu

Architecture simulation for GPGPU kernels can take a significant amount of time, especially for large-
scale GPGPU kernels. This paper presents TBPoint, an infrastructure based on profiling-based sampling
for GPGPU kernels to reduce the cycle-level simulation time. Compared to existing approaches, TBPoint
provides a flexible and architecture-independent way to take samples. For the evaluated 12 kernels, the
geometric means of sampling errors of TBPoint, Ideal-Simpoint, and random sampling are 0.47%, 1.74%,
and 7.95%, respectively, while the geometric means of the total sample size of TBPoint, Ideal-Simpoint,
and random sampling are 2.6%, 5.4%, and 10%, respectively. TBPoint narrows the speed gap between
hardware and GPGPU simulators, enabling more and more large-scale GPGPU kernels to be analyzed
using detailed timing simulations.

68

Algorithmic Time, Energy, and Power on Candidate HPC Compute
Building Blocks

Jee Choi, Marat Dukhan, Xing Liu, and Richard Vuduc

School of Computational Science and Engineering
Georgia Institute of Technology

Atlanta, Georgia, 30332-0765, USA
{jee,mdukhan3,xing.liu,richie}@gatech.edu

We conducted a micro benchmarking study of the time, energy, and power of computation and memory
access on several existing platforms. These platforms represent candidate compute-node building blocks
of future high-performance computing systems. Our analysis uses the “energy roofline” model, developed
in prior work, which we extend in two ways. First, we improve the model’s accuracy by accounting for
power caps, basic memory hierarchy access costs, and measurement of random memory access patterns.
Secondly, we empirically evaluate server-, mini-, and mobile-class platforms that span a range of
compute and power characteristics. Our study includes a dozen such platforms, including x86 (both
conventional and Xeon Phi), ARM, GPU, and hybrid (AMD APU and other SoC) processors. These data
and our model analytically characterize the range of algorithmic regimes where we might prefer one
building block to others. It suggests critical values of arithmetic intensity around which some systems
may switch from being more to less time- and energy-efficient than others, it further suggests how, with
respect to intensity, operations should be throttled to meet a power cap. We hope our methods can help
make debates about the relative merits of these and other systems more quantitative, analytical, and
insightful.

69

Characterization of Impact of Transient Faults and Detection
of Data Corruption Errors in Large-Scale N-Body Programs

Using Graphics Processing Units

Keun Soo Yim

Google, Inc.
yim@google.com

In N-body programs, trajectories of simulated particles have chaotic patterns if errors are in the initial
conditions or occur during some computation steps. It was believed that the global properties (e.g., total
energy) of simulated particles are unlikely to be affected by a small number of such errors. In this paper,
we present a quantitative analysis of the impact of transient faults in GPU devices on a global property of
simulated particles. We experimentally show that a single-bit error in non-control data can change the
final total energy of a large-scale N-body program with ~2.1% probability. We also find that the
corrupted total energy values have certain biases (e.g., the values are not a normal distribution), which can
be used to reduce the expected number of re-executions. In this paper, we also present a data error
detection technique for N-body programs by utilizing two types of properties that hold in simulated
physical models. The presented technique and an existing redundancy-based technique together cover
many data errors (e.g., ˃97.5%) with a small performance overhead (e.g., 2.3%).

70

Analytically Modeling Application Execution for Software-Hardware
Co-design

Jichi Guo†, Jiayuan Meng‡, Qing Yi†, Vitali Morozov‡, and Kalyan Kumaran‡

University of Colorado Colorado Springs†
Colorado Springs, CO, USA

{jguo2, qyi}@uccs.edu

Argonne National Laboratory‡
Lemont, IL, USA

{jmeng, morozov, kumaran}@anl.gov

Software-hardware co-design has become increasingly important as the scale and complexity of both are
reaching an unprecedented level. To predict and understand application behavior on emerging or
conceptual systems, existing research has mostly relied on cycle-accurate micro-architecture simulators,
which are known to be time-consuming and are oblivious to workloads’ control flow structure. As a
result, simulations are often limited to small kernels, and the first step in the co-design process is often to
extract important kernels, construct mini-applications, and identify potential hardware limitations. This
requires a high level understanding about the full applications’ potential behavior on a future system, e.g.
the most time-consuming regions, the performance bottlenecks for these regions, etc. Unfortunately, such
application knowledge gained from one system may not hold true on a future system. One solution is to
instrument the full application with timers and simulate it with a reasonable input size, which can be a
daunting task in itself. We propose an alternative approach to gain first-order insights into hardware-
dependent application behavior by trading off the accuracy of analysis for improved efficiency. By
modeling the execution flows of user applications and analyzing it using target hardware’s performance
models, our technique requires no cycle-accurate simulation on a prospective system. In fact, our
technique’s analysis time does not increase with the input data size.

Session 12: Accelerator Application Development
and Optimization

IPDPS 2014

73

Interactive Program Debugging and Optimization for Directive-Based,
Efficient GPU Computing

Seyong Lee†, Dong Li†, and Jeffrey S. Vetter†*

†Oak Ridge National Laboratory

*Georgia Institute of Technology
{lees2, lid1}@ornl.gov, {vetter}@computer.org

Directive-based GPU programming models are gaining momentum, since they transparently relieve
programmers from dealing with complexity of low-level GPU programming, which often reflects the
underlying architecture. However, too much abstraction in directive models puts a significant burden on
programmers for debugging applications and tuning performance. In this paper, we propose a directive-
based, interactive program debugging and optimization system. This system enables intuitive and
synergistic interaction among programmers, compilers, and runtimes for more productive and efficient
GPU computing. We have designed and implemented a series of prototype tools within our new open
source compiler framework, called Open Accelerator Research Compiler (Open ARC), Open ARC
supports the full feature set of Opencast V1.0. Our evaluation on twelve Open ACC benchmarks
demonstrates that our prototype debugging and optimization system can detect a variety of translation
errors. Additionally, the optimization provided by our prototype minimizes memory transfers, when
compared to a fully manual memory management scheme.

74

Unified Development for Mixed Multi-GPU and Multi-coprocessor
Environments Using a Lightweight Runtime Environment

Azzam Haidar*, Chongxiao Cao*, Asim Yarkhan*, Piotr Luszczek*, Stanimire Tomov*,
Khairul Kabir*, and Jack Dongarra*†‡

∗University of Tennessee, Knoxville, USA

†Oak Ridge National Laboratory, Oak Ridge, USA

‡University of Manchester, Manchester M13 9PL, UK

Many of the heterogeneous resources available to modern computers are designed for different
workloads. In order to efficiently use GPU resources, the workload must have a greater degree of
parallelism than a workload designed for multicore-CPUs. And conceptually, the Intel Xeon Phi
coprocessors are capable of handling workloads somewhere in between the two. This multitude of
applicable workloads will likely lead to mixing multicore-CPUs, GPUs, and Intel coprocessors in multi-
user environments that must offer adequate computing facilities for a wide range of workloads. In this
work, we are using a lightweight runtime environment to manage the resource-specific workload, and to
control the dataflow and parallel execution in two-way hybrid systems. The lightweight runtime
environment uses task superscalar concepts to enable the developer to write serial code while providing
parallel execution. In addition, our task abstractions enable unified algorithmic development across all the
heterogeneous resources. We provide performance results for dense linear algebra applications,
demonstrating the effectiveness of our approach and full utilization of a wide variety of accelerator
hardware.

75

Nitro: A Framework for Adaptive Code Variant Tuning

Saurav Muralidharan, Manu Shantharam, and Mary Hall

University of Utah
Salt Lake City, UT

Email: {sauravm, manushan, mhall}@cs.utah.edu

Michael Garland and Bryan Catanzaro

NVIDIA Corporation
Santa Clara, CA

Email: {mgarland, bcatanzaro}@nvidia.com

Auto tuning systems intelligently navigate a search space of possible implementations of a computation to
find the implementation(s) that best meets a specific optimization criteria, usually performance. This
paper describes Nitro, a programmer-directed auto tuning framework that facilitates tuning of code
variants, or alternative implementations of the same computation. Nitro provides a library interface that
permits programmers to express code variants along with meta-information that aids the system in
selecting among the set of variants at run time. Machine learning is employed to build a model through
training on this meta-information, so that when a new input is presented, Nitro can consult the model to
select the appropriate variant. In experiments with five real-world irregular GPU benchmarks from sparse
numerical methods, graph computations and sorting, Nitro-tuned variants achieve over 93% of the
performance of variants selected through exhaustive search. Further, we describe optimizations and
heuristics in Nitro that substantially reduce training time and other overheads.

Keynote Speaker 2

IPDPS 2014

79

Reading the Tea-Leaves: How Architecture Has Evolved at the High End

Peter Kogge

University of Notre Dame

The 2008 DARPA Exascale study was one of the first in-depth attempts to project ahead key
characteristics for high-end massively parallel systems on the basis of technology trends, architectures,
and computational kernels, and identified four major challenges for future systems designs. It focused on
a single benchmark, Linpack, and identified two distinct classes of architectures: “heavyweight” and
“lightweight.” This talk is a continuation of a series of updates to that study, and includes not only the
most recent technology projections but also several new benchmarks for which significant multi-year data
exists, and new classes of architectures that have emerged since then. The talk will address changes in
characteristics (both before and after the seminal year of 2004 where multi-core took over), and how
those characteristics are likely to project into the future. A series of vignettes on specific features will
provide insight into areas where current design trends are becoming over or under-balanced. Special
attention is given to both computational energy and memory.

Session 13: Combinatorial Algorithms

IPDPS 2014

83

New Effective Multithreaded Matching Algorithms

Fredrik Manne

Department of Informatics
University of Bergen

N-5020 Bergen, Norway
Email: fredrikm@ii.uib.no

Mahantesh Halappanavar

Pacific Northwest National Laboratory
902 Battelle Boulevard

P.O.Box 999, MSIN J4-30
Richland, WA 99352, USA

Email: hala@pnnl.gov

Matching is an important combinatorial problem with a number of applications in areas such as
community detection, sparse linear algebra, and network alignment. Since computing optimal matchings
can be very time consuming, several fast approximation algorithms, both sequential and parallel, have
been suggested. Common to the algorithms giving the best solutions is that they tend to be sequential by
nature, while algorithms more suitable for parallel computation give solutions of lower quality. We
present a new simple 1/2-approximation algorithm for the weighted matching problem. This algorithm is
both faster than any other suggested sequential 1/2-approximation algorithm on almost all inputs and
when parallelized also scales better than previous multithreaded algorithms. We further extend this to a
general scalable multithreaded algorithm that computes matchings of weight comparable with the best
sequential deterministic algorithms. The performance of the suggested algorithms is documented through
extensive experiments on different multithreaded architectures.

84

A Medium-Grain Method for Fast 2D Bipartitioning of Sparse Matrices

Daniël M. Pelt

Scientific Computing Group
Centrum Wiskunde & Informatica

Amsterdam, The Netherlands
D.M.Pelt@cwi.nl

Rob H. Bisseling

Mathematical Institute
Utrecht University

Utrecht, The Netherlands
R.H.Bisseling@uu.nl

We present a new hyper graph-based method, the medium-grain method, for solving the sparse matrix
partitioning problem. This problem arises when distributing data for parallel sparse matrix-vector
multiplication. In the medium-grain method, each matrix nonzero is assigned to either a row group or a
column group, and these groups are represented by vertices of the hyper graph. For an m x n sparse
matrix, the resulting hyper graph has m+n vertices and m+n hyper edges. Furthermore, we present an
iterative refinement procedure for improvement of a given partitioning, based on the medium-grain
method, which can be applied as a cheap but effective post processing step after any partitioning method.
The medium-grain method is able to produce fully two-dimensional bipartitionings, but its computational
complexity equals that of one-dimensional methods. Experimental results for a large set of sparse test
matrices show that the medium-grain method with iterative refinement produces bipartitionings with
lower communication volume compared to current state-of-the-art methods, and is faster at producing
them.

85

Bipartite Matching Heuristics with Quality Guarantees on Shared Memory
Parallel Computers

Fanny Dufossé

LAAS CNRS - Universit´e de Toulouse,
7 avenue du colonel Roche
F-31400 Toulouse, France

Email:fanny.dufosse@laas.fr

Kamer Kaya

The Ohio State University
Dept. of Biomedical Informatics

Columbus, OH, USA
Email: kamer@bmi.osu.edu

Bora Uçar

LIP (CNRS, ENS Lyon, UCBL,
INRIA, Universit´e de Lyon),
46, all´ee d’Italie, ENS Lyon,

Lyon F-69364, France

We propose two heuristics for the bipartite matching problem that are amenable to shared-memory
parallelization. The first heuristic is very intriguing from parallelization perspective. It has no significant
algorithmic synchronization overhead and no conflict resolution is needed across threads. We show that
this heuristic has an approximation ratio of around 0.632. The second heuristic is designed to obtain a
larger matching by employing the well-known Karp-Sipser heuristic on a judiciously chosen subgraph of
the original graph. We show that the Karp-Sipser heuristic always finds a maximum cardinality matching
in the chosen subgraph. Although the Karp-Sipser heuristic is hard to parallelize for general graphs, we
exploit the structure of the selected sub graphs to propose a specialized implementation which
demonstrates a very good scalability. Based on our experiments and theoretical evidence, we conjecture
that this second heuristic obtains matchings with cardinality of at least 0.866 of the maximum cardinality.
We discuss parallel implementations of the proposed heuristics on shared memory systems. Experimental
results, for demonstrating speed-ups and verifying the theoretical results in practice, are provided.

86

BFS and Coloring-Based Parallel Algorithms for Strongly Connected
Components and Related Problems

George M. Slota*, Sivasankaran Rajamanickam†, and Kamesh Madduri*

∗Computer Science and Engineering, The Pennsylvania State University
 Email: gslota@psu.edu, madduri@cse.psu.edu

†Scalable Algorithms Department, Sandia National Laboratories
Email: srajama@sandia.gov

Finding the strongly connected components (SCCs) of a directed graph is a fundamental graph-theoretic
problem. Tarjan’s algorithm is an efficient serial algorithm to find SCCs, but relies on the hard-to-
parallelize depth-first search (DFS). We observe that implementations of several parallel SCC detection
algorithms show poor parallel performance on modern multicore platforms and large-scale networks. This
paper introduces the Multistep method, a new approach that avoids work inefficiencies seen in prior SCC
approaches. It does not rely on DFS, but instead uses a combination of breadth-first search (BFS) and a
parallel graph coloring routine. We show that the Multistep method scales well on several real-world
graphs, with performance fairly independent of topological properties such as the size of the largest SCC
and the total number of SCCs. On a 16-core Intel Xeon platform, our algorithm achieves a 20X speedup
over the serial approach on a 2 billion edge graph, fully decomposing it in under two seconds. For our
collection of test networks, we observe that the Multistep method is 1.92X faster (mean speedup) than the
state-of-the-art Hong et al. SCC method. In addition, we modify the Multistep method to find connected
and weakly connected components, as well as introduce a novel algorithm for determining articulation
vertices of biconnected components. These approaches all utilize the same underlying BFS and coloring
routines.

Session 14: Large Scale Scientific Applications

IPDPS 2014

89

Large-Scale Hydrodynamic Brownian Simulations on Multicore
and Manycore Architectures

Xing Liu and Edmond Chow

School of Computational Science and Engineering
College of Computing, Georgia Institute of Technology

Atlanta, Georgia, 30332, USA
xing.liu@gatech.edu

echow@cc.gatech.edu

Conventional Brownian dynamics (BD) simulations with hydrodynamic interactions utilize 3n×3n
dense mobility matrices, where n is the number of simulated particles. This limits the size of BD
simulations, particularly on accelerators with low memory capacities. In this paper, we formulate a
matrix-free algorithm for BD simulations, allowing us to scale to very large numbers of particles while
also being efficient for small numbers of particles. We discuss the implementation of this method for
multicore and many core architectures, as well as a hybrid implementation that splits the workload
between CPUs and Intel Xeon Phi coprocessors. For 10,000 particles, the limit of the conventional
algorithm on a 32 GB system, the matrix-free algorithm is 35 times faster than the conventional matrix
based algorithm. We show numerical tests for the matrix-free algorithm up to 500,000 particles. For large
systems, our hybrid implementation using two Intel Xeon Phi coprocessors achieves a speedup of over
3.5x compared to the CPU-only case. Our optimizations also make the matrix-free algorithm faster than
the conventional dense matrix algorithm on as few as 1000 particles.

90

Using Load Balancing to Scalably Parallelize Sampling-Based Motion
Planning Algorithms

Adam Fidel†, Sam Ade Jacobs, Shishir Sharma‡, Nancy M. Amato†,
and Lawrence Rauchwerger†

†Parasol Lab, Dept. of Computer Science and Engineering,
Texas A&M University, 3112 TAMU, College Station, TX, USA

{fidel,amato,rwerger}@cse.tamu.edu
	

∗ABB Corporate Research, Raleigh, NC, USA
sam.jacobs@us.abb.com

‡Microsoft Corp., Redmond, WA, USA
shishir.sharma@microsoft.com

Motion planning, which is the problem of computing feasible paths in an environment for a movable
object, has applications in many domains ranging from robotics, to intelligent CAD, to protein folding.
The best methods for solving this PSPACE-hard problem are so-called sampling-based planners. Recent
work introduced uniform spatial subdivision techniques for parallelizing sampling-based motion planning
algorithms that scaled well. However, such methods are prone to load imbalance, as planning time
depends on region characteristics and, for most problems, the heterogeneity of the sub problems increases
as the number of processors increases. In this work, we introduce two techniques to address load
imbalance in the parallelization of sampling-based motion planning algorithms: an adaptive work stealing
approach and bulk-synchronous redistribution. We show that applying these techniques to representatives
of the two major classes of parallel sampling-based motion planning algorithms, probabilistic roadmaps
and rapidly-exploring random trees, results in a more scalable and load-balanced computation on more
than 3,000 cores.

91

Petascale Application of a Coupled CPU-GPU Algorithm for Simulation
and Analysis of Multiphase Flow Solutions in Porous Medium Systems

James E. McClure*, Hao Wang†, Jan F. Prins‡, Cass T. Miller§, and Wu-Chun Feng†

∗Advanced Research Computing
Virginia Tech, Blacksburg, Virginia

Email: mcclurej@vt.edu

‡Dept. of Computer Science
University of North Carolina at Chapel Hill,

Chapel Hill, North Carolina
Email:prins@cs.unc.edu

§Dept. of Environmental Science & Engineering
University of North Carolina at Chapel Hill,

Chapel Hill, North Carolina
Email:casey_miller@unc.edu

†Dept. of Computer Science
Virginia Tech, Blacksburg, Virginia
Email: {hwang121, wfeng}@vt.edu

Large-scale simulation can provide a wide range of information needed to develop and validate
theoretical models for multiphase flow in porous medium systems. In this paper, we consider a coupled
solution in which a multiphase flow simulator is coupled to an analysis approach used to extract the
interfacial geometries as the flow evolves. This has been implemented using MPI to target heterogeneous
nodes equipped with GPUs. The GPUs evolve the multiphase flow solution using the lattice Boltzmann
method while the CPUs compute up scaled measures of the morphology and topology of the phase
distributions and their rate of evolution. Our approach is demonstrated to scale to 4,096 GPUs and 65,536
CPU cores to achieve a maximum performance of 244,754 million-lattice-node updates per second
(MLUPS) in double precision execution on Titan. In turn, this approach increases the size of systems that
can be considered by an order of magnitude compared with previous work and enables detailed in situ
tracking of averaged flow quantities at temporal resolutions that were previously impossible.
Furthermore, it virtually eliminates the need for post-processing and intensive I/O and mitigates the
potential loss of data associated with node failures.

92

A Spatio-temporal Coupling Method to Reduce the Time-to-Solution
of Cardiovascular Simulations

Amanda Randles

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

Livermore, CA, USA
randles2@llnl.gov

Efthimios Kaxiras

Department of Physics and
School of Engineering and Applied Sciences

Harvard Universty
Cambridge, MA, USA

kaxiras@seas.harvard.edu

We present a new parallel-in-time method designed to reduce the overall time-to-solution of a patient-
specific cardiovascular flow simulation. Using a modified Para real algorithm, our approach extends
strong scalability beyond spatial parallelism with fully controllable accuracy and no decrease in stability.
We discuss the coupling of spatial and temporal domain decompositions used in our implementation, and
showcase the use of the method on a study of blood flow through the aorta. We observe an additional
40% reduction in overall wall clock time with no significant loss of accuracy, in agreement with a
predictive performance model.

Session 15: Multicore and Transactional Memory

IPDPS 2014

95

Mitigating the Mismatch between the Coherence Protocol and Conflict
Detection in Hardware Transactional Memory

Lihang Zhao1, Lizhong Chen2, and Jeffrey Draper1

1Information Sciences Institute
2Ming Hsieh Department of Electrical Engineering

University of Southern California
Email: flihangzh, lizhongcg@usc.edu, draper@isi.edu

Hardware Transactional Memory (HTM) usually piggybacks onto the cache coherence protocol to detect
data access conflicts between transactions. We identify an intrinsic mismatch between the typical
coherence scheme and transaction execution, which causes a sizable amount of unnecessary transaction
aborts. This pathological behavior is called false aborting and increases the amount of wasted
computation and on-chip communication. For the TM applications we studied, 41% of the transactional
write requests incur false aborting. To combat false aborting, we propose Predictive Unicast and
Notification (PUNO), a novel hardware mechanism to 1) replace the inefficient coherence multicast with
a unicast scheme to prevent transactions from being disrupted unnecessarily and 2) restrain transaction
polling through proactive notification. PUNO reduces transaction aborts by 61% and network traffic by
32% in workloads representative of future TM applications with a VLSI implementation area overhead of
0.41%.

96

Performance and Energy Analysis of the Restricted Transactional Memory
Implementation on Haswell

Bhavishya Goel, Ruben Titos-Gil, Anurag Negi, Sally A. McKee, and Per Stenstrom

Chalmers University of Technology
Gothenburg, Sweden

{goelb, ruben.titos, negi, mckee, per.stenstrom}@chalmers.se

Hardware transactional memory implementations are becoming increasingly available. For instance, the
Intel Core i7 4770 implements Restricted Transactional Memory (RTM) support for Intel Transactional
Synchronization Extensions (TSX). In this paper, we present a detailed evaluation of RTM performance
and energy expenditure. We compare RTM behavior to that of the TinySTM software transactional
memory system, first by running micro benchmarks, and then by running the STAMP benchmark suite.
We find that which system performs better depends heavily on the workload characteristics. We then
conduct a case study of two STAMP applications to assess the impact of programming style on RTM
performance and to investigate what kinds of software optimizations can help overcome RTM’s hardware
limitations.

97

Runtime-Guided Cache Coherence Optimizations in Multi-core Architectures

Madhavan Manivannan and Per Stenstrom

Chalmers University of Technology
Gothenburg, Sweden

{madhavan, per.stenstrom}@chalmers.se

Emerging task-based parallel programming models shield programmers from the daunting task of
parallelism management by delegating the responsibility of mapping and scheduling of individual tasks to
the runtime system. The runtime system can use semantic information about task dependencies supplied
by the programmer and the mapping information of tasks to enable optimizations like data-flow based
execution and locality-aware scheduling of tasks. However, should the cache coherence substrate have
access to this information from the runtime system, it would enable aggressive optimizations of prevailing
access patterns such as one-to-many producer-consumer sharing and migratory sharing. Such linkage has
however not been studied before. We present a family of runtime guided cache coherence optimizations
enabled by linking dependency and mapping information from the runtime system to the cache coherence
substrate. By making this information available to the cache coherence substrate, we show that
optimizations, such as downgrading and self-invalidation, that help reducing overheads associated with
producer-consumer and migratory sharing can be supported with reasonable extensions to the baseline
cache coherence protocol. Our experimental results establish that each optimization provides significant
performance gain in isolation and can provide additional gains when combined. Finally, we evaluate these
optimizations in the context of earlier proposed runtime-guided prefetching schemes and show that they
can have synergistic effects.

98

High Performance Alltoall and Allgather Designs for InfiniBand
MIC Clusters

Akshay Venkatesh, Sreeram Potluri, Raghunath Rajachandrasekar, Miao Luo,
Khaled Hamidouche, and Dhabaleswar K. Panda

Network-Based Computing Laboratory
The Ohio State University

{akshay, potluri, rajachan, luom, hamidouc, panda}@cse.ohio-state.edu

Intel’s Many-Integrated-Core (MIC) architecture aims to provide Teraflop throughput (through high
degrees of parallelism) with a high FLOP/Watt ratio and x86 compatibility. However, this two-fold
approach to solving power and programmability challenges for Exascale computing is constrained by
certain architectural idiosyncrasies. MIC coprocessors have a memory constrained environment and its
processors operate at slower clock rates. Also, being PCI devices, the communication characteristics of
MIC co-processors are different compared to communication behavior seen in homogeneous
environments. For instance, the performance of sending data from the MIC memory to a remote node’s
memory through message passing routines has 3x-6x higher latency than sending from the host processor
memory. Hence communication libraries that do not consider these architectural subtleties are likely to
nullify performance benefits or even cause degradation in applications that intend to use MICs and rely
heavily on communication routines. The performance of Message Passing Interface (MPI) operations,
especially dense collective operations like All-to-all and All gather, strongly affect the performance of
many distributed parallel applications. In this paper, we revisit state-of-the-art algorithms commonly used
to implement All-to-all collectives and propose adaptations and optimizations to alleviate architectural
bottlenecks on MIC clusters. We also propose a few novel designs to improve the communication latency
of these operations. Through micro-benchmarks and applications, we substantiate the benefits of
incorporating the proposed adaptations to the All-to-All collective operations. At the micro-benchmark
level, the proposed designs show as much as 79% improvement for All gather operation and up to 70%
improvement for All-to-all and with the P3DFFT application, an improvement of 38% is seen in overall
execution time.

Session 16: HPC Operating Systems and Runtime
Systems

IPDPS 2014

101

HPMMAP: Lightweight Memory Management for Commodity
Operating Systems

Brian Kocoloski and John Lange

Department of Computer Science
University of Pittsburgh

Pittsburgh, PA 15260
{briankoco,jacklange}@cs.pitt.edu

Linux-based operating systems and runtimes (OS/Rs) have emerged as the environments of choice for the
majority of modern HPC systems. While Linux-based OS/Rs have advantages such as extensive feature
sets as well as developer familiarity, these features come at the cost of additional overhead throughout the
system. In contrast to Linux, there is a substantial history of work in the HPC community focused on
lightweight OS/R architectures that provide scalable and consistent performance for tightly coupled HPC
applications, but lack many of the features offered by commodity OS/Rs. In this paper, we propose to
bridge the gap between LWKs and commodity OS/Rs by selectively providing a lightweight memory
subsystem for HPC applications in a commodity OS/R environment. Our system HPMMAP provides
isolated and low overhead memory performance transparently to HPC applications by bypassing Linux’s
memory management layer. Our approach is dynamically configurable at runtime, and adds no additional
overheads nor requires any resources when not in use. We show that HPMMAP can decrease variance
and reduce application runtime by up to 50%.

102

Victim Selection and Distributed Work Stealing Performance: A Case Study

Swann Perarnau

RIKEN AICS
Kobe, Japan

perarnau@riken.jp

Mitsuhisa Sato

University of Tsukuba/RIKEN AICS
Tsukuba, Japan

msato@cs.tsukuba.ac.jp

Work stealing is a popular solution to perform dynamic load balancing of irregular computations, both for
shared memory and distributed memory systems. While shared memory performance of work stealing is
well understood, distributing this algorithm to several thousands of nodes can introduce new performance
issues. In particular, most studies of work stealing assume that all participating processes are equidistant
from each other, in terms of communication latency. This paper presents a new performance evaluation of
the popular UTS benchmark, in its work stealing implementation, on the scale of ten thousands of
compute nodes. Taking advantage of the physical scale of the K Computer, we investigate in details the
performance impact of communication latencies on work stealing. In particular, we introduce a new
performance metric to assess the time needed by the work stealing scheduler to distribute work among all
processes. Using this metric, we identify a previously overlooked issue: the victim selection function used
by the work stealing application can severely impact its performance at large scale. To solve this issue,
we introduce a new strategy taking into account the physical distance between nodes and achieve
significant performance improvements.

103

Power-Efficient Multiple Producer-Consumer

Ramy Medhat

Dept. of Elec. and Comp. Eng.
University of Waterloo, Canada
Email: rmedhat@uwaterloo.ca

Borzoo Bonakdarpour

School of Computer Science
University of Waterloo, Canada
Email: borzoo@cs.uwaterloo.ca

Sebastian Fischmeister

Dept. of Elec. and Comp. Eng.
University of Waterloo, Canada
Email: sfischme@uwaterloo.ca

Power efficiency has been one of the main objectives of hardware design in the last two decades.
However, with the recent explosion of mobile computing and the increasing demand for green data
centers, software power efficiency has also risen to be an equally important factor. We argue that most
classic concurrency control algorithms were designed in an era when power efficiency was not an
important dimension in algorithm design. Such algorithms are applied to solve a wide range of problems
from kernel-level primitives in operating systems to networking devices and web services. These
primitives and services are constantly and heavily invoked in any computer system and by larger scale in
networking devices and data centers. Thus, even a small change in their power spectrum can make a huge
impact on overall power consumption in long periods of time. This paper focuses on the classic producer-
consumer problem. First, we study the power efficiency of different existing implementations of the
producer-consumer problem. In particular, we present evidence that these implementations behave
drastically differently with respect to power consumption. Secondly, we present a dynamic algorithm for
the multiple producer-consumer problem, where consumers in a multicore system use learning
mechanisms to predict the rate of production, and effectively utilize this prediction to attempt to latch
onto previously scheduled CPU wake-ups. Such group latching results in minimizing the overall number
of CPU wakeups and in effect, power consumption. We enable consumers to dynamically reserve more
pre-allocated memory in cases where the production rate is too high. Consumers may compete for the
extra space and dynamically release it when it is no longer needed. Our experiments show that our
algorithm provides up to 40% decrease in the number of CPU wakeups, and 30% decrease in power
consumption. We validate the scalability of our algorithm with an increasing number of consumers.

104

Efficient Data Race Detection for C/C++ Programs
Using Dynamic Granularity

Young Wn Song and Yann-Hang Lee

Computer Science and Engineering
Arizona State University

Tempe, AZ, 85281
ywsong@asu.edu, yhlee@asu.edu

To detect races precisely without false alarms, vector clock based race detectors can be applied if the
overhead in time and space can be contained. This is indeed the case for the applications developed in
object-oriented programming language where objects can be used as detection units. On the other hand,
embedded applications, often written in C/C++, necessitate the use of fine-grained detection approaches
that lead to significant execution overhead. In this paper, we present a dynamic granularity algorithm for
vector clock based data race detectors. The algorithm exploits the fact that neigh boring memory locations
tend to be accessed together and can share the same vector clock archiving dynamic granularity of
detection. The algorithm is implemented on top of Fast Track and uses Intel PIN tool for dynamic binary
instrumentation. Experimental results on benchmarks show that, on average, the race detection tool using
the dynamic granularity algorithm is 43% faster than the Fast Track with byte granularity and is with 60%
less memory usage. Comparison with existing industrial tools, Val grind DRD and Intel Inspector XE,
also suggests that the proposed dynamic granularity approach is very viable.

Session 17: Algorithms for Distributed Computing

IPDPS 2014

107

Improved Time Bounds for Linearizable Implementations
of Abstract Data Types

Jiaqi Wang, Edward Talmage, Hyunyoung Lee, and Jennifer L. Welch

Department of Computer Science and Engineering
Texas A&M University

College Station, Texas, USA
adah1002@gmail.com, {etalmage, hlee, welch}@cse.tamu.edu

Linearizability is a well-known consistency condition for shared objects in concurrent systems. We focus
on the problem of implementing linearizable objects of arbitrary data types in message-passing systems
with bounded, but uncertain, message delay and bounded, but non-zero, clock skew. We present an
algorithm that exploits axiomatic properties of different operations to reduce the running time of each
operation below that obtainable with previously known algorithms. We also prove lower bounds on the
time complexity of various kinds of operations, specified by the axioms they satisfy, resulting in reduced
gaps in some cases and tight bounds in others.

108

DEX: Self-Healing Expanders

Gopal Pandurangan and Peter Robinson

Div. of Mathematical Sciences
Nanyang Technological University

Singapore 637371
gopalpandurangan@gmail.com

peter.robinson@ntu.edu.sg

Amitabh Trehan

School of Electronics, Electrical
Engineering and Computer Sciences

Queen’s University Belfast
Belfast, NI, United Kingdom

a.trehan@qub.ac.uk

We present a fully-distributed self-healing algorithm DEX, that maintains a constant degree expander
network in a dynamic setting. To the best of our knowledge, our algorithm provides the first efficient
distributed construction of expanders — whose expansion properties hold deterministically — that works
even under an all-powerful adaptive adversary that controls the dynamic changes to the network (the
adversary has unlimited computational power and knowledge of the entire network state, can decide
which nodes join and leave and at what time, and knows the past random choices made by the algorithm).
Previous distributed expander constructions typically provide only probabilistic guarantees on the
network expansion which rapidly degrade in a dynamic setting, in particular, the expansion properties can
degrade even more rapidly under adversarial insertions and deletions. Our algorithm provides efficient
maintenance and incurs a low overhead per insertion/deletion by an adaptive adversary: only $O(log n)$
rounds and $O(log n)$ messages are needed with high probability (n is the number of nodes currently
in the network). The algorithm requires only a constant number of topology changes. Moreover, our
algorithm allows for an efficient implementation and maintenance of a distributed hash table (DHT) on
top of DEX, with only a constant additional overhead. Our results are a step towards implementing
efficient self-healing networks that have guaranteed properties (constant bounded degree and expansion)
despite dynamic changes.

109

Fair Maximal Independent Sets

Jeremy T. Fineman, Calvin Newport, Micah Sherr, and Tonghe Wang

Department of Computer Science
Georgetown University, Washington, DC, U.S.A.

{jfineman, cnewport, msherr}@cs.georgetown.edu and tw473@georgetown.edu

Finding a maximal independent set (MIS) is a classic problem in graph theory that has been widely
studied in the context of distributed algorithms. Standard distributed solutions to the MIS problem focus
on time complexity. In this paper, we also consider fairness. For a given MIS algorithm A and graph G,
we define the inequality factor for A on G to be the largest ratio between the probabilities of the nodes
joining an MIS in the graph. We say an algorithm is fair with respect to a family of graphs if it achieves a
constant inequality factor for all graphs in the family. In this paper, we seek efficient and fair algorithms
for common graph families. We begin by describing an algorithm that is fair and runs in O(log* n)-time
in rooted trees of size n. Moving to unrooted trees, we describe a fair algorithm that runs in O(log n) time.
Generalizing further to bipartite graphs, we describe a third fair algorithm that requires O(log2 n) rounds.
We also show a fair algorithm for planar graphs that runs in O(log2 n) rounds, and describe an algorithm
that can be run in any graph, yielding good bounds on inequality in regions that can be efficiently colored
with a small number of colors. We conclude our theoretical analysis with a lower bound that identifies a

graph where all MIS algorithms achieve an inequality bound in (n)—eliminating the possibility of an
MIS algorithm that is fair in all graphs. Finally, to motivate the need for provable fairness guarantees, we
simulate both our tree algorithm and Luby’s MIS algorithm [13] in a variety of different tree topologies—
some synthetic and some derived from real world data. Whereas our algorithm always yield an inequality

factor 3.25 in these simulations, Luby’s algorithms yields factors as large as 168.

Session 18: Milestones at the Petascale

IPDPS 2014

113

Balancing CPU-GPU Collaborative High-Order CFD Simulations
on the Tianhe-1A Supercomputer

Chuanfu Xu*, Lilun Zhang*, Xiaogang Deng*, Jianbin Fang†, Guangxue Wang‡, Wei Cao*,
Yonggang Che*, Yongxian Wang*, and Wei Liu*

∗College of Computer Science
National University of Defense Technology, Changsha 410073, P.R. China

†Parallel and Distributed Systems Group
Delft University of Technology, Delft 2628CD, The Netherlands

‡State Key Laboratory of Aerodynamics
P.O. Box 211, Mianyang 621000, P.R. China

HOSTA is an in-house high-order CFD software that can simulate complex flows with complex
geometries. Large scale high-order CFD simulations using HOSTA require massive HPC resources, thus
motivating us to port it onto modern GPU accelerated supercomputers like Tianhe-1A. To achieve a
greater speedup and fully tap the potential of Tianhe-1A, we collaborate CPU and GPU for HOSTA
instead of using a naive GPU-only approach. We present multiple novel techniques to balance the loads
between the store-poor GPU and the store-rich CPU, and overlap the collaborative computation and
communication as far as possible. Taking CPU and GPU load balance into account, we improve the
maximum simulation problem size per Tianhe-1A node for HOSTA by 2.3X, meanwhile the collaborative
approach can improve the performance by around 45% compared to the GPU-only approach. Scalability
tests show that HOSTA can achieve a parallel efficiency of above 60% on 1024 Tianhe-1A nodes. With
our method, we have successfully simulated China’s large civil airplane configuration C919 containing
150M grid cells. To our best knowledge, this is the first paper that reports a CPUGPU collaborative high-
order accurate aerodynamic simulation result with such a complex grid geometry.

114

Shedding Light on Lithium/Air Batteries Using Millions of Threads
on the BG/Q Supercomputer

Valéry Weber, Costas Bekas, Teodoro Laino, and Alessandro Curioni

IBM Research – Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
Email: {vwe,teo,bek,cur}@zurich.ibm.com

Adam Bertsch and Scott Futral

Lawrence Livermore National Laboratory,
7000 East Avenue, Livermore, CA 94550, USA

Email: {bertsch2,futral2}@llnl.gov

In this work, we present a novel parallelization scheme for a highly efficient evaluation of the Hartree-
Fock exact exchange (HFX) in ab initio molecular dynamics simulations, specifically tailored for
condensed phase simulations. Our developments allow one to achieve the necessary accuracy for the
evaluation of the HFX in a highly controllable manner. We show here that our solutions can take great
advantage of the latest trends in HPC platforms, such as extreme threading, short vector instructions and
highly dimensional interconnection networks. Indeed, all these trends are evident in the IBM Blue
Gene/Q supercomputer. We demonstrate an unprecedented scalability up to 6,291,456 threads (96 BG/Q
racks) with a near perfect parallel efficiency, which represents a more than 20-fold improvement as
compared to the current state of the art. In terms of reduction of time to solution, we achieved an
improvement that can surpass a 10-fold decrease in runtime with respect to directly comparable
approaches. We exploit this development to enhance the accuracy of DFT based molecular dynamics by
using the PBE0 hybrid functional. This approach allowed us to investigate the chemical behavior of
organic solvents in one of the most challenging research topics in energy storage, lithium/air batteries,
and to propose alternative solvents with enhanced stability to ensure an appropriate reversible
electrochemical reaction. This step is key for the development of a viable lithium/air storage technology,
which would have been a daunting computational task using standard methods. Recent research has
shown that the electrolyte plays a key role in non-aqueous lithium/air batteries in producing the
appropriate reversible electrochemical reduction. In particular, the chemical degradation of propylene
carbonate, the typical electrolyte used, by lithium peroxide has been demonstrated by molecular dynamics
simulations of highly realistic models. Reaching the necessary high accuracy in these simulations is a
daunting computational task using standard methods.

115

Enabling and Scaling a Global Shallow-Water Atmospheric Model
on Tianhe-2

Wei Xue*, Chao Yang†, Haohuan Fu‡, Xinliang Wang*‡, Yangtong Xu*‡, Lin Gan*‡,
Yutong Lu¶, and Xiaoqian Zhu¶

∗Dept. of Computer Science & Technology
Tsinghua University, Beijing 100084, China

†Institute of Software
Chinese Academy of Sciences, Beijing 100190, China

‡Ministry of Education Key Laboratory for Earth System Modeling,
and Center for Earth System Science

Tsinghua University, Beijing 100084, China

§State Key Laboratory of Computer Science
Chinese Academy of Sciences, Beijing 100190, China

¶Dept. of Computer Science & Technology
National University of Defense Technology, Changsha, Hunan 410073, China

This paper presents a hybrid algorithm for the petascale global simulation of atmospheric dynamics on
Tianhe-2, the world’s current top-ranked supercomputer developed by China’s National University of
Defense Technology (NUDT). Tianhe-2 is equipped with both Intel Xeon CPUs and Intel Xeon Phi
accelerators. A key idea of the hybrid algorithm is to enable flexible domain partition between an
arbitrary number of processors and accelerators, so as to achieve a balanced and efficient utilization of the
entire system. We also present an asynchronous and concurrent data transfer scheme to reduce the
communication overhead between CPU and accelerators. The acceleration of our global atmospheric
model is conducted to improve the use of the Intel MIC architecture. For the single-node test on Tianhe-2
against two Intel Ivy Bridge CPUs (24 cores), we can achieve 2.07x, 3.18x, and 4.35x speedups when
using one, two, and three Intel Xeon Phi accelerators respectively. The average performance gain from
SIMD vectorization on the Intel Xeon Phi processors is around 5x (out of the 8x theoretical case). Based
on successful computation-communication overlapping, large-scale tests indicate that a nearly ideal weak-
scaling efficiency of 93.5% is obtained when we gradually increase the number of nodes from 6 to 8,664
(nearly 1.7 million cores). In the strong-scaling test, the parallel efficiency is about 77% when the number

of nodes increases from 1,536 to 8,664 for a fixed 65,664 65, 664 6 mesh with 77.6 billion unknowns.

116

Overcoming the Scalability Challenges of Epidemic Simulations
on Blue Waters

Jae-Seung Yeom1, 2, Abhinav Bhatele3, Keith Bisset2, Eric Bohm4, Abhishek Gupta4,
Laxmikant V. Kale4, Madhav Marathe1, 2, Dimitrios S. Nikolopoulos5, Martin Schulz3,

and Lukasz Wesolowski4

1Department of Computer Science
Virginia Tech, Blacksburg, VA 24061 USA

2Virginia Bioinformatics Institute

Virginia Tech, Blacksburg, VA 24061 USA
{jyeom, kbisset, mmarathe}@vbi.vt.edu

3Center for Applied Scientific Computing

Lawrence Livermore National Laboratory, Livermore, CA 94551 USA
{bhatele, schulzm}@llnl.gov

4Department of Computer Science

University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
{ebohm, gupta59, kale, wesolwsk}@illinois.edu,

5School of EEECS

Queen’s University of Belfast, Belfast, Northern Ireland BT9 5BN UK
d.nikolopoulos@qub.ac.uk

Modeling dynamical systems represents an important application class covering a wide range of
disciplines including but not limited to biology, chemistry, finance, national security, and health care.
Such applications typically involve large-scale, irregular graph processing, which makes them difficult to
scale due to the evolutionary nature of their workload, irregular communication and load imbalance.
EpiSimdemics is such an application simulating epidemic diffusion in extremely large and realistic social
contact networks. It implements a graph-based system that captures dynamics among co-evolving entities.
This paper presents an implementation of EpiSimdemics in Charm++ that enables future research by
social, biological and computational scientists at unprecedented data and system scales. We present new
methods for application-specific processing of graph data and demonstrate the effectiveness of these
methods on a Cray XE6, specifically NCSA’s Blue Waters system.

Session 19: Storage and Reliability

IPDPS 2014

119

POD: Performance Oriented I/O Deduplication for Primary Storage Systems
in the Cloud

Bo Mao†, Hong Jiang‡, Suzhen Wu*, and Lei Tian‡

†Software School of Xiamen University, China

‡Department of Computer Science and Engineering
University of Nebraska-Lincoln, USA

	

∗Corresponding author, Computer Science Department of Xiamen University, China
{maobo, suzhen}@xmu.edu.cn, {jiang, tian}@cse.unl.edu

Recent studies have shown that moderate to high data redundancy clearly exists in primary storage
systems in the Cloud. Our experimental studies reveal that data redundancy exhibits a much higher level
of intensity on the I/O path than that on disks due to the relatively high temporal access locality associated
with small I/O requests to redundant data. On the other hand, we also observe that directly applying data
deduplication to primary storage systems in the Cloud will likely cause space contention in memory and
data fragmentation on disks. Based on these observations, we propose a Performance-Oriented I/O
Deduplication approach, called POD, rather than a capacity-oriented I/O deduplication approach,
represented by iDedup, to improve the I/O performance of primary storage systems in the Cloud without
sacrificing capacity savings of the latter. The salient feature of POD is its focus on not only the capacity-
sensitive large writes and files, as in iDedup, but also the performance-sensitive while capacity-
insensitive small writes and files. The experiments conducted on our lightweight prototype
implementation of POD show that POD significantly outperforms iDedup in the I/O performance measure
by up to 87.9% with an average of 58.8%. Moreover, our evaluation results also show that POD achieves
comparable or better capacity savings than iDedup.

120

Pipelined Compaction for the LSM-Tree

Zigang Zhang†§, Yinliang Yue†, Bingsheng He‡, Jin Xiong†, Mingyu Chen†, Lixin Zhang†,
and Ninghui Sun†

†SKL Computer Architecture, ICT, CAS

§University of Chinese Academy of Sciences

‡Nanyang Technological University

Write-optimized data structures like Log-Structured Merge-tree (LSM-tree) and its variants are widely
used in key-value storage systems like Big Table and Cassandra. Due to deferral and batching, the LSM-
tree based storage systems need background compactions to merge key-value entries and keep them
sorted for future queries and scans. Background compactions play a key role on the performance of the
LSM-tree based storage systems. Existing studies about the background compaction focus on decreasing
the compaction frequency, reducing I/Os or confining compactions on hot data key-ranges. They do not
pay much attention to the computation time in background compactions. However, the computation time
is no longer negligible, and even the computation takes more than 60% of the total compaction time in
storage systems using flash based SSDs. Therefore, an alternative method to speedup the compaction is to
make good use of the parallelism of underlying hardware including CPUs and I/O devices. In this paper,
we analyze the compaction procedure, recognize the performance bottleneck, and propose the Pipelined
Compaction Procedure (PCP) to better utilize the parallelism of CPUs and I/O devices. Theoretical
analysis proves that PCP can improve the compaction bandwidth. Furthermore, we implement PCP in real
system and conduct extensive experiments. The experimental results show that the pipelined compaction
procedure can increase the compaction bandwidth and storage system throughput by 77% and 62%
respectively.

121

EDM: An Endurance-Aware Data Migration Scheme for Load Balancing
in SSD Storage Clusters

Jiaxin Ou, Jiwu Shu*, Youyou Lu, Letian Yi, and Wei Wang

Department of Computer Science and Technology
Tsinghua University, Beijing, China

Tsinghua National Laboratory for Information Science and Technology, Beijing, China
*Corresponding author: shujw@tsinghua.edu.cn

{ojx11, luyy09, yilt09, wangwei11}@mails.tsinghua.edu.cn

Data migration schemes are critical to balance the load in storage clusters for performance improvement.
However, as NAND flash based SSDs are widely deployed in storage systems, extending the lifespan of
SSD storage clusters becomes a new challenge for data migration. Prior approaches designed for HDD
storage clusters, however, are inefficient due to excessive write amplification during data migration,
which significantly decrease the lifespan of SSD storage clusters. To overcome this problem, we propose
EDM, an endurance aware data migration scheme with careful data placement and movement to minimize
the data migrated, so as to limit the worn-out of SSDs while improving the performance. Based on the
observation that performance degradation is dominated by the wear speed of an SSD, which is affected by
both the storage utilization and the write intensity, two complementary data migration policies are
designed to explore the trade-offs among throughput, response time during migration, and lifetime of
SSD storage clusters. Moreover, we design an SSD wear model and quantitatively calculate the amount of
data migrated as well as the sources and destinations of the migration, so as to reduce the write
amplification caused by migration. Results on a real storage cluster using real-world traces show that
EDM performs favorably versus existing HDD based migration techniques, reducing cluster-wide
aggregate erase count by up to 40%. In the meantime, it improves the performance by 25% on average
compared to the baseline system which achieves almost the same effectiveness of performance
improvement as previous migration techniques.

Session 20: Map/Reduce and Big Data

IPDPS 2014

125

Characterization and Optimization of Memory-Resident MapReduce
on HPC Systems

Yandong Wang*, Robin Goldstone†, Weikuan Yu*, and Teng Wang*

Auburn University*
Lawrence Livermore National Laboratory†

fwangyd,wkyu,tzw0019g@auburn.edu fgoldstone1g@llnl.gov

MapReduce is a widely accepted framework for addressing big data challenges. Recently, it has also
gained broad attention from scientists at the U.S. leadership computing facilities as a promising solution
to process gigantic simulation results. However, conventional high-end computing systems are
constructed based on the compute-centric paradigm while big data analytics applications prefer a data-
centric paradigm such as MapReduce. This work characterizes the performance impact of key differences
between compute- and data-centric paradigms and then provides optimizations to enable a dual-purpose
HPC system that can efficiently support conventional HPC applications and new data analytics
applications. Using a state-of-the-art MapReduce implementation Spark and the Hyperion system at
Lawrence Livermore National Laboratory, we have examined the impact of storage architectures, data
locality and task scheduling to the memory-resident MapReduce jobs. Based on our characterization and
findings of the performance behaviors, we have introduced two optimization techniques, namely
Enhanced Load Balancer and Congestion-Aware Task Dispatching, to improve the performance of Spark
applications.

126

MIC-SVM: Designing a Highly Efficient Support Vector Machine
for Advanced Modern Multi-core and Many-Core Architectures

Yang You*||, Shuaiwen Leon Song†, Haohuan Fu*, Andres Marquez†, Maryam Mehri Dehnavi‡,
Kevin Barker†, Kirk W. Cameron§, Amanda Peters Randles¶, and Guangwen Yang*

*Ministry of Education Key Laboratory for Earth System Modeling, Center for Earth Science,
Tsinghua University, Beijing, China

Tsinghua National Laboratory for Information Science and Technology (TNList),
Tsinghua University, Beijing, China

you-y12@mails.tsinghua.edu.cn, fhaohuan, ygwg@tsinghua.edu.cn

†Pacific Northwest National Lab, Richland, WA, USA

‡Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA

§Virignia Tech, Blacksburg, VA, USA

¶Lawrence Livermore National Lab, Livermore, CA, USA

Support Vector Machine (SVM) has been widely used in data-mining and Big Data applications as
modern commercial databases start to attach an increasing importance to the analytic capabilities. In
recent years, SVM was adapted to the field of High Performance Computing for power/performance
prediction, auto-tuning, and runtime scheduling. However, even at the risk of losing prediction accuracy
due to insufficient runtime information, researchers can only afford to apply offline model training to
avoid significant runtime training overhead. Advanced multi- and many-core architectures offer massive
parallelism with complex memory hierarchies which can make runtime training possible, but form a
barrier to efficient parallel SVM design. To address the challenges above, we designed and implemented
MIC-SVM, a highly efficient parallel SVM for x86 based multi-core and many-core architectures, such as
the Intel Ivy Bridge CPUs and Intel Xeon Phi co-processor (MIC). We propose various novel analysis
methods and optimization techniques to fully utilize the multilevel parallelism provided by these
architectures and serve as general optimization methods for other machine learning tools. MIC-SVM
achieves 4.4-84x and 18-47x speedups against the popular LIBSVM, on MIC and Ivy Bridge CPUs
respectively, for several real-world data-mining datasets. Even compared with GPUSVM, run on a top of
the line NVIDIA k20x GPU, the performance of our MIC-SVM is competitive. We also conduct a cross-
platform performance comparison analysis, focusing on Ivy Bridge CPUs, MIC and GPUs, and provide
insights on how to select the most suitable advanced architectures for specific algorithms and input data
patterns.

127

BigKernel—High Performance CPU-GPU Communication Pipelining
for Big Data-Style Applications

Reza Mokhtari and Michael Stumm

Department of Electrical and Computer Engineering
University of Toronto

Toronto, Canada
{mokhtari, stumm}@eecg.toronto.edu

GPUs offer an order of magnitude higher compute power and memory bandwidth than CPUs. GPUs
therefore might appear to be well suited to accelerate computations that operate on voluminous data sets
in independent ways, e.g., for transformations, filtering, aggregation, partitioning or other "Big Data"
style processing. Yet experience indicates that it is difficult, and often error-prone, to write GPGPU
programs which efficiently process data that does not fit in GPU memory, partly because of the intricacies
of GPU hardware architecture and programming models, and partly because of the limited bandwidth
available between GPUs and CPUs. In this paper, we propose Big Kernel, a scheme that provides pseudo-
virtual memory to GPU applications and is implemented using a 4-stage pipeline with automated
prefetching to (i) optimize CPU-GPU communication and (ii) optimize GPU memory accesses. Big
Kernel simplifies the programming model by allowing programmers to write kernels using arbitrarily
large data structures that can be partitioned into segments where each segment is operated on
independently, these kernels are transformed into Big Kernel using straight-forward compiler
transformations. Our evaluation on six data-intensive benchmarks shows that Big Kernel achieves an
average speedup of 1.7 over state-of-the-art double-buffering techniques and an average speedup of 3.0
over corresponding multi-threaded CPU implementations.

128

DataMPI: Extending MPI to Hadoop-Like Big Data Computing

Xiaoyi Lu, Fan Liang, Bing Wang, Li Zha, and Zhiwei Xu

Institute of Computing Technology, Chinese Academy of Sciences
{luxiaoyi, liangfan, wangbing, char, zxu}@ict.ac.cn

MPI has been widely used in High Performance Computing. In contrast, such efficient communication
support is lacking in the field of Big Data Computing, where communication is realized by time
consuming techniques such as HTTP/RPC. This paper takes a step in bridging these two fields by
extending MPI to support Hadoop-like Big Data Computing jobs, where processing and communication
of a large number of key-value pair instances are needed through distributed computation models such as
MapReduce, Iteration, and Streaming. We abstract the characteristics of key-value communication
patterns into a bipartite communication model, which reveals four distinctions from MPI: Dichotomic,
Dynamic, Data-centric, and Diversified features. Utilizing this model, we propose the specification of a
minimalistic extension to MPI. An open source communication library, DataMPI, is developed to
implement this specification. Performance experiments show that DataMPI has significant advantages in
performance and flexibility, while maintaining high productivity, scalability, and fault tolerance of
Hadoop.

Session 20: Map/Reduce and Big Data

IPDPS 2014

131

An Efficient Method for Stream Semantics over RDMA

Patrick MacArthur and Robert D. Russell

Department of Computer Science
University of New Hampshire

Durham, New Hampshire 03824-3591, USA
{pio3,rdr}@cs.unh.edu

Most network applications today are written to use TCP/IP via sockets. Remote Direct Memory Access
(RDMA) is gaining popularity because its zero-copy, kernel-bypass features provide a high throughput,
low latency reliable transport. Unlike TCP, which is a stream-oriented protocol, RDMA is a message-
oriented protocol, and the OFA verbs library for writing RDMA application programs is more complex
than the TCP sockets interface. UNH EXS is one of several libraries designed to give applications more
convenient, high-level access to RDMA features. Recent work has shown that RDMA is viable both in
the data center and over distance. One potential bottleneck in libraries that use RDMA is the requirement
to wait for message advertisements in order to send large zero-copy messages. By sending messages first
to an internal, hidden buffer and copying the message later, latency can be reduced at the expense of
higher CPU usage at the receiver. This paper presents a communication algorithm that has been
implemented in the UNH EXS stream-oriented mode to allow dynamic switching between sending
transfers directly to user memory and sending transfers indirectly via an internal, hidden buffer depending
on the state of the sender and receiver. Based on preliminary results, we see that this algorithm performs
well under a variety of application requirements.

132

Collaborative Network Configuration in Hybrid Electrical/Optical
Data Center Networks

Zhiyang Guo and Yuanyuan Yang

Department of Electrical and Computer Engineering
Stony Brook University

Stony Brook, NY 11794, USA

Recently, there has been much effort on introducing optical fiber communication to data center networks
(DCNs) because of its significant advantage in bandwidth capacity and power efficiency. However, due to
limitations of optical switching technologies, optical networking alone has not yet been able to
accommodate the volatile data center traffic. As a result, hybrid packet/circuit (Hypac) switched DCNs,
which argument the electrical packet switched (EPS) network with an optical circuit switched (OCS)
network, have been proposed to combine the strengths of both types of networks. However, one problem
with current Hypac DCNs is that the EPS network is shared in a best effort fashion and is largely
oblivious to the accompanying OCS network, which results in severe drawbacks, such as degraded
network predictability and deficiency in handling correlated traffic. Since the OCS/EPS networks have
unique strengths and weaknesses, and are best suited for different traffic patterns, coordinating and
collaborating the configuration of both networks is critical to reach the full potential of Hypac DCNs,
which motivates the study in this paper. First, we present a network model that accurately abstracts the
essential characteristics of the EPS/OCS networks. Second, considering the recent advances in network
control technology, we propose a time-efficient algorithm called Collaborative Bandwidth Allocation
(CBA) that configures both networks in a complementary manner. Finally, we conduct comprehensive
simulations, which demonstrate that CBA significantly improves the performance of Hypac DCNs in
many aspects.

133

Optimizing Bandwidth Allocation in Flex-Grid Optical Networks
with Application to Scheduling

Hadas Shachnai, Ariella Voloshin, and Shmuel Zaks

Department of Computer Science
Technion

Haifa, ISRAEL
Email: [hadas,variella,zaks]@cs.technion.ac.il

All-optical networks have been largely investigated due to their high data transmission rates. In the
traditional Wavelength-Division Multiplexing (WDM) technology, the spectrum of light that can be
transmitted through the optical fiber has been divided into frequency intervals of fixed width, with a gap
of unused frequencies between them. Recently, an alternative emerging architecture was suggested which
moves away from the rigid Dense WDM (DWDM) model towards a flexible model, where usable
frequency intervals are of variable width (even within the same link). Each light path has to be assigned a
frequency interval (sub-spectrum), which remains fixed through all of the links it traverses. Two different
light paths using the same link must be assigned disjoint sub-spectra. This technology is termed flex-grid
(or, flex-spectrum), as opposed to fixed-grid (or, fixed-spectrum) current technology. In this work we
study a problem of optimal bandwidth allocation arising in the flex-grid technology. In this setting, each
light path has a lower and upper bound on the width of its frequency interval, as well as an associated
profit, and we want to find a bandwidth assignment that maximizes the total profit. This problem is
known to be NP-Complete. We observe that, in fact, the problem is inapproximable within any constant
ratio even on a path network. We further derive NP-hardness results and present approximation
algorithms for several special cases of the path and ring networks, which are of practical interest. Finally,
while in general our problem is hard to approximate, we show that an optimal solution can be obtained by
allowing resource augmentation. Our study has applications also in real time scheduling.

134

Balancing On-Chip Network Latency in Multi-application Mapping
for Chip-Multiprocessors

Di Zhu, Lizhong Chen, Siyu Yue, Timothy M. Pinkston, and Massoud Pedram

Ming Hsieh Department of Electrical Engineering
University of Southern California

Email: {dizhu, lizhongc, siyuyue, tpink, pedram}@usc.edu

As the number of cores continues to grow in chip multiprocessors (CMPs), application-to-core mapping
algorithms that leverage the non-uniform on-chip resource access time have been receiving increasing
attention. However, existing mapping methods for reducing overall packet latency cannot meet the
requirement of balanced on-chip latency when multiple applications are present. In this paper, we address
the looming issue of balancing minimized on-chip packet latency with performance-awareness in the
multi-application mapping of CMPs. Specifically, the proposed mapping problem is formulated, its NP-
completeness is proven, and an efficient heuristic-based algorithm for solving the problem is presented.
Simulation results show that the proposed algorithm is able to reduce the maximum average packet
latency by 10.42% and the standard deviation of packet latency by 99.65% among concurrently running
applications and, at the same time, incur little degradation in the overall performance.

Keynote Speaker 3

IPDPS 2014

137

Astrophysical Applications of Machine Learning at Scale and under Duress

Joshua Bloom

University of California, Berkeley

The universe is teeming with change on timescales from billions of years to milliseconds. A major goal of
modern synoptic imaging surveys is to categorize this change over the entire sky to infer the diverse
physical origins of variability. However, event discovery is only the beginning in the quest to extract the
deepest insights: expensive follow-up resources (telescopes and people) are required, often in a time
constrained environment. Viewing discovery and scientific insight through a resource-maximization lens,
I discuss how machine learning is being applied to some modern astrophysics challenges. Here, the
surfacing of parallelized feature engineering and machine learning into production-quality (scalable and
fault tolerant) frameworks is the frontier for our field.

Best Papers Session

IPDPS 2014

141

Scalable Single Source Shortest Path Algorithms for Massively
Parallel Systems

Venkatesan T. Chakaravarthy*, Fabio Checconi†, Fabrizio Petrini†, and Yogish Sabharwal*

* IBM Research - India, New Delhi. {vechakra,ysabharwal}@in.ibm.com

† IBM T J Watson Research Center, USA. {fchecco,fpetrin}@us.ibm.com

In the single-source shortest path (SSSP) problem, we have to find the shortest paths from a source vertex
v to all other vertices in a graph. In this paper, we introduce a novel parallel algorithm, derived from the
Bellman-Ford and Delta-stepping algorithms. We employ various pruning techniques, such as edge
classification and direction-optimization, to dramatically reduce inter-node communication traffic, and we
propose load balancing strategies to handle higher-degree vertices. The extensive performance analysis
shows that our algorithms work well on scale-free and real-world graphs. In the largest tested
configuration, an R-MAT graph with 238 vertices and 242 edges on 32,768 Blue Gene/Q nodes, we have
achieved a processing rate of three Trillion Edges Per Second (TTEPS), a four orders of magnitude
improvement over the best published results.

142

A New Scalable Parallel Algorithm for Fock Matrix Construction

Xing Liu, Aftab Patel, and Edmond Chow

School of Computational Science and Engineering
College of Computing, Georgia Institute of Technology

Atlanta, Georgia, 30332, USA
xing.liu@gatech.edu, aypatel@gatech.edu, echow@cc.gatech.edu

Hartree-Fock (HF) or self-consistent field (SCF) calculations are widely used in quantum chemistry, and
are the starting point for accurate electronic correlation methods. Existing algorithms and software,
however, may fail to scale for large numbers of cores of a distributed machine, particularly in the
simulation of moderately-sized molecules. In existing codes, HF calculations are divided into tasks. Fine-
grained tasks are better for load balance, but coarse-grained tasks require less communication. In this
paper, we present a new parallelization of HF calculations that addresses this trade-off: we use fine
grained tasks to balance the computation among large numbers of cores, but we also use a scheme to
assign tasks to processes to reduce communication. We specifically focus on the distributed construction
of the Fock matrix arising in the HF algorithm, and describe the data access patterns in detail. For our test
molecules, our implementation shows better scalability than NWChem for constructing the Fock matrix.

143

ReDHiP: Recalibrating Deep Hierarchy Prediction for Energy Efficiency

Xun Li1, Diana Franklin2, Ricardo Bianchini3, Frederic T. Chong2

1Facebook
Menlo Park, CA, USA

xun@fb.com

2University of California, Santa Barbara
Santa Barbara, CA, USA

{franklin, chong}@cs.ucsb.edu

3Rutgers University
Piscataway, NJ, USA

ricardob@cs.rutgers.edu

Recent hardware trends point to increasingly deeper cache hierarchies. In such hierarchies, accesses that
lookup and miss in every cache involve significant energy consumption and degraded performance. To
mitigate these problems, in this paper we propose Recalibrating Deep Hierarchy Prediction (ReDHiP), an
architectural mechanism that predicts last-level cache (LLC) misses in advance. An LLC miss means that
all cache levels need not be accessed at all. Our design for ReDHiP focuses on a simple, compact
prediction table that can be efficiently recalibrated over time. We find that a simpler scheme, while
sacrificing accuracy, can be more accurate per bit than more complex schemes through recalibration. Our
evaluation shows that ReDHiP achieves an average of 22% cache energy savings and 8% performance
improvement for a wide range of benchmarks. ReDHiP achieves these benefits at a hardware cost of less
than 1% of the LLC. We also demonstrate how ReDHiP can be used to reduce the energy overhead of
hardware data prefetching while being able to further improve the performance.

144

F2C2-STM: Flux-Based Feedback-Driven Concurrency Control for STMs

Kaushik Ravichandran

College of Computing
Georgia Institute of Technology

Atlanta, USA
kaushikr@gatech.edu

Santosh Pande

College of Computing
Georgia Institute of Technology

Atlanta, USA
santosh@cc.gatech.edu

Software Transactional Memory (STM) systems provide an easy to use programming model for
concurrent code and have been found suitable for parallelizing many applications providing performance
gains with minimal programmer effort. With increasing core counts on modern processors one would
expect increasing benefits. However, we observe that running STM applications on higher core counts is
sometimes, in fact, detrimental to performance. This is due to the larger number of conflicts that arise
with a larger number of parallel cores. As the number of cores available on processors steadily rise, a
larger number of applications are beginning to exhibit these characteristics. In this paper we propose a
novel dynamic concurrency control technique which can significantly improve performance (up to 50%)
as well as resource utilization (up to 85%) for these applications at higher core counts. Our technique uses
ideas borrowed from TCP’s network congestion control algorithm and uses self-induced concurrency
fluctuations to dynamically monitor and match varying concurrency levels in applications while
minimizing global synchronization. Our flux-based feedback-driven concurrency control technique is
capable of fully recovering the performance of the best statically chosen concurrency specification (as
chosen by an oracle) regardless of the initial specification for several real world applications. Further, our
technique can actually improve upon the performance of the oracle chosen specification by more than
10% for certain applications through dynamic adaptation to available parallelism. We demonstrate our
approach on the STAMP benchmark suite while reporting significant performance and resource
utilization benefits. We also demonstrate significantly better performance when comparing against state
of the art concurrency control and scheduling techniques. Further, our technique is programmer friendly
as it requires no changes to application code and no offline phases.

Session 22: Performance Characterization
and Optimization

IPDPS 2014

147

Identifying Code Phases Using Piece-Wise Linear Regressions

Harald Servat*†, Germán Llort*†, Juan González*†, Judit Giménez*†, and Jesús Labarta*†

∗Computer Sciences Department, Barcelona Supercomputing Center
c/Jordi Girona, 31 - 08034 Barcelona, Catalunya, Spain

†Department of Computer Architecture, Universitat Polit`ecnica de Catalunya
c/Jordi Girona, 1-3 - 08034 Barcelona, Catalunya, Spain

name.surname@bsc.es

Node-level performance is one of the factors that may limit applications from reaching the
supercomputers’ peak performance. Studying node-level performance and attributing it to the source code
results into valuable insight that can be used to improve the application efficiency, albeit performing such
a study may be an intimidating task due to the complexity and size of the applications. We present in this
paper a mechanism that takes advantage of combining piece-wise linear regressions, coarse-grain
sampling, and minimal instrumentation to detect performance phases in the computation regions even if
their granularity is very fine. This mechanism then maps the performance of each phase into the
application syntactical structure displaying a correlation between performance and source code. We
introduce a methodology on top of this mechanism to describe the node-level performance of parallel
applications, even for first-time seen applications. Finally, we demonstrate the methodology describing
optimized in-production applications and further improving their performance applying small
transformations to the code based on the hints discovered.

148

Auto-Tuning Dedispersion for Many-Core Accelerators

Alessio Sclocco and Henri E. Bal
Faculty of Sciences

Vrije Universiteit Amsterdam
Amsterdam, the Netherlands

a.sclocco@vu.nl, h.e.bal@vu.nl

Jason Hessels and Joeri van Leeuwen
ASTRON

Netherlands Institute for Radio Astronomy
Dwingeloo, the Netherlands

hessels@astron.nl, leeuwen@astron.nl

Rob V. van Nieuwpoort
NLeSC

Netherlands eScience Center
Amsterdam, the Netherlands

r.vannieuwpoort@esciencecenter.nl

Dedispersion is a basic algorithm to reconstruct impulsive astrophysical signals. It is used in high
sampling-rate radio astronomy to counteract temporal smearing by intervening interstellar medium. To
counteract this smearing, the received signal train must be dedispersed for thousands of trial distances,
after which the transformed signals are further analyzed. This process is expensive on both computing and
data handling. This challenge is exacerbated in future, and even some current, radio telescopes which
routinely produce hundreds of such data streams in parallel. There, the compute requirements for
dedispersion are high (petascale), while the data intensity is extreme. Yet, the dedispersion algorithm
remains a basic component of every radio telescope, and a fundamental step in searching the sky for radio
pulsars and other transient astrophysical objects. In this paper, we study the parallelization of the
dedispersion algorithm on many-core accelerators, including GPUs from AMD and NVIDIA, and the
Intel Xeon Phi. An important contribution is the computational analysis of the algorithm, from which we
conclude that dedispersion is inherently memory-bound in any realistic scenario, in contrast to earlier
reports. We also provide empirical proof that, even in unrealistic scenarios, hardware limitations keep the
arithmetic intensity low, thus limiting performance. We exploit auto-tuning to adapt the algorithm, not
only to different accelerators, but also to different observations, and even telescopes. Our experiments
show how the algorithm is tuned automatically for different scenarios and how it exploits and highlights
the underlying specificities of the hardware: in some observations, the tuner automatically optimizes
device occupancy, while in others it optimizes memory bandwidth. We quantitatively analyze the
problem space, and by comparing the results of optimal auto-tuned versions against the best performing
fixed codes, we show the impact that auto-tuning has on performance, and conclude that it is statistically
relevant.

149

RCMP: Enabling Efficient Recomputation Based Failure Resilience
for Big Data Analytics

Florin Dinu

EPFL, Lausanne, Switzerland

T. S. Eugene Ng

Rice University, Houston, TX, USA

Data replication, the main failure resilience strategy used for big data analytics jobs, can be unnecessarily
inefficient. It can cause serious performance degradation when applied to intermediate job outputs in
multi-job computations. For instance, for I/O-intensive big data jobs, data replication is especially
expensive because very large datasets need to be replicated. Reducing the number of replicas is not a
satisfactory solution as it only aggravates a fundamental limitation of data replication: its failure resilience
guarantees are limited by the number of available replicas. When all replicas of some piece of
intermediate job output are lost, cascading job recomputations may be required for recovery. In this paper
we show how job recomputation can be made a first-order failure resilience strategy for big data
analytics. The need for data replication can thus be significantly reduced. We present RCMP, a system
that performs efficient job recomputation. RCMP can persist task outputs across jobs and leverage them
to minimize the work performed during job recomputations. More importantly, RCMP addresses two
important challenges that appear during job recomputations. The first is efficiently utilizing the available
compute node parallelism. The second is dealing with hot-spots. RCMP handles both by switching to a
finer-grained task scheduling granularity for recomputations. Our experiments show that RCMP’s
benefits hold across two different clusters, for job inputs as small as 40GB or as large as 1.2TB.
Compared to RCMP, data replication is 30%-100% worse during failure-free periods. More importantly,
by efficiently performing recomputations, RCMP is comparable or better even under single and double
data loss events.

150

A Step towards Energy Efficient Computing: Redesigning a Hydrodynamic
Application on CPU-GPU

Tingxing Dong*, Veselin Dobrev†, Tzanio Kolev†, Robert Rieben†, Stanimire Tomov*,
and Jack Dongarra*

∗Innovative Computing Laboratory, University of Tennessee, Knoxville

†Lawrence Livermore National Laboratory
∗tdong, tomov, dongarra@eecs.utk.edu

†dobrev1,kolev1,rieben1@llnl.gov

Power and energy consumption are becoming an increasing concern in high performance computing.
Compared to multi-core CPUs, GPUs have a much better performance per watt. In this paper we discuss
efforts to redesign the most computation intensive parts of BLAST, an application that solves the
equations for compressible hydrodynamics with high order finite elements, using GPUs BLAST, Dobrev.
In order to exploit the hardware parallelism of GPUs and achieve high performance, we implemented
custom linear algebra kernels. We intensively optimized our CUDA kernels by exploiting the memory
hierarchy, which exceed the vendor’s library routines substantially in performance. We proposed an auto
tuning technique to adapt our CUDA kernels to the orders of the finite element method. Compared to a
previous base implementation, our redesign and optimization lowered the energy consumption of the
GPU in two aspects: 60% less time to solution and 10% less power required. Compared to the CPU-only

solution, our GPU accelerated BLAST obtained a 2.5 overall speedup and 1.42 energy efficiency

(green up) using 4th order (Q_4) finite elements, and a 1.9 speedup and 1.27 green up using 2nd order
(Q2) finite elements.

Session 23: Multithreading and Concurrency

IPDPS 2014

153

Using Multiple Threads to Accelerate Single Thread Performance

Zehra Sura, Kevin O’Brien, and Jose Brunheroto

IBM T.J. Watson Research Center
Yorktown Heights, New York, USA

{zsura,caomhin,brunhe}@us.ibm.com

Computing systems are being designed with an increasing number of hardware cores. To effectively use
these cores, applications need to maximize the amount of parallel processing and minimize the time spent
in sequential execution. In this work, we aim to exploit fine-grained parallelism beyond the parallelism
already encoded in an application. We define an execution model using a primary core and some number
of secondary cores that collaborate to speed up the execution of sequential code regions. This execution
model relies on cores that are physically close to each other and have fast communication paths between
them. For this purpose, we introduce dedicated hardware queues for low-latency transfer of values
between cores, and define special “enque” and “deque” instructions to use the queues. Further, we
develop compiler analyses and transformations to automatically derive fine-grained parallel code from
sequential code regions. We implemented this model for exploiting fine-grained parallelization in the
IBM XL compiler framework and in a simulator for the Blue Gene/Q system. We also studied the
Sequoia benchmarks to determine code sections where our techniques are applicable. We evaluated our
work using these code sections, and observed an average speedup of 1.32 on 2 cores, and an average
speedup of 2.05 on 4 cores. Since these code sections are otherwise sequentially executed, we conclude
that our approach is useful for accelerating single thread performance.

154

Active Measurement of Memory Resource Consumption

Marc Casas

Barcelona Supercomputing Center
Jordi Girona 29, Nexus II Building

08034 Barcelona

Greg Bronevetsky

Lawrence Livermore National Laboratory
7000 East Avenue

Livermore, CA, 94550

Hierarchical memory is a cornerstone of modern hardware design because it provides high memory
performance and capacity at a low cost. However, the use of multiple levels of memory and complex
cache management policies makes it very difficult to optimize the performance of applications running on
hierarchical memories. As the number of compute cores per chip continues to rise faster than the total
amount of available memory, applications will become increasingly starved for memory storage capacity
and bandwidth, making the problem of performance optimization even more critical. We propose a new
methodology for measuring and modeling the performance of hierarchical memories in terms of the
application’s utilization of the key memory resources: capacity of a given memory level and bandwidth
between two levels. This is done by actively interfering with the application’s use of these resources. The
application’s sensitivity to reduced resource availability is measured by observing the effect of
interference on application performance. The resulting resource-oriented model of performance both
greatly simplifies application performance analysis and makes it possible to predict an application’s
performance when running with various resource constraints. This is useful to predict performance for
future memory-constrained architectures.

155

Locating Parallelization Potential in Object-Oriented Data Structures

Korbinian Molitorisz, Thomas Karcher, Alexander Bieleš, and Walter F. Tichy

Institute for Program Structures and Data Organization (IPD)
Karlsruhe Institute of Technology (KIT)

Am Fasanengarten 5, 767131 Karlsruhe, Germany
Email: molitorisz, thomas.karcher, walter.tichy@kit.edu, alexander.bieles@student.kit.edu

The free lunch of ever increasing single-processor performance is over. Software engineers have to
parallelize software to gain performance improvements. But not every software engineer is a parallel
expert and with millions of lines of code that have not been developed with multicore in mind, we have to
find ways to assist in identifying parallelization potential. This paper makes three contributions: 1) An
empirical study of more than 900,000 lines of code reveals five use cases in the runtime profile of object-
oriented data structures that carry parallelization potential. 2) The study also points out frequently used
data structures in realistic software in which these use cases can be found. 3) We developed DSspy, an
automatic dynamic profiler that locates these use cases and makes recommendations on how to parallelize
them. Our evaluation shows that DSspy reduces the search space for parallelization by up to 77% and
engineers only need to consider 23% of all data structure instances for parallelization.

Session 24: Numerical Algorithms

IPDPS 2014

159

An Accelerated Recursive Doubling Algorithm for Block Tridiagonal Systems

Sudip K. Seal

Oak Ridge National Laboratory
Oak Ridge, TN 37831, USA

sealsk@ornl.gov

Block tridiagonal systems of linear equations arise in a wide variety of scientific and engineering
applications. Recursive doubling algorithm is a well-known prefix computation-based numerical
algorithm that requires O(M3(N/P + logP)) work to compute the solution of a block tridiagonal system
with N block rows and block size M on P processors. In real-world applications, solutions of tridiagonal
systems are most often sought with multiple, often hundreds and thousands, of different right hand sides
but with the same tridiagonal matrix. Here, we show that a recursive doubling algorithm is sub-optimal
when computing solutions of block tridiagonal systems with multiple right hand sides and present a novel
algorithm, called the accelerated recursive doubling algorithm, that delivers O(R) improvement when
solving block tridiagonal systems with R distinct right hand sides. Since R is typically ~ 102 –
104, this improvement translates to very significant speedups in practice. Detailed complexity analyses of
the new algorithm with empirical confirmation of runtime improvements are presented. To the best of our
knowledge, this algorithm has not been reported before in the literature.

160

Designing LU-QR Hybrid Solvers for Performance and Stability

Mathieu Faverge1, Julien Herrmann2, Julien Langou3, Bradley R. Lowery3, Yves Robert2,4,
and Jack Dongarra4

1 Laboratoire LaBRI, IPB ENSEIRB-MatMeca, Bordeaux, France

2Laboratoire LIP, École Normale Supérieure de Lyon, France

3 University Colorado Denver, USA

4 University of Tennessee Knoxville, USA

This paper introduces hybrid LU-QR algorithms for solving dense linear systems of the form Ax = b.
Throughout a matrix factorization, these algorithms dynamically alternate LU with local pivoting and QR
elimination steps, based upon some robustness criterion. LU elimination steps can be very efficiently
parallelized, and are twice as cheap in terms of operations, as QR steps. However, LU steps are not
necessarily stable, while QR steps are always stable. The hybrid algorithms execute a QR step when a
robustness criterion detects some risk for instability, and they execute an LU step otherwise. Ideally, the
choice between LU and QR steps must have a small computational overhead and must provide a
satisfactory level of stability with as few QR steps as possible. In this paper, we introduce several
robustness criteria and we establish upper bounds on the growth factor of the norm of the updated matrix
incurred by each of these criteria. In addition, we describe the implementation of the hybrid algorithms
through an extension of the Parsec software to allow for dynamic choices during execution. Finally, we
analyze both stability and performance results compared to state-of-the-art linear solvers on parallel
distributed multicore platforms.

161

Effectively Exploiting Parallel Scale for All Problem Sizes in LU Factorization

Md Rakib Hasan and R. Clint Whaley

Computer Science and Engineering Division/
Center for Computation & Technology

Louisiana State University
Baton Rouge, LA, USA

Email: rhasan@cct.lsu.edu
Email: rcwhaley@lsu.edu

LU factorization is one of the most widely-used methods for solving linear equations, and thus its
performance underlies a broad range of scientific computing. As architectural trends have replaced clock
rate improvements with increases in parallel scale, library writers have responded by using tiled
algorithms, where operand size is constrained in order to maximize parallelism, as seen in the well-known
PLASMA library. This approach has two main drawbacks: (1) asymptotic performance is reduced due to
limited operand size, (2) performance of small to medium sized problems is reduced due to unnecessary
data motion in the parallel caches. In this paper we introduce a new approach where asymptotic
performance is maximized by using special low-overhead kernel primitives that are auto-generated by the
ATLAS framework, while unnecessary cache motion is minimized by using explicit cache management.
We show that this technique can outperform all known libraries at all problem sizes on commodity
parallel Intel and AMD platforms, with asymptotic LU performance of roughly 91% of hardware
theoretical peak for a 12-core Intel Xeon, and 87% for a 32-core AMD Opteron.

162

Anatomy of High-Performance Many-Threaded Matrix Multiplication

Tyler M. Smith*, Robert van de Geijn*, Mikhail Smelyanskiy†, Jeff R. Hammond‡,
and Field G. Van Zee*

∗Institute for Computational Engineering and Sciences and Department of Computer Science
The University of Texas at Austin, Austin TX, 78712

Email: tms,rvdg,field@cs.utexas.edu

†Parallel Computing Lab Intel Corporation
Santa Clara, CA 95054

Email: mikhail.smelyanskiy@intel.com

‡Leadership Computing Facility Argonne National Lab
Argonne, IL 60439

Email: jhammond@alcf.anl.gov

BLIS is a new framework for rapid instantiation of the BLAS. We describe how BLIS extends the
“GotoBLAS approach” to implementing matrix multiplication (GEMM). While GEMM was previously
implemented as three loops around an inner kernel, BLIS exposes two additional loops within that inner
kernel, casting the computation in terms of the BLIS micro-kernel so that porting G E M M becomes a
matter of customizing this micro-kernel for a given architecture. We discuss how this facilitates a finer
level of parallelism that greatly simplifies the multithreading of GEMM as well as additional
opportunities for parallelizing multiple loops. Specifically, we show that with the advent of many-core
architectures such as the IBM PowerPC A2 processor (used by Blue Gene/Q) and the Intel Xeon Phi
processor, parallelizing both within and around the inner kernel, as the BLIS approach supports, is not
only convenient, but also necessary for scalability. The resulting implementations deliver what we believe
to be the best open source performance for these architectures, achieving both impressive performance
and excellent scalability.

Session 25: Performance Impacts of Hardware
Acceleration

IPDPS 2014

165

Comparative Performance Analysis of Intel Xeon Phi, GPU, and CPU:
A Case Study from Microscopy Image Analysis

George Teodoro1, Tahsin Kurc2,3, Jun Kong4, Lee Cooper4, and Joel Saltz2

1Department of Computer Science
University of Brasília, Brasília, DF, Brazil

2Department of Biomedical Informatics

Stony Brook University, Stony Brook, NY, USA

3Scientific Data Group
Oak Ridge National Laboratory, Oak Ridge, TN, USA

4Department of Biomedical Informatics
Emory University, Atlanta, GA, USA

teodoro@unb.br,{tkurc,lee.cooper,jun.kong,jhsaltz}@emory.edu

We study and characterize the performance of operations in an important class of applications on GPUs
and Many Integrated Core (MIC) architectures. Our work is motivated by applications that analyze low-
dimensional spatial datasets captured by high resolution sensors, such as image datasets obtained from
whole slide tissue specimens using microscopy scanners. Common operations in these applications
involve the detection and extraction of objects (object segmentation), the computation of features of each
extracted object (feature computation), and characterization of objects based on these features (object
classification). In this work, we have identify the data access and computation patterns of operations in
the object segmentation and feature computation categories. We systematically implement and evaluate
the performance of these operations on modern CPUs, GPUs, and MIC systems for a microscopy image
analysis application. Our results show that the performance on a MIC of operations that perform regular
data access is comparable or sometimes better than that on a GPU. On the other hand, GPUs are
significantly more efficient than MICs for operations that access data irregularly. This is a result of the
low performance of MICs when it comes to random data access. We also have examined the coordinated
use of MICs and CPUs. Our experiments show that using a performance aware task strategy for
scheduling application operations improves performance about 1.29× over a first-come-first-served
strategy. This allows applications to obtain high performance efficiency on CPU-MIC systems - the
example application attained an efficiency of 84% on 192 nodes (3072 CPU cores and 192 MICs).

166

A Framework for Lattice QCD Calculations on GPUs

F.T. Winter*, M.A. Clark†, R.G. Edwards*, and B. Joó*

∗Thomas Jefferson National Accelerator Facility, Newport News, VA, USA
{fwinter,edwards,bjoo}@jlab.org

†NVIDIA Corporation, 2701 San Tomas Expressway, Santa Clara, CA 95050, USA
mclark@nvidia.com

Computing platforms equipped with accelerators like GPUs have proven to provide great computational
power. However, exploiting such platforms for existing scientific applications is not a trivial task. Current
GPU programming frameworks such as CUDA C/C++ require low-level programming from the
developer in order to achieve high performance code. As a result porting of applications to GPUs is
typically limited to time-dominant algorithms and routines, leaving the remainder not accelerated which
can open a serious Amdahl’s law issue. The Lattice QCD application Chroma allows us to explore a
different porting strategy. The layered structure of the software architecture logically separates the data-
parallel from the application layer. The QCD Data-Parallel software layer provides data types and
expressions with stencil-like operations suitable for lattice field theory. Chroma implements algorithms in
terms of this high-level interface. Thus by porting the low-level layer one effectively ports the whole
application layer in one swing. The QDP-JIT/PTX library, our reimplementation of the low-level layer,
provides a framework for Lattice QCD calculations for the CUDA architecture. The complete software
interface is supported and thus applications can be run unaltered on GPU-based parallel computers. This
reimplementation was possible due to the availability of a JIT compiler which translates an assembly
language (PTX) to GPU code. The existing expression templates enabled us to employ compile-time
computations in order to build code generators and to automate the memory management for CUDA. Our
implementation has allowed us to deploy the full Chroma gauge-generation program on large scale GPU-
based machines such as Titan and Blue Waters and accelerate the calculation by more than an order of
magnitude.

167

Improving Communication Performance and Scalability of Native

Applications on Intel Xeon Phi Coprocessor Clusters

Karthikeyan Vaidyanathan*, Kiran Pamnany*, Dhiraj D. Kalamkar*, Alexander Heinecke†,
Mikhail Smelyanskiy‡, Jongsoo Park‡, Daehyun Kim‡, Aniruddha Shet G*, Bharat Kaul*,

 Balint Joo§, and Pradeep Dubey‡

∗Parallel Computing Lab
Intel Corporation, Bangalore, India

†Department of Informatics
Technische Universität München, Munich, Germany

‡Parallel Computing Lab
Intel Corporation, Santa Clara, CA, U.S.A

§Thomas Jefferson National Accelerator Facility, Newport News, VA, U.S.A

Intel Xeon Phi coprocessor-based clusters offer high compute and memory performance for parallel
workloads and also support direct network access. Many real world applications are significantly
impacted by network characteristics and to maximize the performance of such applications on these
clusters, it is particularly important to effectively saturate network bandwidth and/or hide
communications latency. We demonstrate how to do so using techniques such as pipelined DMAs for
data transfer, dynamic chunk sizing, and better asynchronous progress. We also show a method for, and
the impact of avoiding serialization and maximizing parallelism during application communication
phases. Additionally, we apply application optimizations focused on balancing computation and
communication in order to hide communication latency and improve utilization of cores and of network
bandwidth. We demonstrate the impact of our techniques on three well known and highly optimized HPC
kernels running natively on the Intel Xeon Phi coprocessor. For the Wilson-Dslash operator from Lattice
QCD, we characterize the improvements from each of our optimizations for communication performance,
apply our method for maximizing concurrency during communication phases, and show an overall 48%
improvement from our previously best published result. For HPL/LINPACK, we show 68.5% efficiency
with 97 TFLOPs on 128 Intel Xeon Phi coprocessors, the first ever reported native HPL efficiency on a
coprocessor-based supercomputer. For FFT, we show 10.8 TFLOPs using 1024 Intel Xeon Phi
coprocessors on the TACC Stampede cluster, the highest reported performance on any Intel Architecture-
based cluster and the first such result to be reported on a coprocessor-based supercomputer.

168

Computational Co-design of a Multiscale Plasma Application: A Process
and Initial Results

Joshua Payne, Dana Knoll, Allen McPherson, William Taitano, Luis Chacon, Guangye Chen,
and Scott Pakin

Los Alamos National Laboratory

As computer architectures become increasingly heterogeneous the need for algorithms and applications
that can exploit these new architectures grows more pressing. This paper demonstrates that co-designing a
multi-architecture, multi-scale, highly optimized framework with its associated plasma-physics
application can provide both portability across CPUs and accelerators and high performance. Our
framework utilizes multiple abstraction layers in order to maximize code reuse between architectures
while providing low-level abstractions to incorporate architecture-specific optimizations such as
vectorization or hardware fused multiply-add. We describe a co-design process used to enable a plasma
physics application to scale well to large systems while also improving on both the accuracy and speed of
the simulations. Optimized multi-core results will be presented to demonstrate ability to isolate large
amounts of computational work with minimal communication.

Session 26: Programming Models and Tools

IPDPS 2014

171

UPC++: A PGAS Extension for C++

Yili Zheng*, Amir Kamil*, Michael B. Driscoll*†, Hongzhang Shan*, and Katherine Yelick*†

∗Lawrence Berkeley National Laboratory
†Department of EECS, University of California, Berkeley

Partitioned Global Address Space (PGAS) languages are convenient for expressing algorithms with large,
random-access data, and they have proven to provide high performance and scalability through
lightweight one-sided communication and locality control. While very convenient for moving data around
the system, PGAS languages have taken different views on the model of computation, with the static
Single Program Multiple Data (SPMD) model providing the best scalability. In this paper we present
UPC++, a PGAS extension for C++ that has three main objectives: 1) to provide an object-oriented PGAS
programming model in the context of the popular C++ language, 2) to add useful parallel programming
idioms unavailable in UPC, such as asynchronous remote function invocation and multidimensional
arrays, to support complex scientific applications, 3) to offer an easy on-ramp to PGAS programming
through interoperability with other existing parallel programming systems (e.g., MPI, OpenMP, CUDA).
We implement UPC++ with a "compiler-free" approach using C++ templates and runtime libraries. We
borrow heavily from previous PGAS languages and describe the design decisions that led to this
particular set of language features, providing significantly more expressiveness than UPC with very
similar performance characteristics. We evaluate the programmability and performance of UPC++ using
five benchmarks on two representative supercomputers, demonstrating that UPC++ can deliver excellent
performance at large scale up to 32K cores while offering PGAS productivity features to C++
applications.

172

An Evaluation of One-Sided and Two-Sided Communication Paradigms
on Relaxed-Ordering Interconnect

Khaled Z. Ibrahim, Paul H. Hargrove, Costin Iancu, and Katherine Yelick

Lawrence Berkeley National Laboratory, Berkeley, USA
Email: {kzibrahim, phhargrove, cciancu, kayelick}@lbl.gov

The Cray Gemini interconnect hardware provides multiple transfer mechanisms and out-of-order message
delivery to improve communication throughput. In this paper we quantify the performance of one-sided
and two-sided communication paradigms with respect to: 1) the optimal available hardware transfer
mechanism, 2) message ordering constraints, 3) per node and per core message concurrency. In addition
to using Cray native communication APIs, we use UPC and MPI micro-benchmarks to capture one- and
two-sided semantics respectively. Our results indicate that relaxing the message delivery order can
improve performance up to 4.6x when compared with strict ordering. When hardware allows it, high-level
one-sided programming models can already take advantage of message reordering. Enforcing the ordering
semantics of two-sided communication comes with a performance penalty. Furthermore, we argue that
exposing out-of-order delivery at the application level is required for the next-generation programming
models. Any ordering constraints in the language specifications reduce communication performance for
small messages and increase the number of active cores required for peak throughput.

173

Scaling Irregular Applications through Data Aggregation
and Software Multithreading

Alessandro Morari, Antonino Tumeo, and Daniel Chavarría-Miranda

Pacific Northwest National Laboratory
Richland, WA, USA

{alessandro.morari, antonino.tumeo,
daniel.chavarria}@pnnl.gov

Oreste Villa

NVIDIA
Santa Clara, CA, USA

ovilla@nvidia.com

Mateo Valero

Universitat Politecnica de Catalunya
Barcelona Supercomputing Center

Barcelona, Spain
mateo@bsc.es

Emerging applications in areas such as bioinformatics, data analytics, semantic databases and knowledge
discovery employ datasets from tens to hundreds of terabytes. Currently, only distributed memory clusters
have enough aggregate space to enable in-memory processing of datasets of this size. However, in
addition to large sizes, the data structures used by these new application classes are usually characterized
by unpredictable and fine-grained accesses: i.e., they present an irregular behavior. Traditional
commodity clusters, instead, exploit cache-based processor and high-bandwidth networks optimized for
locality, regular computation and bulk communication. For these reasons, irregular applications are
inefficient on these systems, and require custom, hand-coded optimizations to provide scaling in both
performance and size. Lightweight software multithreading, which enables tolerating data access latencies
by overlapping network communication with computation, and aggregation, which allows reducing
overheads and increasing bandwidth utilization by coalescing fine-grained network messages, are key
techniques that can speed up the performance of large scale irregular applications on commodity clusters.
In this paper we describe GMT (Global Memory and Threading), a runtime system library that couples
software multithreading and message aggregation together with a Partitioned Global Address Space
(PGAS) data model to enable higher performance and scaling of irregular applications on multi-node
systems. We present the architecture of the runtime, explaining how it is designed around these two
critical techniques. We show that irregular applications written using our runtime can outperform, even by
orders of magnitude, the corresponding applications written using other programming models that do not
exploit these techniques.

174

Generalizing Run-Time Tiling with the Loop Chain Abstraction

Michelle Mills Strout*, Fabio Luporini†, Christopher D. Krieger*, Carlo Bertolli,‡
Gheorghe-Teodor Bercea†, Catherine Olschanowsky*, J. Ramanujam§, and Paul H.J. Kelly†

∗Colorado State University
∗{mstrout|krieger|cathie}@cs.colostate.edu,

†Imperial College London
†{f.luporini12|gheorghe-teodor.bercea08|p.kelly}@imperial.ac.uk

‡IBM T.J. Watson Research
‡cbertol@us.ibm.com

§Louisiana State University
§jxr@ece.lsu.edu

Many scientific applications are organized in a data parallel way: as sequences of parallel and/or
reduction loops. This exposes parallelism well, but does not convert data reuse between loops into data
locality. This paper focuses on this issue in parallel loops whose loop-to-loop dependence structure is
data-dependent due to indirect references such as A[B[i]]. Such references are a common occurrence in
sparse matrix computations, molecular dynamics simulations, and unstructured-mesh computational fluid
dynamics (CFD). Previously, sparse tiling approaches were developed for individual benchmarks to group
iterations across such loops to improve data locality. These approaches were shown to benefit
applications such as moldyn, Gauss-Seidel, and the sparse matrix powers kernel, however the run-time
routines for performing sparse tiling were hand coded per application. In this paper, we present a
generalized full sparse tiling algorithm that uses the newly developed loop chain abstraction as input,
improves inter-loop data locality, and creates a task graph to expose shared-memory parallelism at
runtime. We evaluate the overhead and performance impact of the generalized full sparse tiling algorithm
on two codes: a sparse Jacobi iterative solver and the Airfoil CFD benchmark.

Session 27: Algorithms for High Performance
Computing

IPDPS 2014

177

s-Step Krylov Subspace Methods as Bottom Solvers for Geometric Multigrid

Samuel Williams, Mike Lijewski, Ann Almgren, and Brian Van Straalen

Lawrence Berkeley National Lab
SWWilliams@lbl.gov

Erin Carson, Nicholas Knight, and James Demmel

University of California at Berkeley
ecc2z@eecs.berkeley.edu

Geometric multigrid solvers within adaptive mesh refinement (AMR) applications often reach a point
where further coarsening of the grid becomes impractical as individual sub domain sizes approach unity.
At this point the most common solution is to use a bottom solver, such as BiCGStab, to reduce the
residual by a fixed factor at the coarsest level. Each iteration of BiCGStab requires multiple global
reductions (MPI collectives). As the number of BiCGStab iterations required for convergence grows with
problem size, and the time for each collective operation increases with machine scale, bottom solves in
large-scale applications can constitute a significant fraction of the overall multigrid solve time. In this
paper, we implement, evaluate, and optimize a communication-avoiding s-step formulation of BiCGStab
(CABiCGStab for short) as a high-performance, distributed-memory bottom solver for geometric
multigrid solvers. This is the first time s-step Krylov subspace methods have been leveraged to improve
multigrid bottom solver performance. We use a synthetic benchmark for detailed analysis and integrate
the best implementation into BoxLib in order to evaluate the benefit of a s-step Krylov subspace method
on the multigrid solves found in the applications LMC and Nyx on up to 32,768 cores on the Cray XE6 at
NERSC. Overall, we see bottom solver improvements of up to 4.2x on synthetic problems and up to 2.7x
in real applications. This results in as much as a 1.5x improvement in solver performance in real
applications.

178

Reconstructing Householder Vectors from Tall-Skinny QR

Grey Ballard*, James Demmel†, Laura Grigori‡, Mathias Jacquelin§, Hong Diep Nguyen†,
and Edgar Solomonik†

∗Sandia National Laboratories, Livermore, USA

†University of California, Berkeley, Berkeley, USA

‡INRIA Paris - Rocquencourt, Paris, France

§Lawrence Berkeley National Laboratory, Berkeley, USA
gmballa@sandia.gov, demmel@cs.berkeley.edu, laura.grigori@inria.fr,

mjacquelin@lbl.gov, hdnguyen@cs.berkeley.edu, solomon@cs.berkeley.edu

The Tall-Skinny QR (TSQR) algorithm is more communication efficient than the standard Householder
algorithm for QR decomposition of matrices with many more rows than columns. However, TSQR
produces a different representation of the orthogonal factor and therefore requires more software
development to support the new representation. Further, implicitly applying the orthogonal factor to the
trailing matrix in the context of factoring a square matrix is more complicated and costly than with the
Householder representation. We show how to perform TSQR and then reconstruct the Householder vector
representation with the same asymptotic communication efficiency and little extra computational cost.
We demonstrate the high performance and numerical stability of this algorithm both theoretically and
empirically. The new Householder reconstruction algorithm allows us to design more efficient parallel
QR algorithms, with significantly lower latency cost compared to Householder QR and lower bandwidth
and latency costs compared with Communication-Avoiding QR (CAQR) algorithm. As a result, our final
parallel QR algorithm outperforms ScaLAPACK and Elemental implementations of Householder QR and
our implementation of CAQR on the Hopper Cray XE6 NERSC system. We also provide algorithmic
improvements to the ScaLAPACK and CAQR algorithms.

179

Petascale General Solver for Semidefinite Programming Problems
with Over Two Million Constraints

Katsuki Fujisawa1, Toshio Endo2, Yuichiro Yasui1, Hitoshi Sato2, Naoki Matsuzawa3,
Satoshi Matsuoka4, and Hayato Waki4

1Chuo University, Tokyo, Japan
fujisawa@indsys.chuo-u.ac.jp

yasui@indsys.chuo-u.ac.jp

2Tokyo Institute of Technology, Tokyo, Japan
endo@is.titech.ac.jp

hitoshi.sato@gsic.titech.ac.jp
matsu@is.titech.ac.jp

3University of Tokyo

Tokyo, Japan
naoki matsuzawa@ipc.i.u-tokyo.ac.jp

4Kyushu University, Fukuoka, Japan

waki@imi.kyushu-u.ac.jp

The semi definite programming (SDP) problem is one of the central problems in mathematical
optimization. The primal-dual interior-point method (PDIPM) is one of the most powerful algorithms for
solving SDP problems, and many research groups have employed it for developing software packages.
However, two well-known major bottlenecks, i.e., the generation of the Schur complement matrix (SCM)
and its Cholesky factorization, exist in the algorithmic framework of the PDIPM. We have developed a
new version of the semi definite programming algorithm parallel version (SDPARA), which is a parallel
implementation on multiple CPUs and GPUs for solving extremely large-scale SDP problems with over a
million constraints. SDPARA can automatically extract the unique characteristics from an SDP problem
and identify the bottleneck. When the generation of the SCM becomes a bottleneck, SDPARA can attain
high scalability using a large quantity of CPU cores and some processor affinity and memory interleaving
techniques. SDPARA can also perform parallel Cholesky factorization using thousands of GPUs and
techniques for overlapping computation and communication if an SDP problem has over two million
constraints and Cholesky factorization constitutes a bottleneck. We demonstrate that SDPARA is a high-
performance general solver for SDPs in various application fields through numerical experiments
conducted on the TSUBAME 2.5 supercomputer, and we solved the largest SDP problem (which has over
2.33 million constraints), thereby creating a new world record. Our implementation also achieved 1.713
PFlops in double precision for large-scale Cholesky factorization using 2,720 CPUs and 4,080 GPUs.

180

Optimization of Multi-level Checkpoint Model for Large Scale
HPC Applications

Sheng Di1, 2, Mohamed Slim Bouguerra1, 2, Leonardo Bautista-Gomez2, and Franck Cappello2

1INRIA, France
sheng.di@inria.fr, slim.bouguerra@imag.fr

2Argonne National Laboratory, USA
{leobago, cappello}@mcs.anl.gov

HPC community projects that future extreme scale systems will be much less stable than current Petascale
systems, thus requiring sophisticated fault tolerance to guarantee the completion of large scale numerical
computations. Execution failures may occur due to multiple factors with different scales, from transient
uncorrectable memory errors localized in processes to massive system outages. Multi-level
checkpoint/restart is a promising model that provides an elastic response to tolerate different types of
failures. It stores checkpoints at different levels: e.g., local memory, remote memory, using a software
RAID, local SSD, remote file system. In this paper, we respond to two open questions: 1) how to
optimize the selection of checkpoint levels based on failure distributions observed in a system, 2) how to
compute the optimal checkpoint intervals for each of these levels. The contribution is three-fold. (1) We
build a mathematical model to fit the multi-level checkpoint/restart mechanism with large scale
applications regarding various types of failures. (2) We theoretically optimize the entire execution
performance for each parallel application by selecting the best checkpoint level combination and
corresponding checkpoint intervals. (3) We characterize checkpoint overheads on different checkpoint
levels in a real cluster environment, and evaluate our optimal solutions using both simulation with
millions of cores and real environment with real-world MPI programs running on hundreds of cores.
Experiments show that optimized selections of levels associated with optimal checkpoint intervals at each
level outperforms other state-of-the-art solutions by 5-50 percent.

Session 28: Scalable Algorithms

IPDPS 2014

183

Evaluating the Impact of SDC on the GMRES Iterative Solver

James Elliott*†, Mark Hoemmen†, and Frank Mueller*

∗ Computer Science Department
North Carolina State University, Raleigh, NC

† Sandia National Laboratories

Albuquerque, NM

Increasing parallelism and transistor density, along with increasingly tighter energy and peak power
constraints, may force exposure of occasionally incorrect computation or storage to application codes.
Silent data corruption (SDC) will likely be infrequent, yet one SDC suffices to make numerical
algorithms like iterative linear solvers cease progress towards the correct answer. Thus, we focus on
resilience of the iterative linear solver GMRES to a single transient SDC. We derive inexpensive checks
to detect the effects of an SDC in GMRES that work for a more general SDC model than presuming a bit
flip. Our experiments show that when GMRES is used as the inner solver of an inner-outer iteration, it
can "run through" SDC of almost any magnitude in the computationally intensive orthogonalization
phase. That is, it gets the right answer using faulty data without any required roll back. Those SDCs
which it cannot run through, get caught by our detection scheme.

184

A Multi-core Parallel Branch-and-Bound Algorithm
Using Factorial Number System

Mohand Mezmaz*, Rudi Leroy†, Nouredine Melab†, and Daniel Tuyttens*

∗ University of Mons
Mons, Belgium

Email: {Mohand.Mezmaz,Daniel.Tuyttens}@umons.ac.be

† Inria Lille - Nord Europe, LIFL-Université Lille1
Villeneuve d’Ascq, France

Email: {Rudi.Leroy,Nouredine.Melab}@lifl.fr

Many real-world problems in different industrial and economic fields are permutation combinatorial
optimization problems. Solving to optimality large instances of these problems, such as flowshop
problem, is a challenge for multi-core computing. This paper proposes a multi-threaded factoradic-based
branch-and-bound algorithm to solve permutation combinatorial problems on multi-core processors. The
factoradic, called also factorial number system, is a mixed radix numeral system adapted to numbering
permutations. In this new parallel algorithm, the B&B is based on a matrix of integers instead of a pool of
permutations, and work units exchanged between threads are intervals of factoradics instead of sets of
nodes.

Compared to a conventional pool-based approach, the obtained results on flowshop instances demonstrate
that our new factoradic-based approach, on average, uses about 60 times less memory to store the pool of
subproblems, generates about 1.3 times less page faults, waits about 7 times less time to synchronize the
access to the pool, requires about 9 times less CPU time to manage this pool, and performs about 30,000
times less context switches.

185

Optimizing Sparse Matrix-Multiple Vectors Multiplication for Nuclear
Configuration Interaction Calculations

Hasan Metin Aktulga, Aydin Buluç, Samuel Williams, and Chao Yang

Computational Research Division
Lawrence Berkeley National Lab

{hmaktulga, abuluc, swwilliams, cyang}@lbl.gov

Obtaining highly accurate predictions on the properties of light atomic nuclei using the configuration
interaction (CI) approach requires computing a few extremal Eigen pairs of the many-body nuclear
Hamiltonian matrix. In the Many-body Fermion Dynamics for nuclei (MFDn) code, a block Eigen solver
is used for this purpose. Due to the large size of the sparse matrices involved, a significant fraction of the
time spent on the Eigen value computations is associated with the multiplication of a sparse matrix (and
the transpose of that matrix) with multiple vectors (SpMM and SpMM_T). Existing implementations of
SpMM and SpMM_T significantly underperform expectations. Thus, in this paper, we present and
analyze optimized implementations of SpMM and SpMM_T. We base our implementation on the
compressed sparse blocks (CSB) matrix format and target systems with multi-core architectures. We
develop a performance model that allows us to understand and estimate the performance characteristics of
our SpMM kernel implementations, and demonstrate the efficiency of our implementation on a series of
real-world matrices extracted from MFDn. In particular, we obtain 3-4 speedup on the requisite
operations over good implementations based on the commonly used compressed sparse row (CSR) matrix
format. The improvements in the SpMM kernel suggest we may attain roughly a 40% speed up in the
overall execution time of the block Eigen solver used in MFDn.

Session 29: Resilience and Reliability

IPDPS 2014

189

FMI: Fault Tolerant Messaging Interface for Fast and Transparent Recovery

Kento Sato
Dep. of Mathematical and Computing Science

Tokyo Institute of Technology
2-12-1-W8-33, Ohokayama,

Meguro-ku, Tokyo 152-8552 Japan
Email: kent@matsulab.is.titech.ac.jp

Adam Moody, Kathryn Mohror, Todd Gamblin and Bronis R. de Supinski
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

Livermore, CA 94551 USA
Email: fmoody20, kathryn, tgamblin, bronisg@llnl.gov

Naoya Maruyama
Advanced Institute for Computational Science

RIKEN
7-1-26, Minatojima-minami-machi,

Chuo-ku, Kobe, Hyogo, 650-0047 Japan
Email: nmaruyama@riken.jp

Satoshi Matsuoka
Global Scientific Information and Computing Center

Tokyo Institute of Technology
2-12-1-W8-33, Ohokayama,

Meguro-ku, Tokyo 152-8552 Japan
Email: matsu@is.titech.ac.jp

Future supercomputers built with more components will enable larger, higher-fidelity simulations, but at
the cost of higher failure rates. Traditional approaches to mitigating failures, such as checkpoint/restart
(C/R) to a parallel file system incur large overheads. On future, extreme-scale systems, it is unlikely that
traditional C/R will recover a failed application before the next failure occurs. To address this problem,
we present the Fault Tolerant Messaging Interface (FMI), which enables extremely low-latency recovery.
FMI accomplishes this using a survivable communication runtime coupled with fast, in-memory C/R, and
dynamic node allocation. FMI provides message-passing semantics similar to MPI, but applications
written using FMI can run through failures. The FMI runtime software handles fault tolerance, including
check pointing application state, restarting failed processes, and allocating additional nodes when needed.
Our tests show that FMI runs with similar failure-free performance as MPI, but FMI incurs only a 28%
overhead with a very high mean time between failures of 1 minute.

190

Designing Bit-Reproducible Portable High-Performance Applications

Andrea Arteaga1, Oliver Fuhrer2, and Torsten Hoefler1

1ETH Zurich, Switzerland
andrea.arteaga@env.ethz.ch

htor@ethz.ch

2Federal Office for Meteorology and Climatology
MeteoSwiss, Zurich, Switzerland

oliver.fuhrer@meteoswiss.ch

Bit-reproducibility has many advantages in the context of high-performance computing. Besides
simplifying and making more accurate the process of debugging and testing the code, it can allow the
deployment of applications on heterogeneous systems, maintaining the consistency of the computations.
In this work we analyze the basic operations performed by scientific applications and identify the possible
sources of non-reproducibility. In particular, we consider the tasks of evaluating transcendental functions
and performing reductions using non-associative operators. We present a set of techniques to achieve
reproducibility and we propose improvements over existing algorithms to perform reproducible
computations in a portable way, at the same time obtaining good performance and accuracy. By applying
these techniques to more complex tasks we show that bit-reproducibility can be achieved on a broad range
of scientific applications.

191

F-SEFI: A Fine-Grained Soft Error Fault Injection Tool for Profiling
Application Vulnerability

Qiang Guan, Nathan DeBardeleben, and Sean Blanchard

Ultrascale Systems Research Center
Los Alamos National Laboratory1
{qguan,ndebard,seanb}@lanl.gov

Song Fu

Department of Computer Science and Engineering
University of North Texas

Song.Fu@unt.edu

As the high performance computing (HPC) community continues to push towards exascale computing,
resilience remains a serious challenge. With the expected decrease of both feature size and operating
voltage, we expect a significant increase in hardware soft errors. HPC applications of today are only
affected by soft errors to a small degree but we expect that this will become a more serious issue as HPC
systems grow. We propose F-SEFI, a Fine-grained Soft Error Fault Injector, as a tool for profiling
software robustness against soft errors. In this paper we utilize soft error injection to mimic the impact of
errors on logic circuit behavior. Leveraging the open source virtual machine hypervisor QEMU, F-SEFI
enables users to modify emulated machine instructions to introduce soft errors. F-SEFI can control what
application, which sub-function, when and how to inject soft errors with different granularities, without
interference to other applications that share the same environment. F-SEFI does this without requiring
revisions to the application source code, compilers or operating systems. We discuss the design
constraints for F-SEFI and the specifics of our implementation. We demonstrate use cases of F-SEFI on
several benchmark applications to show how data corruption can propagate to incorrect results.

Author Index
Abbasi, Zahra.. 50 Casas, Marc.. 28, 154
Abe, Yuki... 21 Çatalyürek, Umit V. .. 9
Agrawal, Gagan... 15 Catanzaro, Bryan.. 75
Akoglu, Ali... 38 Chacon, Luis... 168
Aktulga, Hasan Metin.. 185 Chakaravarthy, Venkatesan T. ... 141
Almgren, Ann... 177 Chakradhar, Srimat... 52
Aluru, Srinivas... 39, 63 Chapuis, Guillaume... 56
Amato, Nancy M. .. 90 Chavarría-Miranda, Daniel.. 173
Anderson, James H. ... 31 Che, Yonggang... 113
Andonov, Rumen... 56 Checconi, Fabio.. 64, 141
Antoniu, Gabriel... 27 Chen, Guangye... 168
Anzt, Hartwig... 58 Chen, Lizhong... 95, 134
Arteaga, Andrea.. 190 Chen, Mingyu.. 120
Avron, H. .. 33 Chen, Zhongliang.. 20
Bal, Henri E. ... 148 Cheng, Dazhao... 49
Ballard, Grey... 178 Choi, Jee... 68
Barker, Kevin... 126 Chong, Frederic T. ... 143
Bautista-Gomez, Leonardo... 180 Chow, Edmond.. 89, 142
Baxter, Sean.. 55 Chu, Hsuan-Yi... 51
Bekas, Costas... 114 Cicotti, Pietro... 37
Bercea, Gheorghe-Teodor.. 174 Clark, M.A. .. 166
Bertolli, Carlo... 174 Cooper, Lee... 165
Bertsch, Adam... 114 Coviello, Giuseppe.. 52
Bhatele, Abhinav... 116 Curioni, Alessandro... 114
Bianchini, Ricardo... 143 Davidson, Andrew... 55
Biczak, Marcin... 61 De Rose, César A.F. .. 16
Bieleš, Alexander.. 155 de Supinski, Bronis R. .. 189
Bisseling, Rob H. .. 84 Debardeleben, Nathan.. 191
Bisset, Keith.. 116 Dehnavi, Maryam Mehri.. 126
Blanchard, Sean.. 191 Demmel, James.. 177, 178
Bloom, Joshua... 137 Deng, Xiaogang... 113
Bohm, Eric... 116 Deveci, Mehmet.. 9
Bonakdarpour, Borzoo.. 103 Devine, Karen.. 9
Bouguerra, Mohamed Slim.. 180 Di, Sheng... 180
Bronevetsky, Greg... 28, 154 Dinu, Florin.. 149
Brunheroto, Jose... 153 Djidjev, Hristo.. 56
Buluç, Aydin.. 185 Dobrev, Veselin... 150
Bunde, David P. ... 9 Dong, Qunfeng.. 19
Buntzman, Adam... 38 Dong, Tingxing.. 150
Cadambi, Srihari.. 52 Dongarra, Jack.. 58, 74, 150, 160
Cameron, Kirk W. ... 126 Dorier, Matthieu... 27
Cao, Chongxiao... 74 Draper, Jeffrey... 95
Cao, Wei.. 113 Driscoll, Michael B. ... 171
Cappello, Franck... 180 Druinsky, A. .. 33
Carson, Erin.. 177 Dubey, Pradeep.. 167
Casanova, Henri.. 7, 43 Dufossé, Fanny... 85

192

Author Index
Dukhan, Marat... 68 Hamidouche, Khaled... 98
Edahiro, Masato.. 21 Hammond, Jeff R. .. 162
Edwards, R.G. .. 166 Hargrove, Paul H. ... 172
Eisenhauer, Greg.. 26 Hasan, Md Rakib... 161
Elliott, James... 183 Hassan, Ahmed... 32
Endo, Toshio... 179 He, Bingsheng... 120
Estrada, Trilce... 37 Heinecke, Alexander... 167
Ethier, Stephane.. 26 Herrmann, Julien... 160
Fang, Jianbin... 113 Hessels, Jason.. 148
Faverge, Mathieu.. 160 Hoefler, Torsten... 190
Feldmann, Anja... 8 Hoemmen, Mark.. 58, 183
Feng, Wu-Chun... 40, 91 Hopson, Ben.. 38
Fidel, Adam... 90 Hsu, Lisa... 19
Fineman, Jeremy T. ... 109 Huang, Jen-Cheng.. 67
Fischmeister, Sebastian.. 103 Huang, Jian... 26
Franke, Hubertus... 16 Iancu, Costin... 172
Franklin, Diana.. 143 Ibrahim, Khaled Z. .. 172
Frelinger, Jeffrey... 38 Ibrahim, Shadi... 27
Fu, Haohuan.. 115, 126 Inoue, Koji... 21
Fu, Song.. 191 Iosup, Alexandru... 61
Fuhrer, Oliver.. 190 Jacobs, Sam Ade.. 90
Fujisawa, Katsuki.. 179 Jacquelin, Mathias... 178
Fujiwara, Ikki... 43 Jiang, Changjun.. 49
Futral, Scott... 114 Jiang, Hong... 119
G.. 167 Joó, B. .. 166
Gabel, Mohse.. 10 Joo, Balint.. 167
Gamblin, Todd... 189 Kabir, Khairul... 74
Gan, Lin... 115 Kaeli, David... 20
Garland, Michael... 55, 75 Kalamkar, Dhiraj D. .. 167
Gelado, Isaac.. 22 Kale, Laxmikant V. ... 116
Giménez, Judit.. 147 Kamil, Amir.. 171
Goel, Bhavishya.. 96 Karcher, Thomas... 155
Goldstone, Robin... 125 Kato, Shinpei... 21
González, Juan... 147 Katrinis, Kostas... 16
Grasso, Ivan.. 22 Kaul, Bharat... 167
Grigori, Laura.. 178 Kaxiras, Efthimios.. 92
Guan, Qiang.. 191 Kaya, Kamer.. 85
Guo, Jichi.. 70 Keahey, Kate... 25
Guo, Yong... 61 Kelly, Paul H.J. ... 174
Guo, Zhiyang... 132 Keren, Daniel... 10
Gupta, A. .. 33 Kim, Daehyun.. 167
Gupta, Abhishek.. 116 Kim, Hyesoon.. 67
Gupta, Sandeep K.S. ... 50 Kimpe, Dries.. 27
Haidar, Azzam... 74 Klasky, Scott.. 26
Halappanavar, Mahantesh.. 83 Knight, Nicholas.. 177
Hall, Mary.. 75 Knoll, Dana.. 168

193

Author Index
Kocoloski, Brian... 101 Mao, Bo... 119
Kogge, Peter... 79 Marathe, Madhav.. 116
Koibuchi, Michihiro.. 43 Marquez, Andres... 126
Kolev, Tzanio... 150 Martella, Claudio... 61
Kong, Jun.. 165 Maruyama, Naoya... 189
Krieger, Christopher D. ... 174 Matsuoka, Satoshi... 179, 189
Krovi, Harsha... 38 Matsutani, Hiroki.. 43
Kumaran, Kalyan... 70 Matsuzawa, Naoki... 179
Kurc, Tahsin.. 165 McClure, James E. ... 91
Kutlu, Mucahid... 15 McKee, Sally A. .. 96
Labarta, Jesús... 147 McPherson, Allen.. 168
Laino, Teodoro.. 114 Medhat, Ramy... 103
Lang, Michael.. 44 Melab, Nouredine.. 184
Lange, John... 101 Meng, Jiayuan... 70
Langou, Julien... 160 Mezmaz, Mohand.. 184
Lavenier, Dominique... 56 Miller, Cass T. .. 91
Lee, Hsien-Hsin S. ... 67 Misra, Sanchit.. 39
Lee, Hyunyoung.. 107 Mohror, Kathryn... 189
Lee, Seyong.. 73 Mokhtari, Reza.. 127
Lee, Yann-Hang.. 104 Molitorisz, Korbinian.. 155
Leroy, Rudi.. 184 Moody, Adam.. 189
Leung, Vitus J. .. 9 Morari, Alessandro.. 173
Li, Dong... 73 Morozov, Vitali... 70
Li, Xun... 143 Mueller, Frank... 183
Liang, Fan... 128 Muralidharan, Saurav.. 75
Lijewski, Mike.. 177 Nai, Lifeng... 67
Lim, Lipyeow... 7 Negi, Anurag... 96
Lin, Heshan... 40 Neves, Marcelo Veiga... 16
Liu, Wei... 113 Newport, Calvin... 109
Liu, Weifeng.. 57 Ng, T.S. Eugene.. 149
Liu, Xing.. 68, 89, 142 Nguyen, Hong Diep... 178
Llort, Germán.. 147 Nicolae, Bogdan.. 25
Louri, Ahmed... 45 Nikolopoulos, Dimitrios S. .. 116
Lowery, Bradley R. ... 160 O’Brien, Kevin... 153
Lu, Xiaoyi... 128 Olivier, Stephen L. .. 9
Lu, Youyou.. 121 Olschanowsky, Catherine.. 174
Lu, Yutong... 3, 115 Ou, Jiaxin.. 121
Luo, Miao... 98 Owens, John D. .. 55
Luporini, Fabio... 174 Pai, Vijay S. .. 34
Luszczek, Piotr.. 74 Pakin, Scott... 44, 168
MacArthur, Patrick... 131 Palmieri, Roberto... 32
Madduri, Kamesh.. 62, 86 Pamnany, Kiran... 39, 167
Mahapatra, Santosh.. 44 Panda, Dhabaleswar K. .. 98
Manivannan, Madhavan.. 97 Pande, Santosh... 144
Manne, Fredrik.. 83 Pandurangan, Gopal... 108
Mantor, Michael... 19 Park, Jongsoo... 167

194

Author Index
Parsons, Benjamin S. ... 34 Sclocco, Alessio.. 148
Patel, Aftab.. 142 Seal, Sudip K. ... 159
Payne, Joshua... 168 Servat, Harald... 147
Pedram, Massoud... 134 Shachnai, Hadas... 133
Pedretti, Kevin... 9 Shan, Hongzhang.. 171
Peh, Li-Shiuan... 13 Shantharam, Manu.. 75
Pelt, Daniël M. .. 84 Sharma, Shishir... 90
Perarnau, Swann... 102 Sherr, Micah.. 109
Peres, Martin... 21 Shet, Aniruddha... 167
Petrini, Fabrizio... 64, 141 Shu, Jiwu... 121
Pinkston, Timothy M. .. 134 Simmhan, Yogesh... 51
Poluri, Pavan... 45 Slota, George M. .. 62, 86
Pore, Madhurima... 50 Smelyanskiy, Mikhail... 162, 167
Potluri, Sreeram.. 98 Smith, Tyler M. ... 162
Prins, Jan F. ... 91 Solihin, Yan... 14
Radojkovic, Petar.. 22 Solomonik, Edgar.. 178
Rajachandrasekar, Raghunath.. 98 Song, Shuaiwen Leon... 126
Rajamanickam, Sivasankaran... 9, 86 Song, Young Wn... 104
Rajovic, Nikola... 22 Stenstrom, Per.. 96, 97
Ramanujam, J. ... 174 Striemer, Gregory.. 38
Ramirez, Alex.. 22 Strout, Michelle Mills... 174
Randles, Amanda.. 92 Stumm, Michael... 127
Randles, Amanda Peters.. 126 Sun, Ninghui.. 120
Rauchwerger, Lawrence... 90 Sura, Zehra... 153
Ravichandran, Kaushik... 144 Taitano, William... 168
Ravindran, Binoy... 32 Talmage, Edward.. 107
Rieben, Robert.. 150 Taufer, Michela.. 37
Riteau, Pierre.. 25 Teodoro, George... 165
Robert, Yves.. 7, 160 Thulasidasan, Sunil... 56
Robinson, Peter... 108 Tian, Lei... 119
Ross, Rob.. 27 Tichy, Walter F. .. 155
Rost, Matthias... 8 Titos-Gil, Ruben.. 96
Roy, Indranil.. 63 Tiwari, Devesh... 14
Rubin, Norman.. 19 Tomov, Stanimire.. 58, 74, 150
Russell, Robert D. .. 131 Trehan, Amitabh.. 108
Sabharwal, Yogish.. 141 Tumeo, Antonino... 173
Saltz, Joel.. 165 Tuyttens, Daniel.. 184
Sapatnekar, Sachin S. .. 46 Uçar, Bora... 85
Sasaki, Hiroshi.. 21 Vaidyanathan, Karthikeyan... 167
Sato, Hitoshi.. 179 Valero, Mateo.. 173
Sato, Kento.. 189 van de Geijn, Robert... 162
Sato, Mitsuhisa.. 102 van Leeuwen, Joeri... 148
Schmid, Stefan.. 8 van Nieuwpoort, Rob V. ... 148
Schulz, Martin.. 116 Van Straalen, Brian... 177
Schuster, Assaf... 10 Van Zee, Field G. ... 162
Schwan, Karsten... 26 Varbanescu, Ana Lucia... 61

195

Author Index
Venkatesh, Akshay.. 98 Yamazaki, Ichitaro... 58
Vetter, Jeffrey S. ... 73 Yang, Chao... 115, 185
Villa, Oreste... 173 Yang, Guangwen... 126
Vincent, Benjamin... 38 Yang, Yi... 19
Vinter, Brian... 57 Yang, Yuanyuan.. 132
Vivien, Frédéric... 7 Yarkhan, Asim... 74
Voloshin, Ariella... 133 Yasui, Yuichiro.. 179
Vuduc, Richard.. 68 Yelick, Katherine... 171, 172
Waki, Hayato... 179 Yeom, Jae-Seung.. 116
Wang, Bing.. 128 Yi, Letian... 121
Wang, Guangxue.. 113 Yi, Qing.. 70
Wang, Hao.. 40, 91 Yilmazer, Ayse.. 20
Wang, Huayong... 13 Yim, Keun Soo.. 69
Wang, Jiaqi.. 107 Yin, Jieming... 46
Wang, Teng... 125 You, Yang.. 126
Wang, Tonghe... 109 Yu, Weikuan.. 125
Wang, Wei... 121 Yuan, Xin... 44
Wang, Xinliang.. 115 Yue, Siyu... 134
Wang, Yandong... 125 Yue, Yinliang... 120
Wang, Yongxian.. 113 Zaidouni, Dounia... 7
Ward, Bryan C. ... 31 Zaks, Shmuel.. 133
Weber, Valéry.. 114 Zha, Li... 128
Welch, Jennifer L. ... 107 Zhai, Antonia... 46
Wesolowski, Lukasz.. 116 Zhang, Boyu.. 37
Whaley, R. Clint... 161 Zhang, Jing.. 40
Williams, Samuel... 177, 185 Zhang, Lilun... 113
Willke, Theodore L. .. 61 Zhang, Lixin... 120
Winter, F.T. ... 166 Zhang, Xuechen.. 26
Wolf, Matthew.. 26 Zhang, Zigang... 120
Wu, Suzhen... 119 Zhao, Lihang... 95
Xiang, Ping.. 19 Zheng, Yili... 171
Xiong, Jin... 120 Zhou, Huiyang... 19
Xu, Chuanfu.. 113 Zhou, Pingqiang.. 46
Xu, Yangtong... 115 Zhou, Xiaobo... 49
Xu, Zhiwei.. 128 Zhu, Di... 134
Xue, Wei.. 115 Zhu, Xiaoqian.. 115

196

