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Adaptive Incremental Checkpointing via Delta Compression for 
Networked Multicore Systems 

 
Itthichok Jangjaimon and Nian-Feng Tzeng 

 
Center for Advanced Computer Studies 

University of Louisiana at Lafayette 
Lafayette, LA 70504 

{ixj0704, tzeng}@cacs.louisiana.edu 
 

Abstract 
 

Check pointing has been widely adopted in support of fault-tolerance and job migration, with checkpoint 
files preferably kept also at remote storage to withstand unavailability/failures of local nodes in 
networked systems. Lately, I/O bandwidth to remote storage becomes the bottleneck for check pointing 
on a large-scale system. This paper proposes an adaptive incremental check pointing (AIC), aiming to 
reduce the check pointing file size considerably so that its involved overhead is lowered and thus the 
expected job turnaround time drops. Given production multicore systems are observed to have unused 
cores often available, we design AIC to make use of separate cores for carrying out multi-level check 
pointing with delta compression at desirable points of time adaptively. We develop a new Markov model 
for predicting the performance of such multi-level concurrent check pointing, with AIC performance 
evaluated using six SPEC benchmarks under various system sizes. AIC is observed to lower the 
normalized expected turnaround time substantially (by up to 47%) when compared to its static counterpart 
and a recent multi-level check pointing scheme with fixed checkpoint intervals.  
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Towards Scalable Checkpoint Restart: A Collective Inline Memory Contents 
Deduplication Proposal 

 
Bogdan Nicolae 

 
Exascale Systems Group 
IBM Research, Ireland 

bogdan.nicolae@ie.ibm.com 
 

Abstract 
 
With increasing scale and complexity of supercomputing and cloud computing architectures, faults are 
becoming a frequent occurrence. For a large class of applications that run for a long time and are tightly 
coupled, Checkpoint-Restart (CR) is the only feasible method to survive failures. However, exploding 
checkpoint sizes that need to be dumped to storage pose a major scalability challenge, prompting the need 
to reduce the amount of check pointing data. This paper contributes with a novel collective memory 
contents deduplication scheme that attempts to identify and eliminate duplicate memory pages before they 
are saved to storage. Unlike previous approaches that concentrate on the checkpoints of the same process, 
our approach identifies duplicate memory pages shared by different processes (regardless whether on the 
same or different node). We show both how to achieve such a global deduplication in a scalable fashion 
and how to leverage it effectively to optimize the data layout in such way that it minimizes I/O 
bottlenecks. Large scale experiments show significant reduction of storage space consumption and 
performance overhead compared to several state-of-art approaches, both in synthetic benchmarks and for 
a real life high performance computing application. 
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Optimizing Checkpoints Using NVM as Virtual Memory 
 

Sudarsun Kannan, Ada Gavrilovska, and Karsten Schwan 
 

College of Computing 
Georgia Institute of Technology, Atlanta, Georgia, USA 

sudarsun@gatech.edu,{ada, schwan}@cc.gatech.edu 
 

Dejan Milojicic 
HP Labs, Palo Alto, USA 
dejan.milojicic@hp.com 

 
Abstract 

 
Rapid check pointing will remain key functionality for next generation high end machines. This paper 
explores the use of node-local nonvolatile memories (NVM) such as phase-change memory, to provide 
frequent, low overhead checkpoints. By adapting existing multi-level checkpoint techniques, we devise 
new methods, termed NVM-checkpoints, that efficiently store checkpoints on both local and remote node 
NVM. The checkpoint frequencies are guided by failure models that capture the expected accessibility of 
such data after failure. To lower overheads, NVM-checkpoints reduce the NVM and interconnect 
bandwidth used with a novel pre-copy mechanism, which incrementally moves checkpoint data from 
DRAM to NVM before a local checkpoint is started. This reduces local checkpoint cost by limiting the 
instantaneous data volume moved at checkpoint time, thereby freeing bandwidth for use by applications. 
In fact, the pre-copy method can reduce peak interconnect usage up to 46%. Since our approach treats 
NVM as memory rather than as ‘Ram disk’, pre-copying can be generalized to directly move data to 
remote NVMs. This results in 40% faster application execution times compared to asynchronous 
approaches not using pre-copying. 
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On Closed Nesting and Checkpointing in Fault-Tolerant 
Distributed Transactional Memory 

 
Aditya Dhoke 

 
ECE Dept. 

Virginia Tech. 
Email: adityad@vt.edu 

 
Binoy Ravindran 

 
ECE Dept. 

Virginia Tech. 
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Bo Zhang 

 
ECE Dept. 

Virginia Tech. 
Email: alexzbzb@vt.edu 

 
Abstract 

 
We consider the closed nesting and checkpointing model for transactions in fault-tolerant distributed 
transactional memory (DTM). The closed nested model allows inner-nested transactions to be aborted (in 
the event of a transactional conflict) without aborting the parent transaction, while check pointing allows 
transactions to rollback to a previous execution state, potentially improving concurrency over flat nesting. 
We consider a quorum-based replicated model for fault-tolerant DTM, and present algorithms to support 
closed nesting and checkpointing. The algorithms use incremental validation to avoid communication 
overhead on commit, and ensure1-copy equivalence. Our experimental studies using a Java DTM 
implementation of the algorithms on micro and macro benchmarks reveal the conditions when they 
improve transactional throughput over flat nesting, and also their relative advantages and disadvantages. 
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Reliable Service Allocation in Clouds 
 

Olivier Beaumont, Lionel Eyraud-Dubois, and Hubert Larchevêque 
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Abstract 
 
We consider several reliability problems that arise when allocating applications to processing resources in 
a Cloud computing platform. More specifically, we assume on the one hand that each computing resource 
is associated to a capacity constraint and to a probability of failure. On the other hand, we assume that 
each service runs as a set of independent instances of identical Virtual Machines, and that the Service 
Level Agreement between the Cloud provider and the client states that a minimal number of instances of 
the service should run with a given probability. In this context, given the capacity and failure probabilities 
of the machines, and the capacity and reliability demands of the services, the question for the cloud 
provider is to find an allocation of the instances of the services (possibly using replication) onto machines 
satisfying all types of constraints during a given time period. In this paper, our goal is to assess the impact 
of the reliability constraint on the complexity of resource allocation problems. We consider several 
variants of this problem, depending on the number of services and whether their reliability demand is 
individual or global. We prove several fundamental complexity results (#P’ and NP-completeness results) 
and we provide several optimal and approximation algorithms. In particular, we prove that a basic 
randomized allocation algorithm, that is easy to implement, provides optimal or quasi-optimal results in 
several contexts, and we show through simulations that it also achieves very good results in more general 
settings. 
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Abstract 

 
It remains a challenge to provision resources in the cloud such that performance is maximized and 
financial cost is minimized. A fixed budget can be used to rent a wide variety of resource configurations 
for varying durations. The two steps - resource acquisition and scheduling/allocation - are dependent on 
each other and are particularly difficult when considering complex resource usage such as workflows, 
where task precedence need to be preserved and the budget constraint is assigned for the whole cloud 
application instead of every single job. The ability to acquire resources dynamically and trivially in the 
cloud - while being incredibly powerful and useful - exacerbates this particular resource acquisition and 
scheduling problem. In this paper, we design, implement and evaluate two auto-scaling solutions to 
minimize job turnaround time within budget constraints for cloud workflows. The scheduling-first 
algorithm distributes the application-wide budget to each individual job, determines the fastest execution 
plan and then acquires the cloud resources, while the scaling-first algorithm determines the size and the 
type of the cloud resources first and then schedules the workflow jobs on the acquired instances. The 
scaling-first algorithm shows better performance when the budget is low while the scheduling-first 
algorithm performs better when the budget is high. The two algorithms can reduce the job turnaround 
time by 9.6% - 45.2% compared to choosing a fixed general machine type. Moreover, they show good 
tolerance (between-10.2% and 16.7%) to inaccurate parameters (20% estimation error). 
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Abstract 

 
In this paper, we study a resource allocation problem in the context of Cloud Computing, in which a set of 
Virtual Machines (VM) has to be allocated on a set of Physical Machines (PM). Each VM has a given 
demand (e.g. CPU demand), and each PM has a capacity. However, VMsonly use a fraction of their 
demand. The aim is to exploit the difference between the demand of the VM and its actual resource usage, 
to achieve a higher utilization on the PMs. However, the resource consumption of the VMs might change 
over time (while staying under its original demand), implying sometimes expensive “SLA violations” 
when the demand of some VMs is not satisfied because of overloaded PMs. Thus, while optimizing the 
global resource utilization of the PMs, it is necessary to ensure that at any moment a VM’s need evolves, 
a few number of migrations (moving a VM from PM to PM) is sufficient to find a new configuration in 
which all the VMs’ consumptions are satisfied. We model this problem using a fully dynamic bin packing 
approach and we present an algorithm ensuring a global utilization of the resources of 66%. Moreover, 
each time a PM is overloaded, at most one migration is sufficient to fall back in a configuration with no 
overloaded PM, and at most 3 different PMs are concerned by required migrations that may occur to keep 
the global resource utilization correct. This allows the platform to be highly resilient to a great number of 
changes. 
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Abstract 

 
Although the resource elasticity offered by Infrastructure-as-a-Service (IaaS) clouds opens up 
opportunities for elastic application performance, it also poses challenges to application management. 
Cluster applications, such as multi-tier websites, further complicates the management requiring not only 
accurate capacity planning but also proper partitioning of the resources into a number of virtual machines. 
Instead of burdening cloud users with complex management, we move the task of determining the optimal 
resource configuration for cluster applications to cloud providers. We find that a structural reorganization 
of multi-tier websites, by adding a caching tier which runs on resources debited from the original resource 
budget, significantly boosts application performance and reduces resource usage. We propose V-Cache, a 
machine learning based approach to flexible provisioning of resources for multi-tier applications in 
clouds. V-Cache transparently places a caching proxy in front of the application. It uses a genetic 
algorithm to identify the incoming requests that benefit most from caching and dynamically resizes the 
cache space to accommodate these requests. We develop a reinforcement learning algorithm to optimally 
allocate the remaining capacity to other tiers. We have implemented V-Cache on a VMware-based cloud 
testbed. Experiment results with the RUBiS and WikiBench benchmarks show that V-Cache outperforms 
a representative capacity management scheme and a cloud-cache based resource provisioning approach 
by at least 15% in performance, and achieves at least 11% and 21% savings on CPU and memory 
resources, respectively.  
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Abstract 

 
Analysis of large pathology image datasets offers significant opportunities for the investigation of disease 
morphology, but the resource requirements of analysis pipelines limit the scale of such studies. Motivated 
by a brain cancer study, we propose and evaluate a parallel image analysis application pipeline for high 
throughput computation of large datasets of high resolution pathology tissue images on distributed CPU-
GPU platforms. To achieve efficient execution on these hybrid systems, we have built runtime support 
that allows us to express the cancer image analysis application as a hierarchical data processing pipeline. 
The application is implemented as a coarse-grain pipeline of stages, where each stage may be further 
partitioned into another pipeline of fine-grain operations. The fine-grain operations are efficiently 
managed and scheduled for computation on CPUs and GPUs using performance aware scheduling 
techniques along with several optimizations, including architecture aware process placement, data locality 
conscious task assignment, data prefetching, and asynchronous data copy. These optimizations are 
employed to maximize the utilization of the aggregate computing power of CPUs and GPUs and 
minimize data copy overheads. Our experimental evaluation shows that the cooperative use of CPUs and 
GPUs achieves significant improvements on top of GPU-only versions (up to 1.6x) and that the execution 
of the application as a set of fine-grain operations provides more opportunities for runtime optimizations 
and attains better performance than coarser-grain, monolithic implementations used in other works. An 
implementation of the cancer image analysis pipeline using the runtime support was able to process an 
image dataset consisting of 36,848 4Kx4K-pixel image tiles (about 1.8TB uncompressed) in less than 4 
minutes (150 tiles/second) on 100 nodes of a state-of-the-art hybrid cluster system. 
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Abstract 
 
We develop an optimized FFT based Poisson solver on a CPU-GPU heterogeneous platform for the case 
when the input is too large to fit on the GPU global memory. The solver involves memory bound 
computations such as 3D FFT in which the large 3D data may have to be transferred over the PCIe bus 
several times during the computation. We develop a new strategy to decompose and allocate the 
computation between the GPU and the CPU such that the 3D data is transferred only once to the device 
memory, and the executions of the GPU kernels are almost completely overlapped with the PCI data 
transfer. We were able to achieve significantly better performance than what has been reported in 
previous related work, including over 50 GFLOPS for the three periodic boundary conditions, and over 
40 GFLOPS for the two periodic, one Neumann boundary conditions. The PCIe bus bandwidth achieved 
is over 5GB/s, which is close to the best possible on our platform. For all the cases tested, the single 3D 
PCIe transfer time, which constitutes a lower bound on what is possible on our platform, takes almost 
70% of the total execution time of the Poisson solver.  
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Abstract 
 
Dense linear algebra has been traditionally used to evaluate the performance and efficiency of new 
architectures. This trend has continued for the past half decade with the advent of multi-core processors 
and hardware accelerators. In this paper we describe how several flavors of the Linpack benchmark are 
accelerated on Intel’s recently released Intel(R) Xeon Phi(TM) co-processor (code-named Knights 
Corner) in both native and hybrid configurations. Our native DGEMM implementation takes full 
advantage of Knights Corner’s salient architectural features and successfully utilizes close to 90% of its 
peak compute capability. Our native Linpack implementation running entirely on Knights Corner 
employs novel dynamic scheduling and achieves close to 80% efficiency - the highest published co-
processor efficiency. Similarly to native, our single-node hybrid implementation of Linpack also achieves 
nearly 80% efficiency. Using dynamic scheduling and an enhanced look-ahead scheme, this 
implementation scales well to a 100-node cluster, on which it achieves over 76% efficiency while 
delivering the total performance of 107 TFLOPS. 
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Abstract 
 
As new heterogeneous systems and hardware accelerators appear, high performance computers can reach 
a higher level of computational power. Nevertheless, this does not come for free: the more heterogeneity 
the system presents, the more complex becomes the programming task in terms of resource management. 
OmpSs is a task-based programming model and framework focused on the runtime exploitation of 
parallelism from annotated sequential applications. This paper presents a set of extensions to this 
framework: we show how the application programmer can expose different specialized versions of tasks 
(i.e. pieces of specific code targeted and optimized for a particular architecture) and how the system can 
choose between these versions at run time to obtain the best performance achievable for the given 
application. From the results obtained in a multi-GPU system, we prove that our proposal gives flexibility 
to application’s source code and can potentially increase application’s performance. 
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Abstract 

 
With the advent of many-core systems capable of hosting multiple concurrently running applications, the 
traffic characteristics of networks-on-chip (NoCs) may exhibit new regional behaviors. By recognizing 
and exploiting these traffic behaviors, the effectiveness of NoC interference reduction techniques can be 
greatly improved. However, few works have investigated these regional behaviors and their potential 
impact on interference, leaving the opportunity largely unexplored. In this paper, we identify and 
characterize regional behavior in NoC and propose RAIR, a region-aware interference reduction 
technique that not only removes any restrictions on the inter-region traffic patterns, but also captures and 
exploits regional behavior throughout the design, thus improving the effectiveness of interference 
reduction. Evaluation using a cycle-accurate simulator shows that RAIR can improve the average packet 
latency by up to 17% on synthetic traffic patterns and up to 26% on PARSEC benchmarks compared to 
state-of-the-art interference reduction techniques.  
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Abstract 

 
With the emergence of multi-programmed workloads for Chip Multiprocessors (CMP), Quality of Service 
(QoS) of each co-scheduled application on the CMP is increasingly gaining importance. As more and 
more applications are consolidated into a single chip to compete for the limited off-chip memory 
bandwidth, off-chip memory bandwidth partitioning makes an increasing impact on system performance. 
Although various existing heuristic-based memory scheduling schemes have achieved significant system 
performance improvement by better partitioning the bandwidth, it is still not clear what are the best ways 
to partition off-chip bandwidth for improving different system performance objectives. The goal of this 
paper is to understand how off-chip memory bandwidth partitioning affects various system performance 
objectives. To achieve this goal, we propose an analytical model that is simple yet powerful enough to 
reveal the relationship between various memory bandwidth partitioning schemes and different system 
performance objectives. From our model, optimal memory bandwidth partitioning schemes for different 
system-level objectives are derived. Experimental results from a cycle-accurate full-system simulator 
show that, for heterogeneous workloads, performance improvements over 
No_partitioning/Equal_partitioning in terms of harmonic weighted speedup, minimum fairness, weighted 
speedup and sum of IPCs are 20.3%/2.1%, 49.8%/38.7%, 32.8%/7.6% and 64.2%/24%, on average, with 
our corresponding optimal partitioning schemes (i.e., Square root, Proportional, Priority_APC, 
Priority_API), respectively. 
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Abstract 

 
Nanophotonics has been proposed to design low latency and high bandwidth NOC for future Chip Multi-
Processors (CMPs). Recent nanophotonic NOC designs adopt the token-based arbitration coupled with 
credit-based flow control, which leads to low bandwidth utilization. In this work, we propose two 
handshake schemes for nanophotonic interconnects in CMPs, Global Handshake (GHS) and Distributed 
Handshake (DHS), which get rid of the traditional credit based flow control, reduce the average token 
waiting time, and finally improve the network throughput. Furthermore, we enhance the basic handshake 
schemes with seta side buffer and circulation techniques to overcome the Head-Of-Line (HOL)blocking. 
Our evaluation shows that the proposed handshake schemes improve network throughput by up to 62% 
under synthetic workloads. With the extracted trace traffic from real applications, the handshake schemes 
can reduce the communication delay by up to 59%. The basic handshake schemes add only 0.4% 
hardware overhead for optical components and negligible power consumption. In addition, the 
performance of the handshake schemes is independent of on-chip buffer space, which makes them 
feasible in a large scale nanophotonic interconnect design. 
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Abstract 
 
Communication in multi- and many-core processors has long been a bottleneck to performance due to the 
high cost of long-distance electrical transmission. This difficulty has been partially remedied by 
architectural constructs such as caches and novel interconnect topologies, albeit at a steep cost in terms of 
complexity. Unfortunately, even these measures are rendered ineffective by certain kinds of 
communication, most notably scatter and gather operations that exhibit highly non-local data access 
patterns. Much work has gone into examining how the increased bandwidth density afforded by chip-
scale silicon photonic interconnect technologies affects computing, but photonics have additional 
properties that can be leveraged to greatly accelerate performance and energy efficiency under such 
difficult loads. This paper describes a novel synchronized global photonic bus and system architecture 
called P-sync that uses photonics’ distance independence to greatly improve performance on many 
important applications previously limited by electronic interconnect. The architecture is evaluated in the 
context of a non-local yet common application: the distributed Fast Fourier Transform. We show that it is 
possible to achieve high efficiency by tightly balancing computation and communication latency in P-
sync and achieve upwards of a 6x performance increase on gather patterns, even when bandwidth is 
equalized. 
  



 

Session 5: Graph Algorithms 
  



 

  



27 
 

Optimizations and Analysis of BSP Graph Processing Models on Public Clouds 
 

Mark Redekopp, Yogesh Simmhan, and Viktor K. Prasanna 
 

University of Southern California, Los Angeles CA 90089 
{redekopp, simmhan, prasanna}@usc.edu 

 
Abstract 

 
Large-scale graph analytics is a central tool in many fields, and exemplifies the size and complexity of 
Big Data applications. Recent distributed graph processing frameworks utilize the venerable Bulk 
Synchronous Parallel (BSP) model and promise scalability for large graph analytics. This has been made 
popular by Google’s Pregel, which provides an architecture design for BSP graph processing. Public 
clouds offer democratized access to medium-sized compute infrastructure with the promise of rapid 
provisioning with no capital investment. Evaluating BSP graph frameworks on cloud platforms with their 
unique constraints is less explored. Here, we present optimizations and analyses for computationally 
complex graph analysis algorithms such as betweenness-centrality and all-pairs shortest paths on a native 
BSP framework we have developed for the Microsoft Azure Cloud, modeled on the Pregel graph 
processing model. We propose novel heuristics for scheduling graph vertex processing in swaths to 
maximize resource utilization on cloud VMs that lead to a 3.5x performance improvement. We explore 
the effects of graph partitioning in the context of BSP, and show that even a well partitioned graph may 
not lead to performance improvements due to BSP’s barrier synchronization. We end with a discussion on 
leveraging cloud elasticity for dynamically scaling the number of BSP workers to achieve a better 
performance than a static deployment, and at a significantly lower cost. 
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Abstract 

 
We present a parallel algorithm for finding all Pareto optimal paths from a specified source in a graph. 
The algorithm is label-setting, i.e., it only performs work on distance labels that are optimal. The main 
result is that the added complexity when going from one to multiple objectives is completely 
parallelizable. The algorithm is based on a multi-objective generalization of a priority queue. Such a 
Pareto queue can be efficiently implemented for two dimensions. Surprisingly, the parallel biobjective 
approach yields an algorithm performing asymptotically less work than the previous sequential 
algorithms. We also discuss generalizations for d&gt;= 3 objective functions and for single target search. 
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Abstract 

 
In this paper we explore the design space of creating a multi-threaded graph partitioner. We present and 
compare multiple approaches for parallelizing each of the three phases of multilevel graph partitioning: 
coarsening, initial partitioning, and uncoarsening. We also explore the differences in thread lifetimes and 
data ownership in this context. We show that despite the options for fine-grain synchronization and task 
decomposition offered by current threading technologies, the best performance is achieved by preserving 
data ownership and minimizing synchronization. In addition to this we also presentan unprotected 
approach to generating a vertex matching in parallel with little overhead. We use these findings to 
develop an OpenMP based implementation of the Metis algorithms and compare it against MPI based 
partitioners on three differentmulti-core architectures. Our multi-threaded implementation not only 
achieves greater than a factor of two speedup over the other partitioners, but also uses significantly less 
memory. 
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Abstract 

 
High performance is a crucial consideration when executing a complex analytic query on a massive 
semantic graph. In a semantic graph, vertices and edges carry attributes of various types. Analytic queries 
on semantic graphs typically depend on the values of these attributes, thus, the computation must view the 
graph through a filter that passes only those individual vertices and edges of interest. Knowledge 
Discovery Toolbox (KDT), a Python library for parallel graph computations, is customizable in two ways. 
First, the user can write custom graph algorithms by specifying operations between edges and vertices. 
These programmer-specified operations are called semiring operations due to KDT’s underlying linear-
algebraic abstractions. Second, the user can customize existing graph algorithms by writing filters that 
return true for those vertices and edges the user wants to retain during algorithm execution. For high 
productivity, both semiring operations and filters are written in a high-level language, resulting in 
relatively low performance due to the bottleneck of having to call into the Python virtual machine for 
each vertex and edge. In this work, we use the Selective Embedded JIT Specialization (SEJITS) approach 
to automatically translate semiring operations and filters defined by programmers into a lower-level 
efficiency language, bypassing the up call into Python. We evaluate our approach by comparing it with 
the high-performance Combinatorial BLAS engine, and show our approach enables users to write in high-
level languages and still obtain the high performance of low-level code. We also present a new roofline 
model for graph traversals, and show that our high-performance implementations do not significantly 
deviate from the roofline. Overall, we demonstrate the first known solution to the problem of obtaining 
high performance from a productivity language when applying graph algorithms selectively on semantic 
graphs. 
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Abstract 

 
Systolic arrays offer a very attractive, data centric, execution model as an alternative to the von Neumann 
architecture. Hardware implementations of systolic arrays turned out not to be viable solutions in the past. 
This article shows how the systolic design principles can be applied to a software solution to deliver an 
algorithm with unprecedented strong scaling capabilities. Systolic array for the QR decomposition is 
developed and a virtualization layer is used for mapping of the algorithm to a large distributed memory 
system. Strong scaling properties are discovered, superior to existing solutions. 
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Abstract 
 
Communication-optimal algorithms are known for square matrix multiplication. Here, we obtain the first 
communication-optimal algorithm for all dimensions of rectangular matrices. Combining the dimension-
splitting technique of Frigo, Leiserson, Prokop and Ramachandran (1999) with the recursive BFS/DFS 
approach of Ballard, Demmel, Holtz, Lipshitz and Schwartz (2012) allows for a communication-optimal 
as well as cache- and network-oblivious algorithm. Moreover, the implementation is simple: 
approximately 50 lines of code for the shared-memory version. Since the new algorithm minimizes 
communication across the network, between NUMA domains, and between levels of cache, it performs 
well in practice on both shared- and distributed-memory machines. We show significant speedups over 
existing parallel linear algebra libraries both on a 32-core shared-memory machine and on a distributed-
memory supercomputer. 
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Abstract 

 
Symmetric sparse matrices arise often in the solution of sparse linear systems. Exploiting the non-zero 
element symmetry in order to reduce the overall matrix size is very tempting for optimizing the 
symmetric Sparse Matrix-Vector Multiplication kernel (SpMV) for multicore architectures. Despite being 
very beneficial for the single-threaded execution, not storing the upper or lower triangular part of a 
symmetric sparse matrix complicates the multithreaded SpMV version, since it introduces an undesirable 
dependency on the output vector elements. The most common approach for overcoming this problem is to 
use local, per-thread vectors, which are reduced to the output vector at the end of the computation. 
However, this reduction leads to considerable memory traffic, limiting the scalability of the symmetric 
SpMV. In this paper, we take a two-step approach in optimizing the symmetric SpMV kernel. First, we 
introduce the CSX-Sym variant of the highly compressed CSX format, which exploits the non-zero 
element symmetry for compressing further the input matrix. Second, we minimize the memory traffic 
produced by the local vectors reduction phase by implementing a non-zero indexing compression scheme 
that minimizes the local data to be reduced. Our indexing scheme allowed the scaling of symmetric 
SpMV and provided a more than 2$\times$ performance improvement over the baseline CSR 
implementation and 83.9% over the typical symmetric SpMV kernel. The CSX-Sym variant has further 
increased the symmetric SpMV performance by 43.4%. Finally, we evaluate the effect of our 
optimizations in the context of the CG iterative method, where we achieve an 77.8% acceleration of the 
overall solver.  
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Abstract 

 
Computational scientists and engineers commonly rely on established software libraries to achieve high 
performance and reliability in their numerical applications. Unfortunately, this approach does not work 
well if the desired functionality is absent in existing libraries or if the integration is difficult. In such 
scenarios, one is often forced to explore alternative algorithms and in-house implementations. Such 
exploration can be a challenging task for computational scientists and engineers without sufficient 
computer science background. To address this issue, we design and build an automated rapid prototyping 
tool for regular grid-based numerical applications. This new tool allows programmers to specify 
algorithms as composition of familiar computation patterns such as those easily found in open literature 
expressed as generalized elemental subroutines. The tool then automatically transforms such subroutines 
into code which adapts to the prescribed data structures and delivers performance expected from the 
underlying algorithms. We demonstrate the tool in use cases including a production-grade computational 
fluid dynamic application.  
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Abstract 
 
I/O performance is vital for most HPC applications especially those that generate a vast amount of data 
with the growth of scale. Many studies have shown that scientific applications tend to issue small and 
noncontiguous accesses in an interleaving fashion, causing different processes to access overlapping 
regions. In such scenario, collective I/O is a widely used optimization technique. However, the use of 
collective I/O deployed in existing MPI implementations is not trivial and sometimes even impossible. 
Collective I/O is an optimization based on a single collective I/O access. If the data reside in different 
places (e.g. in different arrays), the application has to maintain a buffer to first combine these data and 
then perform I/O operations on the buffer rather than the original data pieces. The process is very tedious 
for application developers. Besides, collective I/O requires the creating of a file view to describe the 
noncontiguous access patterns and additional coding is needed. Moreover, for the applications with 
complex data access using dynamic data sizes, it is hard or even impossible to use the file view 
mechanism to describe the access pattern through derived data types. In this study, we develop a user-
level library called transparent collective I/O (TCIO) for application developers to easily incorporate 
collective I/O optimization into their applications. Preliminary experiments by means of a synthetic 
benchmark and a real cosmology application demonstrate that the library can significantly reduce the 
programming efforts required for application developers. Moreover, TCIO delivers better performance at 
large scales as compared to the existing collective functionality provided by MPI-IO.  
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Abstract 

 
Parallel applications rely on I/O to load data, store end results, and protect partial results from being lost 
to system failure. Parallel I/O performance thus has a direct and significant impact on application 
performance. Because supercomputer I/O systems are large and complex, one cannot directly analyze 
their activity traces. While several visual or automated analysis tools for large-scale HPC log data exist, 
analysis research in the high-performance computing field is geared toward computation performance 
rather than I/O performance. Additionally, existing methods usually do not capture the network 
characteristics of HPC I/O systems. We present a visual analysis method for I/O trace data that takes into 
account the fact that HPC I/O systems can be represented as networks. We illustrate performance metrics 
in a way that facilitates the identification of abnormal behavior or performance problems. We 
demonstrate our approach on I/O traces collected from existing systems at different scales.  
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Abstract 
 
Increasingly severe I/O bottlenecks on High-End Computing machines are prompting scientists to process 
simulation output data online while simulations are running and before storing data on disk. There are 
several options to place data analytics along the I/O path: on compute nodes, on separate nodes dedicated 
to analytics, or after data is stored on persistent storage. Since different placements have different impact 
on performance and cost, there is a consequent need for flexibility in the location of data analytics. The 
FlexIO middleware described in this paper makes it easy for scientists to obtain such flexibility, by 
offering simple abstractions and diverse data movement methods to couple simulation with analytics. 
Various placement policies can be built on top of FlexIO to exploit the trade-offs in performing analytics 
at different levels of the I/O hierarchy. Experimental results demonstrate that FlexIO can support a variety 
of simulation and analytics workloads at large scale through flexible placement options, efficient data 
movement, and dynamic deployment of data manipulation functionalities.  
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Abstract 

 
Burstiness is a common pattern of virtual machines (VMs)’s workload in production data centers, where 
spikes usually occur a periodically with low frequency and last shortly. Since virtualization technology 
enables elastic resource provisioning in a computing cloud, the bursty workloads could be handled 
effectively through dynamically scaling up/down. However, to cut back energy consumption, VMs are 
usually highly consolidated with the minimum number of physical machines (PMs) used. In this case, to 
meet the runtime expanding demands of the resources (spikes), some VMs have to be migrated to other 
idle PMs, which is costly and causes performance degradation potentially. In this paper, we investigate 
the elastic resource provisioning problem and propose a novel VM consolidation mechanism with 
resource reservation which takes burstiness into consideration as well as energy consumption. We model 
the resource requirement pattern as the popular ON-OFF Markov chain to represent burstiness, based on 
which a reservation strategy via queuing theory approach is given for each PM. Next we present a 
complete VM consolidation scheme with resource reservation within reasonable time complexity. The 
experiment result show that our algorithms improve the consolidation ratio by up to 45% with large spike 
size and around 30% with normal spike size compared to those provisioning for peak workload, and a 
better balance of performance and energy consumption is achieved in comparison with other commonly 
used consolidation algorithms. 
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Abstract 
 
The performance gap between computing power and the I/O system is ever increasing, and in the 
meantime more and more High Performance Computing (HPC) applications are becoming data intensive. 
This study describes an I/O data replication scheme, named Pattern-Direct and Layout-Aware (PDLA) 
data replication scheme, to alleviate this performance gap. The basic idea of PDLA is replicating 
identified data access pattern, and saving these reorganized replications with optimized data layouts based 
on access cost analysis. A runtime system is designed and developed to integrate the PDLA replication 
scheme and existing parallel I/O system, a prototype of PDLA is implemented under the MPICH2 and 
PVFS2 environments. Experimental results show that PDLA is effective in improving data access 
performance of parallel I/O systems.  
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Abstract 
 
Modern large computing systems employ sophisticated disk I/O systems that are configured to deliver 
high throughput, low-latency disk I/O to multiple clients accessing them. However, due to potential 
interferences among concurrent I/O accesses issued by multiple clients, a disk-cache and disk-level 
parallelism unaware I/O scheduling algorithm employed by the operating system/storage controller may 
have a significant impact on both system throughput and I/O latency. In this paper, we propose two 
fundamentally new disk I/O scheduling techniques. The first technique, called DCAP, performs I/O 
scheduling in a disk cache aware and parallelism aware manner. The key idea in DCAP is to process 
simultaneous requests to different disks from the same application/priority class together and reorder 
them so that they have the highest number of hits in the disk cache. We then propose an enhanced version 
of DCAP called DCAP-G, that aggregates requests into service groups to alleviate the problem of request 
starvation that may occur in DCAP in certain cases. We evaluate both DCAP and DCAP-G using a set of 
I/O workloads from production-based enterprise systems as well as high-performance computing domain. 
In addition, we also compare the performance of our algorithms to previously proposed I/O scheduling 
algorithms. Our evaluation shows that, averaged across all our workloads, DCAP improves the average 
I/O response time, taking maximum advantage of disk access locality and exploiting parallelism among 
concurrent accesses to multiple disks, by 14.9% over an I/O scheduler that schedules requests on a first-
come-first-served (FCFS) basis and also improves by 6.5% over a previously proposed locality-optimal 
I/O scheduler (SPCTF). In addition to these improvements, DCAP-G improves the average I/O response 
time by 6.6% over DCAP, leading to an overall 20.7% and 12.0% improvement over FCFS, and SPCTF, 
respectively. 
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Abstract 
 
Large-scale systems typically mount many different file systems with distinct performance characteristics 
and capacity. Applications must efficiently use this storage in order to realize their full performance 
potential. Users must take into account potential file replication throughout the storage hierarchy as well 
as contention in lower levels of the I/O system, and must consider communicating the results of file I/O 
between application processes to reduce file system accesses. Addressing these issues and optimizing file 
accesses requires detailed run-time knowledge of file system performance characteristics and the 
location(s) of files on them. In this paper, we propose Fast Global File Status (FGFS), a scalable 
mechanism to retrieve file information, such as its degree of distribution or replication and consistency. 
We use a novel node-local technique that turns expensive, non-scalable file system calls into simple string 
comparison operations. FGFS raises the namespace of a locally-defined file path to a global namespace 
with little or no file system calls to obtain global file properties efficiently. Our evaluation on a large 
multi-physics application shows that most FGFS file status queries on its executable and 848 shared 
library files complete in 272 milliseconds or faster at 32,768 MPI processes. Even the most expensive 
operation, which checks global file consistency, completes in under 7 seconds at this scale, an 
improvement of several orders of magnitude over the traditional checksum technique. 
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Abstract 

 
When files are striped in a parallel I/O system, requests to the files are decomposed into a number of sub-
requests that are distributed over multiple servers. If a request is not aligned with the striping pattern such 
decomposition can make the first and last sub-requests much smaller than the striping unit. Because hard-
disk-based servers can be much less efficient in serving small requests than large ones, the system 
exhibits heterogeneity in serving sub-requests of different sizes, and the net throughput of the entire 
system can be severely degraded by the inefficiency of serving the smaller requests, or fragments. 
Because a request is not considered complete until its slowest sub-request is, the penalty is yet greater for 
synchronous requests. To make the situation even worse, the larger the request, or the more data servers 
the requested data is striped over, the larger the detrimental performance effect of serving fragments can 
be. This effect can become the Achilles’ heel of a parallel I/O system performance seeking scalability 
with large sequential accesses. In this paper we propose iBridge, a scheme that uses solid-state drives to 
serve request fragments and thereby bridge the performance gap between serving fragments and serving 
large sub-requests. We have implemented iBridge in the PVFS file system. Our experimental results with 
representative MPI-IO benchmarks show that iBridge can significantly improve the I/O throughput of 
storage systems, especially for large requests with fragments. 
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Abstract 
 
This paper initiates the study of self-adjusting networks (or distributed data structures) whose topologies 
dynamically adapt to a communication pattern $\sigma$. % (i.e., an ever changing “traffic matrix’’). We 
present a fully decentralized self-adjusting solution called \Splay Net. A \Splay Net\ is a distributed 
generalization of the classic splay tree concept. It ensures short paths (which can be found using local-
greedy routing) between communication partners while minimizing topological rearrangements. We 
derive an upper bound for the amortized communication cost of a \Splay Net\based on empirical entropies 
of $\sigma$, and show that \Splay Nets\ have several interesting convergence properties. For instance, 
\Splay Nets\ features a provable online optimality under special requests scenarios. % and multicast tree 
scenarios We also investigate the optimal static network and prove different lower bounds for the average 
communication cost based on graph cuts and on the empirical entropy of the communication pattern 
$\sigma$. % which may be of independent interest. From these lower bounds it follows, e.g., that \Splay 
Nets\ are optimal in scenarios where the requests follow a product distribution as well. Finally, this paper 
shows that in contrast to the Minimum Linear Arrangement problem which is generally NP-hard, the 
optimal static tree network can be computed in polynomial time for any guest graph, despite the 
exponentially large graph family. We complement our formal analysis with a small simulation study on a 
Facebook graph. 
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Abstract 

 
Traditionally, a parallel application is partitioned, mapped and then routed on a network of compute 
nodes where the topology of the interconnection network is fixed and known beforehand. Such a topology 
often comes with redundant links to accommodate the communication patterns of a wide range of 
applications. With recent advances in technology for optical circuit switches, it is now possible to 
construct a network with much fewer links, and to make the link endpoints configurable to suit the 
communication pattern of a given application. While this is economical (saving both links and the power 
to run them), it raises the difficult problem of how to configure the network and how to reconfigure it 
quickly when the application’s communication pattern changes. In this paper, we propose the Kirchhoff 
index (KI) of a certain weighted graph related to the interconnection network as a proxy for its 
communication throughput. Our usage of this metric is based on a theoretical analogy between resistances 
in an electrical network and communication loads in the interconnection network. We show how 
mathematical techniques for reducing KI can be used to configure a network in a dramatically shorter 
time as compared to the current state-of-the-art scheme. 
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Abstract 

 
Malleable jobs can adapt to varying degrees of available parallelism. This is an interesting approach to 
more flexible usage of parallel resources. For example, malleable jobs can be scheduled optimally and 
efficiently where more restricted forms of parallel jobs are NP-hard to handle. However, little work has 
been done on how to make fundamental computations malleable. We study how this can be done for 
sorting. Our algorithm is an adaptive version of Multiway Merge Sort and outperforms a state-of-the art 
implementation in the multi core STL when the number of available cores fluctuates.  
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Abstract 
 
The particle filter is a Bayesian estimation technique based on Monte Carlo simulation. It is ideal for non-
linear, non-Gaussian dynamical systems with applications in many areas, such as computer vision, 
robotics, and econometrics. Practical use has so far been limited, because of steep computational 
requirements. In this study, we investigate how to design a particle filter framework for complex 
estimation problems using many-core architectures. We develop a robotic arm application as a highly 
flexible estimation problem to push estimation rates and accuracy to new levels. By varying filtering and 
model parameters, we evaluate our particle filter extensively and derive rules of thumb for good 
configurations. Using our robotic arm application, we achieve a few hundred state estimations per second 
with one million particles. With our framework, we make a significant step towards a wider adoption of 
particle filters and enable studies into filtering setups for even larger estimation problems. 
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Abstract 

 
Modern General-Purpose computation on Graphics Processing Units (GPGPUs) explore parallelism in 
applications by building massively parallel architecture and apply multithreading technology to hide the 
instruction and memory latencies. Such architectures become increasingly popular for parallel 
applications using CUDA/OpenCL programming languages. In this paper, we investigate thread 
scheduling algorithms on such highly-threaded GPGPUs. The traditional round-robin scheduling schemes 
are inefficient in handling instruction execution and memory accesses with disparate latencies. We 
introduce a new GPGPU thread (warp) scheduling algorithm which enables flexible round-robin distance 
for efficiently utilizing multithread parallelism and use program-guided priority shift among concurrent 
threads (warps) to allow more overlaps between short-latency compute instructions and long-latency 
memory accesses. Performance evaluations demonstrate that the new scheduling algorithm improves a set 
of kernel execution times by an average of 12% with 52% reduction on scheduler stall cycles over the 
fine-granularity round-robin scheme. In this paper, we also accomplish a thorough evaluation of various 
thread scheduling algorithms based on the amount of hardware threads, the scheduling overhead, and the 
global memory latency.  
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Abstract 
 
Stencils represent an important class of computations that are used in many scientific disciplines. 
Increasingly, many of the stencil computations in scientific applications are being offloaded to GPUs to 
improve running times. Since a large part of the simulation time is spent inside the stencil kernels, 
optimizing the kernel is therefore important in the context of achieving greater computation efficiencies 
and reducing simulation time. In this work, we proposed a novel in-plane method for stencil computations 
on GPUs and compared its performance with the conventional method implemented in the Nvidia SDK. 
We also implemented an auto-tuning framework for our method to select the optimal parameters for 
different GPU architectures. A performance model was developed for our proposed method, and is used 
to speed up the auto-tuning process. Our results show that a speedup of nearly 2X can be achieved 
compared to Nvidia’s implementation.  
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Abstract 
 
Irregular algorithms are algorithms with complex main data structures such as directed and undirected 
graphs, trees, etc. A useful abstraction for many irregular algorithms is its operator formulation in which 
the algorithm is viewed as the iterated application of an operator to certain nodes, called active nodes, in 
the graph. Each operator application, called an activity, usually touches only a small part of the overall 
graph, so non-overlapping activities can be performed in parallel. In topology-driven implementations, all 
nodes are assumed to be active so the operator is applied everywhere in the graph even if there is no work 
to do at some nodes. In contrast, in data-driven implementations the operator is applied only to nodes at 
which there might be work to do. Multicore implementations of irregular algorithms are usually data-
driven because current multicores only support small numbers of threads and work-efficiency is 
important. Conversely, many irregular GPU implementations use a topology-driven approach because 
work inefficiency can be counterbalanced by the large number of GPU threads. In this paper, we study 
data-driven and topology-driven implementations of six important graph algorithms on GPUs. Our goal is 
to understand the tradeoffs between these implementations and how to optimize them. We find that data-
driven versions are generally faster and scale better despite the cost of maintaining a work list. However, 
topology-driven versions can be superior when certain algorithmic properties are exploited to optimize 
the implementation. These results led us to devise hybrid approaches that combine the two techniques and 
outperform both of them. 
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Abstract 
 
Modern GPUs rely on atomic operations to perform global communication. These atomic operations can 
be used to construct finer-grained locks to provide support for mutual exclusion. However, equipped with 
only these basic synchronization primitives to support mutual exclusion results in inefficient use of 
resources. In this paper, we propose a new hardware-based blocking synchronization mechanism which 
uses hierarchical queuing for scalability and efficiency. We evaluate our design using a set of GPU 
applications for stressing synchronization mechanisms. We perform detailed simulation utilizing the 
Multi2Sim heterogeneous simulation infrastructure. Our results indicate that we can reduce the number of 
instructions executed by a GPU application by as much as 84%, while improving execution performance 
by as much as 73%. 
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Abstract 
 
This paper presents a framework and its techniques that can detect various types of runtime errors and 
failures in MPI programs. The presented framework offloads its detection techniques to an external 
device (e.g., extension card). By developing intelligence on the normal behavioral and semantic execution 
patterns of monitored parallel threads, the presented external error detectors can accurately and quickly 
detect errors and failures. This architecture allows us to use powerful detectors without directly using the 
computing power of the monitored system. The separation of hardware of the monitored and monitoring 
systems offers an extra advantage in terms of system reliability. We have prototyped our system on a 
parallel computer system by using an FPGA-based PCI extension card as a monitoring device. We have 
conducted a fault injection experiment to evaluate the presented techniques using eight MPI-based 
parallel programs. The techniques cover ~98.5% of faults, on average. The average performance overhead 
is 1.8% for techniques that detect crash and hang failures and 6.6% for techniques that detect SDC 
failures.  
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Abstract 
 
As the failure frequency is increasing with the components count in modern and future supercomputers, 
resilience is becoming critical for extreme scale systems. The association of failure prediction with 
proactive check pointing seeks to reduce the effect of failures in the execution time of parallel 
applications. Unfortunately, proactive check pointing does not systematically avoid restarting from 
scratch. To mitigate this issue, failure prediction and proactive check pointing can be coupled with 
periodic check pointing. However, blind use of these techniques does not always improves system 
efficiency, because everyone of them comes with a mix of overheads and benefits. In order to study and 
understand the combination of these techniques and their improvement in the system’s efficiency, we 
developed: (i) a prototype combining state of the art failure prediction, fast proactive check pointing and 
preventive check pointing, (ii) a mathematical model that reflects the expected computing efficiency of 
the combination and computes the optimal check pointing interval in this context, (iii) a discrete event 
simulator to evaluate the computing efficiency of the combination for system parameters corresponding to 
the current and projected large scale HPC systems. We evaluate our proposed technique on a large 
supercomputer (i.e. TSUBAME2) with production-level HPC applications and we show that failure 
prediction, proactive and preventive check pointing can be coupled successfully, imposing only about 
2\% to 6\% of overhead in comparison with preventive check pointing only. Moreover, our model-based 
simulations show that the optimal solution improves the computing efficiency up to 30\% in comparison 
with classic periodic check pointing. We show that the prediction recall has a much higher impact on 
execution efficiency than the prediction precision. This result suggests that researchers on failure 
prediction algorithms should focus on improving the recall. We also show that the combination of these 
techniques can significantly improve (by a factor 2, for a particular configuration) the mean time between 
failures (MTBF) perceived by the application. 
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Abstract 
 
Aggressive silicon process scaling over the last years has made transistors faster and less power 
consuming. Meanwhile, transistors have become more susceptible to errors. The need to maintain high 
reliability has led to the development of various software-based error detection methodologies which 
target either single-core or multi-core processors. In this work, we present CASTED, a Core-Adaptive 
Software Transient Error Detection methodology that focuses on improving the impact of error detection 
overhead on single-chip scalable architectures that are composed of tightly coupled cores. The proposed 
compiler methodology adaptively distributes the error detection overhead to the available resources across 
multiple cores, fully exploiting the abundant ILP of these architectures. CASTED adapts to a wide range 
of architecture configurations (issue-width, inter-core delay). We evaluate our technique on a range of 
architecture configurations using the Mediabench II video and SPEC CINT2000 benchmark suites. Our 
approach successfully adapts to (and regularly outperforms by up to 21.2%) the best fixed state-of-the-art 
approach while maintaining the same fault coverage. 
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Abstract 

 
Multiple access channel is a well-known communication model that deploys properties of many network 
systems, such as Aloha multi-access systems, local area Ethernet networks, satellite communication 
systems, packet radio networks. The fundamental aspect of this model is to provide efficient 
communication and computation in the presence of restricted access to the communication resource: at 
most one station can successfully transmit at a time, and a wasted round occurs when more than one 
station attempts to transmit at the same time. In this work we consider the problem of contention 
resolution in a multiple access channel in a realistic scenario when up to $k$ stations out of $n$ join the 
channel at different times. The goal is to let at least one station to transmit alone, which results in 
successful delivery of the message through the channel. We present three deterministic algorithms: two of 
them working under some constrained scenarios, and achieving asymptotically optimal time complexity 
$\Theta(k\log(n/k))$, while the third general algorithm accomplishes the goal in time $O(k\log n \log\log 
n)$. 
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Abstract 

 
The personalized all-to-all collective exchange is one of the most challenging communication patterns in 
HPC applications in terms of performance and scalability. We present a framework for the design of 
optimized collective patterns for generic hierarchical topologies. Our proposal can be applied, among 
others, to two types of topologies of great importance today: (i) the family of extended generalized fat tree 
networks (including k-ary n-trees and their variations) which are extensively used today in both HPC and 
commercial data centers, and (ii) direct low-diameter scalable hierarchical architectures such as the 
recently proposed dragonfly networks. We argue that exchange patterns that are congruent with the 
underlying structure of the network have inherent advantages compared to patterns that are oblivious to 
this structure. However, the current commonly used hierarchical pattern, the XOR exchange, has limited 
applicability, because it requires that the number of communicating nodes equals an integral power of 
two, making it suitable only for few tree designs and unsuitable for any dragonfly network. We propose 
several new, generic, universally applicable approaches to perform such exchanges in a hierarchical 
fashion that outperform current state of the art approaches. We support our claims by means of both 
mathematical proofs and simulation results that show that we can achieve an improvement of almost two-
fold in dragonflies, and a two-to three-fold improvement in fat tree networks in cases where the XOR 
exchange cannot be applied. 
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Abstract 
 
We consider distributed memory algorithms for the all-pairs shortest paths (APSP) problem. Scaling the 
APSP problem to high concurrencies requires both minimizing inter-processor communication as well as 
maximizing temporal data locality. The 2.5D APSP algorithm, which is based on the divide-and-conquer 
paradigm, satisfies both of these requirements: it can utilize any extra available memory to perform 
asymptotically less communication, and it is rich in semiring matrix multiplications, which have high 
temporal locality. We start by introducing a block-cyclic 2D (minimal memory) APSP algorithm. With a 
careful choice of block-size, this algorithm achieves known communication lower-bounds for latency and 
bandwidth. We extend this 2D block-cyclic algorithm to a 2.5D algorithm, which can use c extra copies 
of data to reduce the bandwidth cost by a factor of sqrt(c), compared to its 2D counterpart. However, the 
2.5Dalgorithm increases the latency cost by sqrt(c). We provide a tighter lower bound on latency, which 
dictates that the latency overhead is necessary to reduce bandwidth along the critical path of execution. 
Our implementation achieves impressive performance and scaling to 24,576 cores of a Cray XE6 
supercomputer by utilizing well-tuned intra-node kernels within the distributed memory algorithm. 
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Abstract 
 
Reductions matter and they are here to stay. Wide adoption of parallel processing hardware in a broad 
range of computer applications has encouraged recent research efforts on their efficient parallelization. 
Furthermore, trends towards high productivity languages in mainstream computing increases the demand 
for efficient programming support. In this paper we present a new approach on parallel reductions for 
distributed memory systems that provides both scalability and programmability. Using OmpSs, a task-
based parallel programming model, the developer has the ability to express scalable reductions through a 
single pragma annotation. This pragma annotation is applicable for tasks as well as for work-sharing 
constructs (with implicit tasking) and instructs the compiler to generate the required runtime calls. The 
supporting runtime handles data and task distribution, parallel execution and data reduction. Scalability is 
achieved through a software cache that maximizes local and temporal data reuse and allows overlapped 
computation and communication. Results confirm scalability for up to 32 12-core cluster nodes. 
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Abstract 

 
Hadoop employs Java-based network transport stack on top of the Java Virtual Machine (JVM) for its 
data shuffling and merging purposes. Our examination reveals that JVMintroduces a significant amount 
of overhead to data processing capability of the native interface. Furthermore, JVM constrains the use of 
high-performance networking mechanisms such as RDMA (Remote Direct Memory Access) which has 
established itself as an effective data movement technology in many networking environments because of 
its low-latency, high bandwidth, low CPU utilization, and energy efficiency. In this paper, we introduce a 
plug-in library called JVM-Bypass Shuffling (JBS) for Hadoopdata shuffling. JBS helps Hadoop data 
shuffling by avoiding Java-based transport protocols, removing the overhead and limitations of the JVM. 
In addition, we design JBS as a portable library that can leverage both TCP/IP and RDMA on different 
network systems such as InfiniBand and 1/10 Gigabit Ethernet. We have designed and implemented JBS 
as part of Hadoop acceleration. It has been transferred to Mellanox as the software product 
UDA(Unstructured Data Accelerator) and used to enable our studies on a variety of merging algorithms. 
Our performance evaluation demonstrates that JBS can effectively reduce the execution time of Hadoop 
jobs by up to 66.3% and lower the CPU utilization by 48.1%. 
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Abstract 
 
Multicast benefits numerous data center applications that require group communication by eliminating 
sending unnecessary duplicated packets in the network, thus significantly reduces network traffic and 
improves application throughput. Meanwhile, many data center networks (DCNs) adopt a multi-rooted 
tree structure called fat-tree, which utilizes rich path multiplicity to deliver high bisection bandwidth. 
However, currently there is no efficient flow scheduling algorithm for the fat-tree that can route multicast 
flows appropriately to achieve traffic load balance, thus cannot fully take advantage of this high degree of 
link parallelism. Besides low bandwidth utilization, unbalanced traffic load distribution also leads to 
unpredictable network performance and degraded data center agility. In this paper, we study multicast 
traffic load balance problem in fat-tree DCNs. First, we derive a minimum link oversubscription upper 
bound in multicast fat-tree DCNs based on a network model that accurately describes the DCN 
communication environment. Then, we present Oversubscription Bounded Multicast Scheduling 
(OBMS), a low-complexity multicast flow scheduling algorithm that guarantees bounded link 
oversubscription and efficient network utilization even under the most congested traffic patterns. Finally, 
we evaluate the performance of OBMS in an event-driven DCN simulator under various types of traffic 
patterns, and show that OBMS significantly outperforms other load-balance methods in terms of network 
throughput and evenness of traffic load distribution. 
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Abstract 

 
This work addresses the scalability and efficiency of RAM-based storage systems wherein multiple 
objects must be retrieved per user request. Here, much of the CPU work is per server transaction, not per 
requested item. Adding servers and spreading the data across them also spreads any given set of requested 
items across more servers, thereby increasing the total number of server transactions per user request. The 
resulting poor scalability, dubbed the Multi-get Hole, has been reported in Web 2.0 systems using 
memcached - a popular memory-based key-value storage system. We present Replicate and Bundle 
(RnB), a somewhat unintuitive approach: rather than add CPUs, we add memory. Object replicas are 
mapped “randomly” to servers, and requested objects are bundled, selecting replicas so as to minimize the 
number of servers accessed per user request and thus the total CPU work per request. We studied RnB via 
simulation in the context of DRAM-based storage, utilizing micro benchmarks and implemented RnB 
modules for calibration. Our results show that RnB substantially reduces the number of transactions per 
request, making operation more efficient. Also, unlike most alternatives, RnB permits flexible growth and 
relatively easy deployment. Finally, in systems wherein data is replicated for other reasons, RnB is nearly 
free. 
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Abstract 

 
The advent of cloud systems has spurred the emergence of an impressive assortment of Internet services. 
Recent pressures on enhancing the profitability by curtailing surging dollar costs on energy have posed 
challenges to, as well as placed a new emphasis on, designing energy-efficient request dispatching and 
resource management algorithms. What further adds to the design challenge is the highly diverse nature 
of Internet service requests in terms of Quality-of-Service (QoS) constraints and business values. 
Nonetheless, most of the existing job scheduling and resource management solutions are for a single type 
of request and are profit oblivious. They are unable to reap the benefit of multi-service profit-aware 
algorithm designs. In this paper, we consider a cloud service provider operating geographically 
distributed data centers in a multi-electricity-market environment, and propose an energy-efficient, profit- 
and cost-aware request dispatching and resource allocation algorithm to maximize a service provider’s net 
profit. We formulate the net profit maximization issue as a constrained optimization problem, using a 
unified task model capturing multiple cloud layers (e.g., SaaS, PaaS, IaaS.) The proposed approach 
maximizes a service provider’s net profit by judiciously distributing service requests to data centers, 
powering on/off an appropriate number of servers, and allocating server resources to dispatched requests. 
We conduct extensive experiments to validate our proposed algorithm. Results show that our proposed 
approach can improve a service provider’s net profit significantly. 
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Abstract 
 
Data centers consume significant amounts of energy. As severs become more energy efficient with 
various energy saving techniques, the data center network (DCN) has been accounting for 20% or more of 
the energy consumed by the entire data center. While DCNs are typically provisioned with full bisection 
bandwidth, DCN traffic demonstrates fluctuating patterns. The objective of this work is to improve the 
energy efficiency of DCNs during off-peak traffic time by powering off idle devices. Although there exist 
a number of energy optimization solutions for DCNs, they consider only either the hosts or network, but 
not both. In this paper, we propose a joint optimization scheme that simultaneously optimizes virtual 
machine (VM) placement and network flow routing to maximize energy savings, and we also build an 
Open Flow based prototype to experimentally demonstrate the effectiveness of our design. First, we 
formulate the joint optimization problem as an integer linear program, but it is not a practical solution due 
to high complexity. To practically and effectively combine host and network based optimization, we 
present a unified representation method that converts the VM placement problem to a routing problem. In 
addition, to accelerate processing the large number of servers and an even larger number of VMs, we 
describe a parallelization approach that divides the DCN into clusters for parallel processing. Further, to 
quickly find efficient paths for flows, we propose a fast topology oriented multipath routing algorithm 
that uses depth-first search to quickly traverse between hierarchical switch layers and uses the best-fit 
criterion to maximize flow consolidation. Finally, we have conducted extensive simulations and 
experiments to compare our design with existing ones. The simulation and experiment results fully 
demonstrate that our design outperforms existing host-or network-only optimization solutions, and well 
approximates the ideal linear program. 
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Abstract 
 
High response quality is critical for many best-effort interactive services, and at the same time, reducing 
energy consumption can directly reduce the operational cost of service providers. In this paper, we study 
the quality-energy tradeoff for such services by using a composite performance metric that captures their 
relative importance in practice: Service providers usually grant top priority to quality guarantee and 
explore energy saving secondly. We consider scheduling on multicore systems with core-level DVFS 
support and a power budget. Our solution consists of two steps. First, we employ an equal sharing 
principle for both job and power distribution. Specifically, we present a “Cumulative Round-Robin” 
policy to distribute the jobs onto the cores, and a “Water-Filling” policy to distribute the power 
dynamically among the cores. Second, we exploit the concave quality function of many best-effort 
applications, and develop Online-QE, a myopic optimal online algorithm for scheduling jobs on a single-
core system. Combining the two steps together, we present a heuristic online algorithm, called DES 
(Dynamic Equal Sharing), for scheduling best-effort interactive services on multicore systems. The 
simulation results based on a web search engine application show that DES takes advantage of the core-
level DVFS architecture and exploits the concave quality function of best-effort applications to achieve 
high service quality with low energy consumption. 
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Abstract 

 
Energy efficiency of computing devices has become a dominant area of research interest in recent years. 
Most previous work has focused on architectural techniques to improve power and energy efficiency, 
only a few consider saving energy at the algorithmic level. We prove that a region of perfect strong 
scaling in energy exists for matrix multiplication (classical and Strassen) and the direct n-body problem 
via the use of algorithms that use all available memory to replicate data. This means that we can increase 
the number of processors by some factor and decrease the runtime (both computation and 
communication) by the same factor, without changing the total energy use. 
  



83 
 

A Roofline Model of Energy 
 

Jee Whan Choi 
 

Georgia Institute of Technology 
Atlanta, Georgia, USA 

jee@gatech.edu 
 

Daniel Bedard and Robert Fowler 
 

Renaissance Computing Institute 
Chapel Hill, North Carolina, USA 

{danb,rjf}@renci.org 
 

Richard Vuduc 
 

Georgia Institute of Technology 
Atlanta, Georgia, USA 

richie@gatech.edu 
 

Abstract 
 
We describe an energy-based analogue of the time based roofline model. We create this model from the 
perspective of algorithm designers and performance tuners, with the intent not of making exact 
predictions, but rather, developing high level analytic insights into the possible relationships among the 
time, energy, and power costs of an algorithm. The model expresses algorithms in terms of operations, 
concurrency, and memory traffic, and characterizes the machine based on a small number of simple cost 
parameters, namely, the time and energy costs per operation or per word of communication. We confirm 
the basic form of the model experimentally. From this model, we suggest under what conditions we ought 
to expect an algorithmic time-energy trade-off, and show how algorithm properties may help inform 
power management. 
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Abstract 

 
Emergent heterogeneous systems must be optimized for both power and performance at exascale. 
Massive parallelism combined with complex memory hierarchies form a barrier to efficient application 
and architecture design. These challenges are exacerbated with GPUs as parallelism increases orders of 
magnitude and power consumption can easily double. Models have been proposed to isolate power and 
performance bottlenecks and identify their root causes. However, no current models combine simplicity, 
accuracy, and support for emergent GPU architectures (e.g. NVIDIA Fermi). We combine hardware 
performance counter data with machine learning and advanced analytics to model power-performance 
efficiency for modern GPU-based systems. Our performance counter based approach is simpler than 
previous approaches and does not require detailed understanding of the underlying architecture. The 
resulting model is accurate for predicting power (within 2.1%) and performance (within 6.7%) for 
application kernels on modern GPUs. Our model can identify power-performance bottlenecks and their 
root causes for various complex computation and memory access patterns (e.g. global, shared, texture). 
We measure the accuracy of our power and performance models on a NVIDIA Fermi C2075 GPU for 
more than a dozen CUDA applications. We show our power model is more accurate and robust than the 
best available GPU power models - multiple linear regression models MLR and MLR+. We demonstrate 
how to use our models to identify power-performance bottlenecks and suggest optimization strategies for 
high-performance codes such as GEM, a biomolecular electrostatic analysis application. We verify our 
power-performance model is accurate on clusters of NVIDIA Fermi M2090s and useful for suggesting 
optimal runtime configurations on the Keene land supercomputer at Georgia Tech. 
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Abstract 

 
IBM Blue Gene/Q is the next generation Blue Gene machine that can scale to tens of Peta Flops with 16 
cores and 64 hardware threads per node. However, significant efforts are required to fully exploit its 
capacity on various applications, spanning multiple programming models. In this paper, we focus on the 
asynchronous message driven parallel programming model -Charm++. Since its behavior (asynchronous) 
is substantially different from MPI, that presents a challenge in porting it efficiently to BG/Q. On the 
other hand, the significant synergy between BG/Q software and Charm++ creates opportunities for 
effective utilization of BG/Q resources. We describe various novel fine-grained threading techniques in 
Charm++ to exploit the hardware features of the BG/Qcompute chip. These include the use of L2 atomics 
to implement lockless producer-consumer queues to accelerate communication between threads, fast 
memory allocates, hardware communication threads that are awakened via low overhead interrupts from 
the BG/Q wakeup unit. Burst of short messages is processed by using the Many to Many interface to 
reduce runtime overhead. We also present techniques to optimize NAMD computation via Quad 
Processing Unit (QPX) vector instructions and the acceleration of message rate via communication 
threads to optimize the Particle Mesh Ewald (PME) computation. We demonstrate the benefits of our 
techniques via two benchmarks, 3D Fast Fourier Transform, and the molecular dynamics application 
NAMD. For the 92,000-atom ApoA1 molecule, we achieved 683us/stepwith PME every 4 steps and 
782us/step with PME every step. 
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Abstract 

 
In current shared memory architectures, the complexity of the cache and memory hierarchies is 
increasing. Therefore, it is becoming more important to analyze the communication behavior of parallel 
applications when mapping threads to cores, to improve performance and energy efficiency. However, 
communication is implicit in most programming models for shared memory, which makes it difficult to 
detect the communication pattern between the threads in an accurate and low-overhead way. We propose 
a new mechanism to detect the communication pattern of shared memory applications by monitoring page 
table accesses. Combining this mechanism with a dynamic migration algorithm allows mapping to be 
performed dynamically by the operating system. We implemented our mechanism in the Linux kernel and 
performed experiments with applications from the NAS~Parallel~Benchmarks. Results show a reduction 
of up to 16.7% of the execution time and 63% of the cache misses, compared to the original scheduler of 
the operating system. Furthermore, we decrease total processor and DRAM energy consumption by up to 
14.7% and 28.5%, respectively. 
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Abstract 

 
Effective combination of inter-node and intra-node parallelism is recognized to be a major challenge for 
future extreme-scale systems. Many researchers have demonstrated the potential benefits of combining 
both levels of parallelism, including increased communication-computation overlap, improved memory 
utilization, and effective use of accelerators. However, current “hybrid programming’’ approaches often 
require significant rewrites of application code and assume a high level of programmer expertise. 
Dynamic task parallelism has been widely regarded as a programming model that combines the best of 
performance and programmability for shared-memory programs. For distributed-memory programs, most 
users rely on efficient implementations of MPI. In this paper, we propose HCMPI (Habanero-C MPI), an 
integration of the Habanero-C dynamic task-parallel programming model with the widely used MPI 
message-passing interface. All MPI calls are treated as asynchronous tasks in this model, thereby enabling 
unified handling of messages and tasking constructs. For programmers unfamiliar with MPI, we introduce 
distributed data-driven futures (DDDFs), a new data-flow programming model that seamlessly integrates 
intra-node and inter-node data-flow parallelism without requiring any knowledge of MPI. Our novel 
runtime design for HCMPI and DDDFs uses a combination of dedicated communication and computation 
specific worker threads. We evaluate our approach on a set of micro-benchmarks as well as larger 
applications and demonstrate better scalability compared to the most efficient MPI implementations, 
while offering a unified programming model to integrate asynchronous task parallelism with distributed-
memory parallelism. 
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Abstract 
 
In this paper, we focus on the efficient routing of data among different areas in Delay Tolerant Networks 
(DTNs). In current algorithms, packets are forwarded gradually through nodes with higher probability of 
visiting the destination node or area. However, the number of such nodes usually is limited, leading to 
insufficient throughput performance. To solve this problem, we propose an inter-landmark data routing 
algorithm, namely DTN-FLOW. It selects popular places that nodes visit frequently as landmarks and 
divides the entire DTN area into sub-areas represented by landmarks. Nodes transiting between landmarks 
relay packets among landmarks, even though they rarely visit the destinations of these packets. 
Specifically, the number of node transits between two landmarks is measured tore present the forwarding 
capacity between them, based on which routing tables are built on each landmark to guide packet routing. 
Each node predicts its transits based on its previous landmark visiting records using the order-k Markov 
predictor. In a packet routing, a landmark determines the next hop landmark based on its routing table, 
and forwards the packet to the node with the highest probability of transiting to the selected landmark. 
Thus, DTN-FLOW fully utilizes all node movements to route packets along landmark paths to their 
destinations. We analyzed two real DTN traces to support the design of DTN-FLOW. We also deployed a 
small DTN-FLOW system in our campus for performance evaluation. This deployment and trace-driven 
simulation demonstrate the high efficiency of DTN-FLOW in comparison with state-of-the-art DTN 
routing algorithms. 
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Abstract 
 
We present WHATSUP, a collaborative filtering system for disseminating news items in a large-scale 
dynamic setting with no central authority. W HATS U P constructs an implicit social network based on 
user profiles that express the opinions of users about the news items they receive (like-dislike). Users with 
similar tastes are clustered using a similarity metric reflecting long-standing and emerging (dis)interests. 
News items are disseminated through a novel heterogeneous gossip protocol that (1) biases the orientation 
of its targets towards those with similar interests, and (2) amplifies dissemination based on the level of 
interest in every news item. We report on an extensive evaluation of W HATS U P through(a) 
simulations, (b) a Model Net emulation on a cluster, and(c) a Planet Lab deployment based on real 
datasets. We show that W HATS U P outperforms various alternatives in terms of accurate and complete 
delivery of relevant news items while preserving the fundamental advantages of standard gossip: namely, 
simplicity of deployment and robustness. 
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Abstract 

 
In recent years we are experiencing the rapid growth of crowd sourcing systems, in which “human 
workers” are enlisted to perform tasks more effectively than computers, and get compensated for the work 
they provide. The common belief is that the wisdom of the “human crowd” can greatly complement many 
computer tasks which are assigned to machines. A significant challenge facing these systems is 
determining the most efficient allocation of tasks to workers to achieve successful completion of the tasks 
under real-time constraints. This paper presents REACT, a crowd sourcing system that seeks to address 
this challenge and proposes algorithms that aim to stimulate user participation and handle dynamic task 
assignment and execution in the crowd sourcing system. The goal is to determine the most appropriate 
workers to assign incoming tasks, in such a way so that the real-time demands are met and high quality 
results are returned. We empirically evaluate our approach and show that REACT meets the requested 
real-time demands, achieves good accuracy, is efficient, and improves the amount of successful tasks that 
meet their deadlines up to 61\% compared to traditional approaches like AMT. 
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Abstract 
 
In recent years, content-based publish/subscribe (pub/sub) has become a popular paradigm to decouple 
content producers and consumers for Internet-scale content services. Many real applications show that the 
content workloads frequently exhibit very skewed distribution, and incur unbalanced workloads. To 
balance the workloads, the literature of content-based pub/sub adopted a migration scheme (Mis) to move 
(a subset of) subscription filters from overloaded brokers to under loaded brokers. In this way, the 
publications that successfully match the moved filters are then offloaded, leading to balanced workloads. 
Unfortunately, the Mis scheme cannot reduce the overall matching workloads. In the worst case, suppose 
that all brokers suffer from heavy workloads. Mis cannot find available brokers to offload the heavy 
workloads of those overloaded brokers, and fails to balance the workloads. To overcome the issue, the 
contribution of this paper is to develop a set of novel load balancing algorithms, namely a similarity-
based replication scheme (Sir). The novelty of Sir is that it not only balances the workloads of brokers but 
also reduces the overall workloads. Based on both simulation and emulation results, the extensive 
experiments verify that Sir can achieve much better performance than Mis, in terms of 43.1% higher 
entropy value (i.e., more balanced workloads) and 46.39 lower workloads. 
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Abstract 

 
This paper presents ZHT, a zero-hop distributed hash table, which has been tuned for the requirements of 
high-end computing systems. ZHT aims to be a building block for future distributed systems, such as 
parallel and distributed file systems, distributed job management systems, and parallel programming 
systems. The goals of ZHT are delivering high availability, good fault tolerance, high throughput, and low 
latencies, at extreme scales of millions of nodes. ZHT has some important properties, such as being light-
weight, dynamically allowing nodes join and leave, fault tolerant through replication, persistent, scalable, 
and supporting unconventional operations such as append (providing lock-free concurrent key/value 
modifications) in addition to insert/lookup/remove. We have evaluated ZHT’s performance under a 
variety of systems, ranging from a Linux cluster with 512-cores, to an IBM Blue Gene/P supercomputer 
with 160K-cores. Using micro-benchmarks, we scaled ZHT up to 32K-cores with latencies of only 1.1ms 
and 18M operations/sec throughput. This work provides three real systems that have integrated with ZHT, 
and evaluate them at modest scales. 1) ZHT was used in the Fusion FS distributed file system to deliver 
distributed meta-data management at over 60K operations (e.g. file create) per second at 2K-core scales. 
2) ZHT was used in the IStore, an information dispersal algorithm enabled distributed object storage 
system, to manage chunk locations, delivering more than 500 chunks/sec at 32-nodes scales. 3) ZHT was 
also used as a building block to MATRIX, a distributed job scheduling system, delivering 5000 jobs/sec 
throughputs at 2K-core scales. We compared ZHT against other distributed hash tables and key/value 
stores and found it offers superior performance for the features and portability it supports.  
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Abstract 
 
We consider the problem of how to enable computer architects and algorithm designers to reason directly 
and analytically about the relationship between high-level architectural features and algorithm 
characteristics. We propose a modeling framework designed to help understand the long-term and high-
level impacts of algorithmic and technology trends. This model connects abstract communication 
complexity analysis-with respect to both the inter-core and inter-processor networks and the memory 
hierarchy-with current technology proposals and projections. We illustrate how one might use the 
framework by instantiating a particular model for a class of architectures and sample algorithms (three-
dimensional fast Fourier transforms, matrix multiply, and three-dimensional stencil). Then, as a 
suggestive demonstration, we analyze a number of what-if scenarios within the model in light of these 
trends to suggest broader statements and alternative futures for power-constrained architectures and 
algorithms.  
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Abstract 

 
Hyper objects are efficient mechanisms to coordinate accesses to shared variables and data-structures in 
task-parallel programming models, where each thread can operate on its own coordinated local view of 
the shared data. Synchronization between local views is restricted to occur at well-defined points in the 
execution, and can be left to the hyper object implementation. This paper provides a general model for 
hyper objects that does not require programming language or runtime support and may therefore be used 
with any task-parallel programming system. We show that hyper objects can be efficiently implemented 
in a wait-free manner, meaning that all concurrent accesses to a hyper object are guaranteed to complete 
in a bounded number of steps. The novel finisher hyper object presented in this paper provides transitive 
termination detection for task-parallel programs. It can be used to efficiently implement task 
synchronization primitives like finish. However, finishers can also be used to manage reference-counted 
resources, e.g. shared pointers and copy-on-write pointers. Finally, we provide a wait-free variant of the 
associative reducer hyper object known from the Cilk++ programming language. 
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Abstract 
 
Cyclops (cyclic-operations) Tensor Framework(CTF) is a distributed library for tensor contractions. CTF 
aims to scale high-dimensional tensor contractions such as those required in the Coupled Cluster (CC) 
electronic structure method to massively-parallel supercomputers. The framework preserves tensor 
structure by subdividing tensors cyclically, producing a regular parallel decomposition. An internal 
virtualization layer provides completely general mapping support while maintaining ideal load balance. 
The mapping framework decides on the best mapping for each tensor contraction at run-time via explicit 
calculations of memory usage and communication volume. CTF employs a general redistribution kernel, 
which transposes tensors of any dimension between arbitrary distributed layouts, yet touches each piece 
of data only once. Sequential symmetric contractions are reduced to matrix multiplication calls via tensor 
index transpositions and partial unpacking. The user-level interface elegantly expresses arbitrary-
dimensional generalized tensor contractions in the form of a domain specific language. We demonstrate 
performance of CC with single and double excitations on 8192 nodes of Blue Gene/Q and show that CTF 
outperforms NWChem on Cray XE6 supercomputers for benchmarked systems. 
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Abstract 
 
We present techniques to process large scale-free graphs in distributed memory. Our aim is to scale to 
trillions of edges, and our research is targeted at leadership class supercomputers and clusters with local 
non-volatile memory, e.g., NAND Flash. We apply an edge list partitioning technique, designed to 
accommodate high-degree vertices (hubs) that create scaling challenges when processing scale-free 
graphs. In addition to partitioning hubs, we use ghost vertices to represent the hubs to reduce 
communication hotspots. We present a scaling study with three important graph algorithms: Breadth-First 
Search (BFS), K-Core decomposition, and Triangle Counting. We also demonstrate scalability on BG/P 
Intrepid by comparing to best known Graph500 results. We show results on two clusters with local 
NVRAM storage that are capable of traversing trillion-edge scale-free graphs. By leveraging node-local 
NAND Flash, our approach can process thirty-two times larger datasets with only a 39% performance 
degradation in Traversed Edges Per Second (TEPS). 
  



 

Session 18: Scheduling 1 
  



 

  



105 
 

Scheduling Tree-Shaped Task Graphs to Minimize Memory and Makespan 
 

Loris Marchal 
 

CNRS and University of Lyon 
Lyon, France 

loris.marchal@ens-lyon.fr 
 

Oliver Sinnen 
 

University of Auckland 
Auckland, New Zealand 
o.sinnen@auckland.ac.nz 

 
Frédéric Vivien 

 
INRIA and University of Lyon 

Lyon, France 
frederic.vivien@inria.fr 

 
Abstract 

 
This paper investigates the execution of tree-shaped task graphs using multiple processors. Each edge of 
such a tree represents a large IO file. A task can only be executed if all input and output files fit into 
memory, and a file can only be removed from memory after it has been consumed. Such trees arise, for 
instance, in the multifrontal method of sparse matrix factorization. The maximum amount of memory 
needed depends on the execution order of the tasks. With one processor the objective of the tree traversal 
is to minimize the required memory. This problem was well studied and optimal polynomial algorithms 
were proposed. Here, we extend the problem by considering multiple processors, which is of obvious 
interest in the application area of matrix factorization. With the multiple processors comes the additional 
objective to minimize the time needed to traverse the tree, i.e., to minimize the make span. Not 
surprisingly, this problem proves to be much harder than the sequential one. We study the computational 
complexity of this problem and provide an inapproximability result even for unit weight trees. Several 
heuristics are proposed, each with a different optimization focus, and they are analyzed in an extensive 
experimental evaluation using realistic trees. 
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Abtract 

 
Graph processing has gained renewed attention. The increasing large scale and wealth of connected data, 
such as those accrued by social network applications, demand the design of new techniques and platforms 
to efficiently derive actionable information from large scale graphs. Hybrid systems that host processing 
units optimized for both fast sequential processing and bulk processing (e.g., GPU-accelerated systems) 
have the potential to cope with the heterogeneous structure of real graphs and enable high performance 
graph processing. Reaching this point, however, poses multiple challenges. The heterogeneity of the 
processing elements (e.g., GPUs implement a different parallel processing model than CPUs and have 
much less memory) and the inherent irregularity of graph workloads require careful graph partitioning 
and load assignment. In particular, the workload generated by a partitioning scheme should match the 
strength of the processing element the partition is allocated to. This work explores the feasibility and 
quantifies the performance gains of such low-cost partitioning schemes. We propose to partition the 
workload between the two types of processing elements based on vertex connectivity. We show that such 
partitioning schemes offer a simple, yet efficient way to boost the overall performance of the hybrid 
system. Our evaluation illustrates that processing a 4-billion edges graph on a system with one CPU 
socket and one GPU, while offloading as little as 25% of the edges to the GPU, achieves 2x performance 
improvement over state-of-the-art implementations running on a dual-socket symmetric system. 
Moreover, for the same graph, a hybrid system with dual-socket and dual-GPU is capable of 1.13 Billion 
breadth-first search traversed edge per second, a performance rate that is competitive with the latest 
entries in the Graph500 list, yet at a much lower price point. 
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Abstract 
 
Divisible Load Theory (DLT) has received a lot of attention in the past decade. A divisible load is a 
perfect parallel task, that can be split arbitrarily and executed in parallel on a set of possibly 
heterogeneous resources. The success of DLT is strongly related to the existence of many optimal 
resource allocation and scheduling algorithms, what strongly differs from general scheduling theory. 
Moreover, recently, close relationships have been underlined between DLT, that provides a fruitful 
theoretical framework for scheduling jobs on heterogeneous platforms, and MapReduce, that provides a 
simple and efficient programming framework to deploy applications on large scale distributed platforms. 
The success of both have suggested to extend their framework to non-linear complexity tasks. In this 
paper, we show that both DLT and MapReduce are better suited to workloads with linear complexity. In 
particular, we prove that divisible load theory cannot directly be applied to quadratic workloads, such as it 
has been proposed recently. We precisely state the limits for classical DLT studies and we review and 
propose solutions based on a careful preparation of the dataset and clever data partitioning algorithms. In 
particular, through simulations, we show the possible impact of this approach on the volume of 
communications generated by MapReduce, in the context of Matrix Multiplication and Outer Product 
algorithms. 
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Abstract 

 
Performance modeling is becoming an increasingly important part of the parallel application development 
process, particulary for expensive computations that will be run on very high-end systems where 
resources are scarce. We describe a performance modeling tool SIP Map (Super Instruction Processor 
Modeling and Prediction) developed for the Super-Instruction Architecture(SIA). The SIA is designed for 
applications where the dominant data structures are large multi-dimensional arrays and it comprises a 
DSL, the Super-Instruction Assembly Language(SIAL) that supports expressing algorithms in terms of 
blocks(tiles), and its runtime system Super Instruction Processor (SIP)that manages distribution and disk 
storage of the arrays. SIPMaP generates performance models from the SIAL source code. In comparison 
with many applications where useful performance models have been developed and reported, these 
programs are irregular and have other difficult to model characteristics such as extensive overlapping of 
communication and computation. 
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Abstract 
 
Factorization of a dense symmetric indefinite matrix is a key computational kernel in many scientific and 
engineering simulations. However, there is no scalable factorization algorithm that takes advantage of the 
symmetry and guarantees numerical stability through pivoting at the same time. This is because such an 
algorithm exhibits many of the fundamental challenges in parallel programming like irregular data 
accesses and irregular task dependencies. In this paper, we address these challenges in a tiled 
implementation of a blocked Aasen’s algorithm using a dynamic scheduler. To fully exploit the limited 
parallelism in this left-looking algorithm, we study several performance enhancing techniques, e.g., 
parallel reduction to update a panel, tall-skinny LU factorization algorithms to factorize the panel, and a 
parallel implementation of symmetric pivoting. Our performance results on up to 48 AMD Opteron 
processors demonstrate that our implementation obtains speedups of up to 2.8 over MKL, while losing 
only one or two digits in the computed residual norms. 
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Abstract 
 
A flash translation layer (FTL) is a software layer running in the flash controller of a NAND flash 
memory solid-state disk (hereafter, flash SSD). It translates logical addresses received from a file system 
to physical addresses in flash SSD so that the linear flash memory appears to the system like a block 
storage device. Since the effectiveness of an FTL significantly impacts the performance and durability of 
a flash SSD, FTL design has attracted significant attention from both industry and academy in recent 
years. In this research, we propose a new FTL called DLOOP (Data Log On One Plane), which fully 
exploits plane-level parallelism supported by modern flash SSDs. The basic idea of DLOOP is to allocate 
logs (updates) onto the same plane where their associated original data resides so that valid page copying 
operations triggered by garbage collection can be carried out by intra-plane copy-back operations without 
occupying the external I/O bus. Further, we largely extend a validated simulation environment 
DiskSim3.0/FlashSim to implement DLOOP. Finally, we conduct comprehensive experiments to evaluate 
DLOOP using realistic enterprise-scale workloads. Experimental results show that DLOOP consistently 
outperforms a classical hybrid FTL named FAST and a morden page-mapping FTL called DFTL. 
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Abstract 

 
Parallel machines are becoming more complex with increasing core counts and more heterogeneous 
architectures. However, the commonly used parallel programming models, C/C++ with MPI and/or 
OpenMP, make it difficult to write source code that is easily tuned for many targets. Newer language 
approaches attempt to ease this burden by providing optimization features such as automatic load 
balancing, overlap of computation and communication, message-driven execution, and implicit data 
layout optimizations. In this paper, we compare several implementations of LULESH, a proxy application 
for shock hydrodynamics, to determine strengths and weaknesses of different programming models for 
parallel computation. We focus on four traditional (OpenMP, MPI, MPI+OpenMP, CUDA) and four 
emerging (Chapel, Charm++, Liszt, Loci) programming models. In evaluating these models, we focus on 
programmer productivity, performance and ease of applying optimizations.  
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Abstract 
 
Special-purpose computing hardware can provide significantly better performance and power efficiency 
for certain applications than general-purpose processors. Even within a single application area, however, a 
special-purpose machine can be far more valuable if it is capable of efficiently supporting a number of 
different computational methods that, taken together, expand the machine’s functionality and range of 
applicability. We have previously described a massively parallel special-purpose supercomputer, called 
Anton, and have shown that it executes traditional molecular dynamics simulations orders of magnitude 
faster than the previous state of the art. Here, we describe how we extended Anton’s software to support a 
more diverse set of methods, allowing scientists to simulate a broader class of biological phenomena at 
extremely high speeds. Key elements of our approach, which exploits Anton’s tightly integrated 
hardwired pipelines and programmable cores, are applicable to the hardware and software design of 
various other specialized or heterogeneous parallel computing platforms. 
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Abstract 

 
The energy costs for cooling a data center constitute a significant portion of the overall running costs. 
Thermal imbalance and hot spots that arise due to imbalanced workloads lead to significant wasted 
cooling effort - in order to ensure that no equipment is operating above a certain temperature, the data 
center may be cooled more than necessary. Therefore it is desirable to schedule the workload in a data 
center in a thermally aware manner, assigning jobs to machines not just based on local load of the 
machines, but based on the overall thermal profile of the data center. This is challenging because of the 
spatial cross-interference between machines, where a job assigned to a machine may impact not only that 
machine’s temperature, but also nearby machines. Here, we continue formal analysis of the thermal 
scheduling problem that we initiated recently. In that work, the notion of effective load of a machine 
which is a function of the local load on the machine as well as the load on nearby machines, was 
introduced, and optimal scheduling policies for a simple model (where cross-effects are restricted within a 
rack) were presented, under the assumption that jobs can be split among different machines. Here we 
consider the more realistic problem of integral assignment of jobs, and allow for cross-interference among 
different machines in adjacent racks in the data center. The integral assignment problem with cross-
interference is NP-hard, even for a simple two machine model. We consider three different heat flow 
models, and give constant factor approximation algorithms for maximizing the number (or total profit) of 
jobs assigned in each model, without violating thermal constraints. We also consider the problem of 
minimizing the maximum temperature on any machine when all jobs need to be assigned, and give 
constant factor algorithms for this problem. 
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Abstract 
 
Scalable scheduling is being increasingly regarded as an important requirement in high performance 
systems. There is a demand for high throughput schedulers in servers, data-centers, networking hardware, 
large storage systems, and in multi-cores of the future. In this paper, we consider an important subset of 
schedulers namely slot schedulers that discretize time into quanta called slots. Slot schedulers are 
commonly used for scheduling jobs in a large number of applications. Current implementations of slot 
schedulers are either sequential, or use locks. Sadly, lock based synchronization can lead to blocking, and 
deadlocks, and effectively reduces concurrency. To mitigate these problems, we propose a set of parallel 
lock-free and wait-free slot scheduling algorithms. Our algorithms are immune to operating system jitter, 
and guarantee forward progress. Additionally, all our algorithms are linearizable and expose the 
scheduler’s interface as a shared data structure with standard semantics. We empirically demonstrate the 
scalability of our algorithms for a setup with thousands of requests per second on a 24 thread server. The 
wait free algorithms are most of the time as fast as the lock-free versions (3X-8X slower in the worst 
case). 
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Abstract 
 
In this paper we study the unsplittable flow problem (UFP) on tree networks in a distributed setting. We 
have a set of processors (or agents) and a set of tree networks defined over some vertex set. Each 
processor can access a subset of the tree networks. Each edge in each of the tree networks is associated 
with a capacity. Each processor has a demand specified as a pair of vertices u and v, along with a profit 
and a height, the processor wishes to send data between u and v and requires bandwidth equal to its 
height. Towards that goal, the processor needs to select a tree network accessible to it. A feasible solution 
selects a subset of demands and schedules each selected demand on a tree network accessible to the 
processor owning the demand. The requirement is that for any tree network and any edge in the network, 
the sum of heights of demands scheduled on the network and passing through the edge must not exceed 
the capacity offered by the edge. The goal is to output a solution having the maximum aggregate profit. 
Prior work has addressed the above problem in a distributed setting for the special case where all the edge 
capacities are uniform, say one unit. The main contributions of this paper is to address the general case 
where the edge capacities can be non-uniform and arbitrary. For this case, we present distributed 
algorithms with poly-logarithmic approximation ratio. 
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Abstract 
 
This paper analyzes the overhead due to false sharing when parallel tasks are scheduled using randomized 
work stealing (RWS). We obtain high-probability bounds on the cache miss overhead, including the 
overhead due to false sharing, for several parallel cache-efficient algorithms when scheduled using RWS. 
These include algorithms for fundamental problems, such as matrix computations, FFT, sorting, basic 
dynamic programming, list ranking and graph connected components. Our main technical contribution, 
from which these results follow, is the derivation of nontrivial high-probability bounds on the number of 
steals incurred by these algorithms in the presence of false sharing, when using RWS.  
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Abstract 

 
Graphics Processing Units (GPUs) are becoming an integral part of modern supercomputer architectures 
due to their high compute density and performance per watt. In order to maximize utilization, it is 
imperative that applications running on these clusters have low synchronization and communication 
overheads. Partitioned Global Address Space (PGAS) models provide an attractive approach for 
developing parallel scientific applications. Such models simplify programming through the abstraction of 
a shared memory address space while their one-sided communication primitives allow for efficient 
implementation of applications with minimum synchronization. OpenSHMEM is a library-based 
programming model that is gaining popularity. However, the current OpenSHMEM standard does not 
support direct communication from GPU device buffers. It requires data to be copied to the host memory 
before OpenSHMEM calls can be made. Similarly, data has to moved to the GPU explicitly by remote 
processes. This severely limits the programmability and performance of GPU applications. In this paper 
we provide extensions to the OpenSHMEM model which allow communication calls to be made directly 
on the GPU memory. The proposed extensions are interoperable with the two most popular GPU 
programming frameworks: CUDA and OpenCL. We present designs for an efficient OpenSHMEM 
runtime which transparently provide high-performance communication between GPUs in different inter-
node and intra-node configurations. To the best of our knowledge this is the first work that enables GPU-
GPU communication using the OpenSHMEM model for both CUDA and OpenCL computing 
frameworks. The proposed extensions to OpenSHMEM, coupled with the high-performance runtime, 
improve the latency of GPU-GPU shmem getmem operation by 90%, 40% and 17%, for intra-IOH (I/O 
Hub), inter-IOH and inter-node configurations. It improves the performance of OpenSHMEM atomics by 
up to 55% and 52%, for intra-IOH and inter-node GPU configurations respectively. The proposed 
enhancements improve the performance of Stencil2D kernel by 65% on a cluster of 192 GPUs and the 
performance of BFS kernel by 12% on a cluster of 96 GPUs.  
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Abstract 
 
Thanks to their massive computational power and their SIMT computational model, Graphics Processing 
Units (GPUs) have been successfully used to accelerate a wide variety of regular applications (linear 
algebra, stencil computations, image processing and bioinformatics algorithms, among others). However, 
many established and emerging problems are based on irregular data structures, such as graphs. Examples 
can be drawn from different application domains: networking, social networking, machine learning, 
electrical circuit modeling, discrete event simulation, compilers, and computational sciences. It has been 
shown that irregular applications based on large graphs do exhibit runtime parallelism, moreover, the 
amount of available parallelism tends to increase with the size of the datasets. In this work, we explore an 
implementation space for deploying a variety of graph algorithms on GPUs. We show that the dynamic 
nature of the parallelism that can be extracted from graph algorithms makes it impossible to find an 
optimal solution. We propose a runtime system able to dynamically transition between different 
implementations with minimal overhead, and investigate heuristic decisions applicable across algorithms 
and datasets. Our evaluation is performed on two graph algorithms: breadth first search and single source 
shortest paths. We believe that our proposed mechanisms can be extended and applied to other graph 
algorithms that exhibit similar computational patterns.  
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Abstract 
 
Runtime verification is a monitoring technique to gain assurance about well-being of a program at run 
time. Most existing approaches use sequential monitors, i.e., when the state of the program with respect to 
an event of interest changes, the monitor interrupts the program execution, evaluates a set of logical 
properties, and finally resumes the program execution. In this paper, we propose a GPU-based method for 
design and implementation of monitors that enjoy two levels of parallelism: the monitor (1) works along 
with the program in parallel, and (2) evaluates a set of properties in a parallel fashion as well. Our parallel 
monitoring algorithms effectively exploit the many-core platform available in the GPU. In addition to 
parallel processing, our approach benefits from a true separation of monitoring and functional concerns, 
as it isolates the monitor in the GPU. Our method is fully implemented and experimental results show 
significant reduction in monitoring overhead, monitoring interference, and power consumption due to 
leveraging the GPU technology.  
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Abstract 
 
Graphics processing units (GPUs) offer significant speedups over CPUs for certain classes of 
applications. However, programming for GPUs is challenging. There are many parameters that affect 
performance and their values may change depending on both problem instance and GPU hardware 
specifics. In addition, most GPU kernels are compiled once, performance optimizations are applied at 
application compile time. As a result, many GPU libraries and programs have limited adaptability to 
variations among problem instances and hardware configurations. These factors limit code reuse and the 
applicability of GPU computing to a wider variety of problems. This paper introduces GPGPU kernel 
specialization, a technique used to describe highly adaptable kernels that exhibit high performance across 
a wide range of programmer variables as well as different generations of GPUs. We also introduce our 
GPU Prototyping Framework (GPU-PF) for dynamic runtime generation of customized GPU kernels 
incorporating both problem and implementation-specific parameters. GPU-PF fully separates the GPU 
and CPU code so the GPU code can be compiled during program execution once all the parameters are 
known. This work explores the implementation and parameterization of two real world applications 
targeting two generations of NVIDIA CUDA-enabled GPUs using kernel specialization and GPU-PF: 
large template matching and cone-beam image reconstruction via back projection. Starting with high 
performance GPU kernels that compare favorably to multi-threaded reference implementations, kernel 
specialization is shown to increase adaptability while providing performance improvements including 
improved run time and reduction in resource usage. Kernel specialization offers productivity benefits, 
improved library code, and a means to increase the parameterizability of GPGPU implementations. 
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Abstract 

 
Large datasets and time-consuming processes have become the norm in scientific computing applications. 
The exploration phase in the development of scientific workflows involves trial-and-error with workflow 
components, which can take a lot of time given the time-consuming nature of the workflow tasks. These 
facts suggest the possibility of reducing the development time by reusing intermediate data whenever 
possible. However the storage space is always limited. This introduces a problem: which intermediate 
datasets from one workflow should be kept to be reused in another workflow, with a limited amount of 
storage. For the general class of series parallel graphs, we model this problem using a non-linear integer 
programming formulation and show that it is NP-Hard. We provide a branch and bound optimal 
algorithm as well as efficient heuristics. We conducted experiments over a large set of randomly-
generated workflows as well as a smaller set of synthetic workflows which are based on real-world 
workflows used by scientists in different disciplines. Our experiments show that the best solution 
produced by the heuristics only differs from the optimal value by less than 1% on average. 
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Abstract 

 
The lattice Boltzmann method is increasingly important in facilitating large-scale fluid dynamics 
simulations. To date, these simulations have been built on discretized velocity models of up to 27 
neighbors. Recent work has shown that higher order approximations of the continuum Boltzmann 
equation enable not only recovery of the Navier-Stokes hydro-dynamics, but also simulations for a wider 
range of Knudsen numbers, which is especially important in micro- and nano-scale flows. These higher-
order models have significant impact on both the communication and computational complexity of the 
application. We present a performance study of the higher-order models as compared to the traditional 
ones, on both the IBM Blue Gene/P and Blue Gene/Q architectures. We study the tradeoffs of many 
optimizations methods such as the use of deep halo level ghost cells that, alongside hybrid programming 
models, reduce the impact of extended models and enable efficient modeling of extreme regimes of 
computational fluid dynamics.  
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Abstract 
 
We consider the problem of communication avoidance in computing interactions between a set of 
particles in scenarios with and without a cutoff radius for interaction. Our strategy, which we show to be 
optimal in communication, divides the work in the iteration space rather than simply dividing the particles 
over processors, so more than one processor may be responsible for computing updates to a single 
particle. Similar to a force decomposition in molecular dynamics, this approach requires up to p times 
more memory than a particle decomposition, but reduces communication costs by factors up to p and is 
often faster in practice than a particle decomposition [1]. We examine a generalized force decomposition 
algorithm that tolerates the memory limited case, i.e. when memory can only hold c copies of the particles 
for c = 1, 2, ..., p. When c = 1, the algorithm degenerates into a particle decomposition, similarly when c = 
p, the algorithm uses a force decomposition. We present a proof that the algorithm is communication-
optimal and reduces critical path latency and bandwidth costs by factors of c2 and c, respectively. 
Performance results from experiments on up to 24K cores of Cray XE-6 and 32K cores of IBM Blue 
Gene/P machines indicate that the algorithm reduces communication in practice. In some cases, it even 
outperforms the original force decomposition approach because the right choice of c strikes a balance 
between the costs of collective and point-to-point communication. Finally, we extend the analysis to 
include a cutoff radius for direct evaluation of force interactions. We show that with a cutoff, 
communication optimality still holds. We sketch a generalized algorithm for multi-dimensional space and 
assess its performance for 1D and 2D simulations on the same systems. 
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Abstract 

 
We analyse gather-scatter performance bottlenecks in molecular dynamics codes and the challenges that 
they pose for obtaining benefits from SIMD execution. This analysis informs a number of novel code-
level and algorithmic improvements to Sandia’s miniMD benchmark, which we demonstrate using three 
SIMD widths (128-, 256- and 512-bit). The applicability of these optimisations to wider SIMD is 
discussed, and we show that the conventional approach of exposing more parallelism through redundant 
computation is not necessarily best. In single precision, our optimised implementation is up to 5x faster 
than the original scalar code running on Intel Xeon processors with 256-bit SIMD, and adding a single 
Intel Xeon Phi coprocessor provides up to an additional 2x performance increase. These results 
demonstrate: (i) the importance of effective SIMD utilisation for molecular dynamics codes on current 
and future hardware, and (ii) the considerable performance increase afforded by the use of Intel Xeon Phi 
coprocessors for highly parallel workloads. 
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Abstract 

 
Mobile vehicles equipped with wireless energy transmission technology can recharge sensor nodes over 
the air. When to recharge which nodes, and in what order, critically impact the network performance. So 
far only a few works have studied the recharging policy for a single mobile vehicle. In this paper, we 
study how to coordinate the recharging activities of multiple mobile vehicles, which provide more 
scalability and robustness than a single vehicle. We leverage concepts and mechanisms from NDN 
(Named Data Networking) to design energy monitoring protocols that deliver energy status information to 
mobile vehicles in an efficient manner. Then we study how to minimize the total traveling cost of 
multiple vehicles while ensuring no node failure. We derive theoretical results on the energy neutral 
condition and the minimum number of mobile vehicles required for perpetual network operations. We 
formulate the optimization problem into a Multiple Traveling Salesman Problem with Deadlines (m-TSP 
with Deadlines), which is NP-hard. To accommodate the dynamic nature of node energy conditions and 
reduce computational overhead, we present a heuristic algorithm that selects the node with the minimum 
weighted sum of traveling time and residual lifetime. Our scheme not only improves network scalability 
but also guarantees the perpetual operation of networks. Finally, we conduct extensive simulations to 
demonstrate the effectiveness and efficiency of our proposed design, and validate the correctness of 
theoretical analysis. 
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Abstract 
 
Fingerprinting wireless devices using physical properties has been recently suggested as an alternative for 
device identification and authentication. It has been found that the clock skew caused by the frequency 
discrepancy of the quartz crystals in different devices can be used as a reliable source for fingerprinting. 
Researchers have studied the application of the clock skew-based fingerprinting in sensor networks and 
claimed that it can detect fake identities, wormholes, and node replicas. However, the study in this paper 
draws a completely opposite conclusion, i.e., the clock skew of sensor nodes can be easily forged by 
adversaries to evade the detection. This paper then studies the feasibility of using the distribution of signal 
power in space to fingerprint sensor nodes. The result shows that a sensor node’s signal power 
distribution in space is not only reliable for being used as a source for fingerprinting but also very hard to 
forge. Finally, the paper discusses the application of using signal power distribution for detecting various 
attacks as well as the limitations and open problems. 
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Abstract 

 
A wireless mesh network (WMN) is a special type of wireless ad-hoc network, which consists of mesh 
clients, mesh routers and gateways to the Internet, organized in a mesh topology. The mesh clients are 
often laptops, cell phones and other wireless devices. Mesh routers forward traffic between mesh clients 
and gateways. Despite a number of promising features provided by WMNs, such as low deployment cost, 
self healing, etc., the throughput of WMNs is often limited by severe congestion and collisions, and thus 
cannot satisfy the increasing traffic demands of numerous applications. In this paper, we study how to 
maximize the throughput of IEEE 802.11n WMNs by joint routing and frame aggregation. Frame 
aggregation is to aggregate multiple frames into a large frame before transmission, to reduce 
communication overhead and alleviate collisions. We first show that previous frame aggregation 
strategies cannot achieve optimal network throughput. We then formulate the joint problem into a linear 
programming (LP) problem by considering traffic in the network as flow. As most previous algorithms 
for LP are centralized and difficult to deploy in large-scale WMNs, we propose a distributed algorithm to 
solve the formulated problem, in which each mesh router determines the amount of traffic flow for its 
adjacent links based on the traffic information of neighbors and interfering links. However, in realistic 
802.11n WMNs, traffic is transmitted in frames instead of flow, and the traffic to different routers needs 
to be distinguished. Thus, we further provide an algorithm to determine the routing and frame aggregation 
strategy for each mesh router, using the traffic flow derived from the first algorithm. We have conducted 
extensive simulations to evaluate the proposed algorithms and the results demonstrate that the network 
throughput can be significantly improved compared with existing schemes. 
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Abstract 
 
Event-based Systems (EBS) are used to detect and analyze meaningful events in surveillance, sports, 
finances and many other areas. With rising data and event rates and with correlations among these events, 
sequential event processing becomes infeasible and needs to be distributed. Existing approaches cannot 
deal with the ubiquity of out-of-order event arrival that is introduced by network delays when distributing 
EBS. Order-less event processing may result in a system failure. We present a low-latency approach 
based on K-slack that achieves ordered event processing on high data rate sensor and event streams 
without a-priori knowledge. Slack buffers are dynamically adjusted to fit the disorder in the streams 
without using local or global clocks. The middleware transparently reorders the event input streams so 
that events can still be aggregated and processed to a granularity that satisfies the demands of the 
application. On a Real time Locating System (RTLS) our system performs accurate low-latency event 
detection under the predominance of out-of-order vent arrival and with a close to linear performance 
scale-up when the system is distributed over several threads and machines. 
  



 

Session 23: Potpourri Algorithms 2 
  



 

  



141 
 

Agreement via Symmetry Breaking: On the Structure of Weak Subconsensus Tasks 
 

Armando Castañeda 
 

Department of Computer Science, Technion 
Haifa, Israel 

armando@cs.technion.ac.il 
 

Sergio Rajsbaum 
 

Instituto de Matematicas, UNAM 
Mexico City, Mexico 

rajsbaum@math.unam.mx 
 

Michel Raynal 
 

Institut Universitaire de France and IRISA-INRIA 
Rennes, France 

michel.raynal@irisa.fr 
 

Abstract 
 
This paper is on the relative power and the relations linking two important synchronization problems in 
$n$-process wait-free shared memory models, namely, set agreement and renaming, which are two of the 
most studied sub consensus tasks. Since the 2006 seminal paper of Gafni, Rajsbaum and Herlihy, it is 
known that some renaming instances are strictly weaker than set agreement. Indeed, it was later on shown 
that not even $(n+1)$-renaming (the strongest task in the renaming family, after perfect $n$-renaming) 
can implement$(n-1)$-set agreement (the weakest non-trivial task in the set agreement family). These and 
other results seem to imply that renaming and, more generally, the tasks called generalized symmetry 
breaking tasks (GSB) are weaker than agreement tasks. This paper shows that this is not the case, namely, 
it shows that there is a large family of GSB tasks that are more powerful than $(n-1)$-set agreement. 
Some of these tasks are equivalent to $n$-renaming, while others lie strictly between $n$-renaming and 
$(n+1)$-renaming. Moreover, none of these GSB tasks can solve $(n-2)$-set agreement. Hence, these sub 
consensus tasks have a rich structure and are interesting in their own. The proofs of these results are based 
on algebraic topology techniques and new ideas about different notions of non-determinism that can be 
associated with shared objects. Interestingly, this paper sheds a new light on the relations linking set 
agreement and renaming. 
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Abstract 

 
Bloom filters are space-efficient data structures for fast set membership queries. Counting Bloom Filters 
(CBFs) extend Bloom filters by allowing insertions and deletions to support dynamic sets. The 
performance of CBFs is critical for various applications and systems. This paper presents a novel 
approach to building a fast and accurate data structure called Multiple-Partitioned Counting Bloom Filter 
(MPCBF) that addresses large-scale data processing challenges. MPCBF is based on two ideas: reducing 
the number of memory accesses from k (for k hash functions) in the standard CBF to only one memory 
access in the basic MPCBF-1 case, and a hierarchical structure to improve the false positive rate. We also 
generalize MPCBF-1 to MPCBF-g to accommodate up to g memory accesses. Our simulation and 
implementation in MapReduce show that MPCBF outperforms the standard CBF in terms of speed and 
accuracy. Compared to CBF, at the same memory consumption, MPCBF significantly reduces the false 
positive rate by an order of magnitude, with a reduction of processing overhead by up to 85.9%.  
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Abstract 

 
As the classic transactional abstraction is sometimes considered too restrictive in leveraging parallelism, a 
lot of work has been devoted to devising relaxed transactional models with the goal of improving 
concurrency. Nevertheless, the quest for improving concurrency has somehow led to neglect one of the 
most appealing aspects of transactions: software composition, namely, the ability to develop pieces of 
software independently and compose them into applications that behave correctly in the face of 
concurrency. Indeed, a closer look at relaxed transactional models reveals that they do jeopardize 
composition, raising the fundamental question whether it is at all possible to devise such models while 
preserving composition. This paper shows that the answer is positive. We present out heritance, a 
necessary and sufficient condition for a (potentially relaxed) transactional memory to support 
composition. Basically, out heritance requires child transactions to pass their conflict information to their 
parent transaction, which in turn maintains this information until commit time. Concrete instantiations of 
this idea have been used before, classic transactions being the most prevalent example, but we believe to 
be the first to capture this as a general principle as well as to prove that it is, strictly speaking, equivalent 
to ensuring composition. We illustrate the benefits of out heritance using elastic transactions and show 
how they can satisfy out heritance and provide composition without hampering concurrency. We leverage 
this to present a new (transactional) Java package, a compos able alternative to the concurrency package 
of the JDK, and evaluate efficiency through an implementation that speeds up state of the art software 
transactional memory implementations (TL2, LSA, Swiss TM) by almost a factor of 3. 
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Abstract 
 
Space sharing approaches are widely used in job scheduling for HPC systems. The main drawback of 
these approaches is the blocking of short jobs, which results in low throughput. The research on gang 
scheduling has shown the potential of time sharing in improving throughput. However, traditional gang 
scheduling adds jobs for time sharing without selection, which may cause a higher performance 
degradation of existing running jobs than the performance gain of waiting jobs. Moreover, gang 
scheduling often adopts a contiguous buddy allocation scheme which has problems of fragmentation and 
low resource utilization. We design a selective time sharing technique that allows waiting jobs to be co-
scheduled with existing running jobs only if the overall throughput can be improved. To alleviate the 
fragmentation problem, we present a dynamic grouping resource allocation mechanism that relaxes the 
contiguous allocation requirement imposed on gang scheduling. By integrating these techniques, our new 
job co-scheduling algorithm is able to simultaneously take system throughput and resource utilization into 
consideration. The experimental results demonstrate that our approach significantly outperforms both 
EASY backfilling and traditional gang scheduling in terms of both average turnaround time and bounded 
slowdown. 
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Abstract 

 
The molecular data avalanche generated by novel wet-lab sequencing technologies allows for 
reconstructing phylogenies (evolutionary trees) using hundreds of complete genomes as input data. 
Therefore, scalable codes are required to infer trees on these data under likelihood-based models of 
molecular evolution. We recently introduced a check pointable and scalable MPI-based code for this 
purpose called RAxML-Light and are currently using it for several real-world data analysis projects. It 
turned out that the scalability of RAxML-Light is nonetheless still limited because of the fork-join 
parallelization approach that is deployed. To this end, we introduce a novel, generally applicable, 
approach to computing the phylogenetic likelihood in parallel on whole-genome datasets and implement 
it in ExaML (Exascale Maximum Likelihood). ExaML executes up to 3.2 times faster than RAxML-Light 
because of the more efficient parallelization and communication scheme, while implementing exactly the 
same tree search algorithm. Moreover, the new parallelization approach exhibits lower code complexity 
and a more appropriate structure for implementing fault tolerance with respect to hardware failures. 
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Abstract 

 
Compute cycles in high performance systems are increasing at a much faster pace than both storage and 
wide area bandwidths. To continue improving the performance of large-scale data analytics applications, 
compression has therefore become promising approach. In this context, this paper makes the following 
contributions. First, we develop a new compression methodology, which exploits the similarities between 
spatial and/or temporal neighbors in a popular climate simulation dataset and enables high compression 
ratios and low decompression costs. Second, we develop a framework that can be used to incorporate a 
variety of compression and decompression algorithms. This framework also supports a simple API to 
allow integration with an existing application or data processing middleware. Once a compression 
algorithm is implemented, this framework automatically mechanizes multi-threaded retrieval, multi-
threaded data decompression, and the use of informed prefetching and caching. By integrating this 
framework with a data-intensive middleware, we have applied our compression methodology and 
framework to three applications over two datasets, including the Global Cloud-Resolving Model (GCRM) 
climate dataset. We obtained an average compression ratio of 51.68%, and up to 53.27% improvement in 
execution time of data analysis applications by amortizing I/O time by moving compressed data.  
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Abstract 
 
To study the emergence of cooperative behavior, we have developed a scalable parallel framework for 
evolutionary game dynamics. This is a critical computational tool enabling large-scale agent simulation 
research. An important aspect is the amount of history, or memory steps, that each agent can keep. When 
six memory steps are taken into account, the strategy space spans 24096 potential strategies, requiring 
large populations of agents. We introduce a multi-level decomposition method that allows us to exploit 
both multi-node and thread-level parallel scaling while minimizing communication overhead. We present 
the results of a production run modeling up to six memory steps for populations consisting of up to 10^18 
agents, making this study one of the largest yet undertaken. The high rate of mutation within the 
population results in a non-trivial parallel implementation. The strong and weak scaling studies provide 
insight into parallel scalability and programmability trade-offs for large-scale simulations, while 
exhibiting near perfect weak and strong scaling on 16,384 tasks on Blue Gene/Q. We further show 99% 
weak scaling up to 294,912 processors 82% strong scaling efficiency up to 262,144 processors of Blue 
Gene/P. Our framework marks an important step in the study of game dynamics with potential 
applications in fields ranging from biology to economics and sociology.  
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Abstract 
 
The Argonne Leadership Computing Facility (ALCF) is home to Mira, a10 PF Blue Gene/Q (BG/Q) 
system. The BG/Q system is the third generation in Blue Gene architecture from IBM and like its 
predecessors combines system-on-chip technology with a proprietary interconnect (5-D torus). Each 
compute node has 16 augmented PowerPCA2 processor cores with support for simultaneous 
multithreading, 4-wide double precision SIMD, and different data prefetchingmechanisms. Mira offers 
several new opportunities for tuning and scaling scientific applications. This paper discusses our early 
experience with a subset of micro-benchmarks, MPI benchmarks, and a variety of science and 
engineering applications running at ALCF. Both performance and power are studied and results on BG/Q 
is compared with its predecessor BG/P. Several lessons gleaned from tuning applications on the BG/Q 
architecture for better performance and scalability are shared. 
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Abstract 
 
Cache hierarchy designs, including bypassing, replacement, and the inclusion property, have significant 
performance impact. Recent works on high performance caches have shown that cache bypassing is an 
effective technique to enhance the last level cache (LLC) performance. However, commonly used 
inclusive cache hierarchy cannot benefit from this technique because bypassing inherently breaks the 
inclusion property. This paper presents a solution to enabling cache bypassing for inclusive caches. We 
introduce a bypass buffer to an LLC. Bypassed cache lines skip the LLC while their tags are stored in this 
bypass buffer. When a tag is evicted from the bypass buffer, it invalidates the corresponding cache lines 
in upper level caches to ensure the inclusion property. Our key insight is that the lifetime of a bypassed 
line, assuming a well-designed bypassing algorithm, should be short in upper level caches and is most 
likely dead when its tag is evicted from the bypass buffer. Therefore, a small bypass buffer is sufficient to 
maintain the inclusion property and to reap most performance benefits of bypassing. Furthermore, the 
bypass buffer facilitates bypassing algorithms by providing the usage information of bypassed lines. We 
show that a top performing cache bypassing algorithm, which is originally designed for non-inclusive 
caches, performs comparably for inclusive caches equipped with our bypass buffer. The usage 
information collected from the bypass buffer also significantly reduces the cost of hardware 
implementation compared to the original design. 
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Abstract 

 
Programmable hardware accelerators for regular expression (regex) matching are evolving into 
increasingly complex stream processors, which involve multiple state machines that operate in parallel, 
and specialized post-processors that can process instructions dispatched by the state machines. To 
improve the speed and the storage-efficiency, complex regexs are decomposed into simpler sub 
expressions, where each sub expression can fire one or more instructions. Although the impact of regex 
decompositions on the storage efficiency is well-known, little has been done to address the correctness 
and completeness. We show that regex decompositions can resultin false positives if overlaps between 
sub expressions are not taken into account. We describe formal methods to recognize various types of sub 
expression overlaps that can arise in regex decompositions. We also describe efficient post-processing 
techniques to eliminate the associated false positives. To enable efficient mapping of the decomposed 
regexs to the post-processors, we propose integer programming based register allocation methods. Our 
methods pack narrow variables to reduce the register and instruction usage, and take advantage of multi-
register reset instructions to reduce the number of instructions that must be executed in parallel. 
Experiments on regex sets obtained from open-source and proprietary network intrusion detection 
systems demonstrate orders of magnitude improvement in the storage efficiency over state-of-the-art. 
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Abstract 

 
The simplicity of concurrent programming with Transactional Memory (TM) and its recent 
implementation in mainstream processors greatly motivates researchers and industry to investigate this 
field and propose new implementations and optimizations. However, there is still no standard C system 
library which a wide range of TM developers can adopt. TM application developers have been forced to 
avoid library calls inside of transactions or to execute them irrevocably (i.e. in serial order). In this paper, 
we present the first TM-aware system library, a complex software implementation integrated with TM 
principles and suited for software (STM), hardware (HTM) and hybrid TM (HyTM). The library we 
propose is derived from a modified lock-based implementation and can be used with the existing standard 
C API. In our work, we describe design challenges and code optimizations that would be specific to any 
TM-based system library or application. We argue about system call execution within transactions, 
highlighting the possibility of unexpected results from threads. For this reason we propose: (1) a 
mechanism for detecting conflicts over kernel data in user space, and (2) a new barrier to allow hybrid 
TM to be used effectively with system libraries. Our evaluation includes different TM implementations 
and the focus is on memory management and file operations since they are widely used in applications 
and require additional mechanisms for concurrent execution. We show the benefit we gain with our libc 
modifications providing parallel execution as much as possible. The library we propose shows high 
scalability when linked with STM and HTM. For file operations it shows on average a 1.1, 2.6 and 3.7x 
performance speedup for 8 cores using HyTM, STM and HTM, respectively (over a lock-based single-
threaded execution). For a red-black tree it shows on average 3.14x performance speedup for 8 cores 
using STM (over a multi-read single-threaded execution). 
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Abstract 

 
We propose a new MapReduce cloud service model, Cura, for data analytics in the cloud. We argue that 
performing MapReduce analytics in existing cloud service models - either using a generic compute cloud 
or a dedicated MapReduce cloud- is inadequate and inefficient for production workloads. Existing 
services require users to select a number of complex cluster and job parameters while simultaneously 
forcing the cloud provider to use those potentially sub-optimal configurations resulting in poor resource 
utilization and higher cost. In contrast Cura leverages MapReduce profiling to automatically create the 
best cluster configuration for the jobs so as to obtain a global resource optimization from the provider 
perspective. Secondly, to better serve modern MapReduce workloads which constitute a large proportion 
of interactive real-time jobs, Cura uses a unique instant VM allocation technique that reduces response 
times by up to65%. Thirdly, our system introduces deadline-awareness which, by delaying execution of 
certain jobs, allows the cloud provider to optimize its global resource allocation and reduce costs further. 
Cura also benefits from a number of additional performance enhancements including cost-aware resource 
provisioning, VM aware scheduling and online virtual machine reconfiguration. Our experimental results 
using Facebook-like workload traces show that along with response time improvements, our techniques 
lead to more than 80% reduction in the compute infrastructure cost of the cloud data center. 
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Abstract 

 
This paper describes and evaluates a highly-scalable framework for running iterative local searches on 
heterogeneous HPC platforms. The user only needs to provide serial CPU or single-GPU code that 
implements a simple interface. The framework then executes this code in parallel using MPI between 
compute nodes and OpenMP and multi-GPU support within nodes. It handles all parallelization aspects, 
seed distribution and program termination, and it regularly records the currently best solution. We 
evaluate our framework on three supercomputers using a heuristic iterative hill-climbing TSP solver as 
well as a search for good finite-state machines. The framework scales to 2048 nodes (32,768 cores) on 
Ranger with less than a 5% drop in efficiency, searches over 12.2 trillion TSP tours per second on 
Stampede using 1024 nodes, and evaluates over 21.5 trillion FSM transitions per second using 256 CPUs 
and 384 GPUs on Keene land.  
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Abstract 

 
Most recent HPC platforms have heterogeneous nodes composed of multi-core CPUs and accelerators, 
like GPUs. Programming such nodes is typically based on a combination of OpenMP and 
CUDA/OpenCL codes, scheduling relies on a static partitioning and cost model. We present the XKaapi 
runtime system for data-flow task programming on multi-CPU and multi-GPU architectures, which 
supports a data-flow task model and a locality-aware work stealing scheduler. XKaapi enables task multi-
implementation on CPU or GPU and multi-level parallelism with different grain sizes. We show 
performance results on two dense linear algebra kernels, matrix product (GEMM) and Cholesky 
factorization (POTRF), to evaluate XKaapi on a heterogeneous architecture composed of two hexa-core 
CPUs and eight NVIDIA Fermi GPUs. Our conclusion is two-fold. First, fine grained parallelism and 
online scheduling achieve performance results as good as static strategies, and in most cases outperform 
them. This is due to an improved work stealing strategy that includes locality information, a very light 
implementation of the tasks in XKaapi, and an optimized search for ready tasks. Next, the multi-level 
parallelism on multiple CPUs and GPUs enabled by XKaapi led to a highly efficient Cholesky 
factorization. Using eight NVIDIA Fermi GPUs and four CPUs, we measure up to 2.43 TFlop/s on 
double precision matrix product and 1.79 TFlop/s on Cholesky factorization, and respectively 5.09 
TFlop/s and 3.92 TFlop/s in single precision. 
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Abstract 

 
Synchronization is a central issue in concurrency and plays an important role in the behavior and 
performance of modern programmes. Programming languages and hardware designers are trying to 
provide synchronization constructs and primitives that can handle concurrency and synchronization issues 
efficiently. Programmers have to find a way to select the most appropriate constructs and primitives in 
order to gain the desired behavior and performance under concurrency. Several parameters and factors 
affect the choice, through complex interactions among (i) the language and the language constructs that it 
supports, (ii) the system architecture, (iii) possible run-time environments, virtual machine options and 
memory management support and(iv) applications. We present a systematic study of synchronization 
strategies, focusing on concurrent data structures. We have chosen concurrent data structures with 
different number of contention spots. We consider both coarse-grain and fine-grain locking strategies, as 
well as lock-free methods. We have investigated synchronization-aware implementations in C++, C# 
(.NET and Mono) and Java. Considering the machine architectures, we have studied the behavior of the 
implementations on both Intel’s Nehalem and AMD’s Bulldozer. The properties that we study are 
throughput and fairness under different workloads and multiprogramming execution environments. For 
NUMA architectures fairness is becoming as important as the typically considered throughput property. 
To the best of our knowledge this is the first systematic and comprehensive study of synchronization-
aware implementations. This paper takes steps towards capturing a number of guiding principles and 
concerns for the selection of the programming environment and synchronization methods in connection to 
the application and the system characteristics. 
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Abstract 

 
As the gap between processor speed and network latency continues to increase, avoiding exposed 
communication latency is critical for high performance on modern supercomputers. One can hide 
communication latency by overlapping it with computation using non-blocking data transfers, or avoid 
exposing communication latency by moving computation to the location of data it manipulates. Co array 
Fortran 2.0 (CAF 2.0) - a partitioned global address space language - provides a rich set of asynchronous 
operations for avoiding exposed latency including asynchronous copies, function shipping, and 
asynchronous collectives. CAF 2.0 provides event variables to manage completion of asynchronous 
operations that use explicit completion. This paper describes CAF 2.0’s finish and cofence 
synchronization constructs, which enable one to manage implicit completion of asynchronous operations. 
Finish ensures global completion of a set of asynchronous operations across the members of a team. 
Because of CAF 2.0’s SPMD model, its semantics and implementation of finish differ significantly from 
those of finish in X10 and Habanero-C. cofence controls local data completion of implicitly-synchronized 
asynchronous operations. Together these constructs provide the ability to tune a program’s performance 
by exploiting the difference between local data completion, local operation completion, and global 
completion of asynchronous operations, while hiding network latency. We explore subtle interactions 
between cofence, finish, events, asynchronous copies and collectives, and function shipping. We justify 
their presence in a relaxed memory model for CAF 2.0. We demonstrate the utility of these constructs in 
the context of two benchmarks: Unbalanced Tree Search (UTS), and HPC Challenge Random Access. We 
achieve 74%-77% parallel efficiency for 4K-32K cores for UTS using the T1WL spec, which 
demonstrates scalable performance using our synchronization constructs. Our cofence micro-benchmark 
shows that for a producer-consumer scenario, using local data completion rather than local operation 
completion yields superior performance. 
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