
Midpoint Routing 
algorithms for Delaunay 
Triangulations

Weisheng Si and Albert Y. Zomaya
Centre for Distributed and High Performance 
Computing
School of Information Technologies



The practical meaning of this paper:

Lazy man: If I only aim to reach the 
midpoint towards the destination in each 
move, can I reach the destination finally?

God: Yes, if you move on the kind of graphs 
called Delaunay triangulations . 
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Online Routing
In some networking scenarios, a packet only has 
local information to find out its routes. Routing 
algorithms designed for such scenarios are called 
online routing algorithms.
We consider online routing in the same settings as 
those described in “Online routing in triangulations”:

The environment is modeled by a geometric graph G (V , 
E ), where V  is the set of nodes with known (x , y ) 
coordinates and E  is the set of links connecting the 
nodes.
When a packet travels from a source node s  to a 
destination node t , it carries the coordinates of t , and at 
each node v  being visited, can learn the coordinates of 
the nodes in N (v ), where N (v ) denotes the set of v ’s one-
hop neighbors. 



Online Routing (cont’d)

An example of geometric graphs 



Online routing (cont’d)
If an online routing algorithm A  can move a packet 
from any source s  to any destination t  in G , A  is 
said to work  for G .
If at each node v  visited by a packet, A  makes the 
routing decision for this packet only according to 
the coordinates of v , t , and the nodes in N (v ), A  is 
said to be memoryless  or oblivious.

‘memoryless’ means that a packet records no information 
learned during the traversal of a graph.
Because the memoryless online routing (MOR) 
algorithms have low complexity in both space and time 
for nodes and packets, they have received wide attention.



Our evaluation metrics for online 
routingFor a source/destination pair (s , t ) in G , we define 

the deviation ratio  of (s , t ) by a routing algorithm A  
as the length of the path found by A  from s  to t  
versus the length of the shortest path from s  to t .
For a graph G , we define the deviation ratio  of G  by 
A  as the average deviation ratio of all (s , t ) pairs in 
G .
In practice, the path length generally has two 
metrics:

link distance � link deviation ratio  
Euclidean distance � Euclidean deviation ratio  



Our evaluation metrics (cont’d)
The deviation ratio concept is different from the c-
competitive concept

A routing algorithm is c-competitive  for a graph G , if for all 
(s , t ) pairs in G , their deviation ratios are not greater than 
a constant c .
The deviation ratio concept concerns the average 
performance of a routing algorithm on a graph, while the 
c-competitive concept concerns the worst-case 
performance of a routing algorithm on a graph.

The deviation ratio concept is different from the 
dilation  concept and the stretch factor  concept

Both of them are defined to measure the path quality of a 
subgraph with respect to the complete graph.
Both of them are not used to evaluate routing algorithms. 



Delaunay Triangulations
A Delaunay triangulation (DT) is a triangulation graph in 
which no node lies in the interior of the circumcircle of any 
of its triangles. It is also the dual graph of a Voronoi 
Diagram.



Delaunay Triangulations (cont’d)
DTs have the following desirable properties for 
routing:

Let n  denotes the number of nodes. The total number of 
links in a DT is less than 3n , and the average node 
degree is less than 6, thus simplifying the operation of 
routing.
In a DT, the Euclidean length of the shortest path 
between any two nodes u  and v  is less than C  times the 
Euclidean distance between u  and v , where C  is proved 
to be between 1.5846 and 2.42. 

Determining C  exactly is one of the most challenging 
problems in computational geometry.

DTs are planar graphs.



Delaunay Triangulations (cont’d)

Therefore, DTs have been widely used as 
the network topologies.

In light of the above, this paper particularly 
focuses on the MOR algorithms for DTs. 



Related work
The MOR algorithms are simple and elegant, so 
they are fascinating to pursue. 
To date, three existing MOR algorithms are proved 
to work for DTs

The Compass Routing algorithm
The Greedy Routing algorithm
The Greedy Compass algorithm 

Hereafter, we will use t  to denote the destination node of a 
packet P , v  to denote the current processing node of P , d(a , 
b ) to denote the Euclidean distance between node a  and 
node b , and to denote the angle between the link va  and the 
link vb . 



The Compass Routing algorithm

The node v  always moves P  to the node w in 
N (v ) that minimizes the angle . 

v

c

t

b

a



The Greedy Routing algorithm

The node v  always moves P  to the node w in 
N (v ) that minimizes d(w , t ). 
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The Greedy Compass algorithm
The node v  first decides the two nodes cw (v ) and ccw (v ), 
where cw (v ) denotes the node w  that has the smallest 
clockwise angle from the line vt , and ccw (v ) denotes the 
node w  that has the smallest counterclockwise angle from 
the line vt.
Then, P  is moved to one of cw (v ) and ccw (v ), whichever 
has a smaller Euclidean distance to t . 
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Our work

The Midpoint Routing algorithm
The generalization to the Midpoint Routing 
algorithm

The set of Deterministic Compass algorithms
This is the generalization to the Compass 
Midpoint algorithm

The Compass Midpoint algorithm



The Midpoint Routing Algorithm
The basic idea is to to minimize the Euclidean 
distance to m , where m  is the midpoint between the 
current processing node v  and the destination t . 



The Midpoint Routing (cont’d)
The algorithm is detailed below. 

1 calculate the coordinates of midpoint m  of vt;
2 for each w  in N (v ) { 
// check whether t  is a neighbor of v
3 if ( w  is the same node as t  ) {
4 next (v ) is set to w ;
5 return;
6 }
7 update next (v ) to w  if w  has a smaller d(w , m );
8 }



The Midpoint Routing (cont’d)
Theorem 1: The Midpoint Routing algorithm works for DTs.
Proof: We prove this theorem by showing that in each routing step, a 
packet gets strictly closer to t . This proof exploits that a DT is the dual 
graph of a Voronoi diagram. 
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Generalization to Midpoint 
RoutingCorollary 1: Replace the midpoint m with any point p in the 

line segment mt in the Midpoint Routing algorithm, the newly 
obtained algorithm works for DTs.  

It is worth noting that both the Midpoint Routing algorithm 
and the Greedy Routing algorithm are special cases of this 
set of MOR algorithms.



Generalization -- Proof
Proof: We prove this 
corollary also by 
showing that in each 
routing step, a packet 
gets strictly closer to t . 
In the right-hand 
figure, Dm is the disk 
with m  as the center 
and vm  as the radius, 
and Dp is the disk with 
p  as the center and vp  
as the radius. 



The Set of Deterministic Compass 
AlgorithmsThis set of algorithms have a similar structure with the 

Greedy Compass algorithm: the node v  first decides the 
two nodes cw (v ) and ccw (v ), and then selects one of 
them as next (v ) using a deterministic rule. 

1 if (v  has a neighbor w  lying on the segment vt )
2 next (v ) is set to w ; 
3 else {
4 decides the two nodes cw (v ) and ccw (v );
5 next (v ) is set to one of them using a deterministic rule; 
6 }



Proof Roadmap for “the set of 
Deterministic Compass algorithms work 
for DTs”

Lemma 1

Lemma 2

Theorem 2

Corollary 2



Lemma 1 
Lemma 1: For a (s, t) pair in a triangulation graph T, if a Deterministic 
Compass algorithm cannot route a packet P from s to t, P must be trapped in 
a cycle, and the link distance of this cycle is larger than two.

Proof: Since a DC algorithm makes the same routing decision at the same 
node each time, and there is limited number of nodes in T , P  must be 
trapped in a cycle if it never gets to t . Next, we show that there does not exist 
a link uv  in T , such that next (u ) = v  and next (v )=u  for a DC algorithm. 
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Lemma 2 – Preparation 
KnowledgeA visibility concept 

called ‘obscure’: 
Let A and B be 
two triangles in T . 
A is said to 
obscure B with 
respect to a 
viewpoint z  on the 
same plane, if 
there exists a ray 
from z  reaching 
any point in A first 
and then any point 
in B.



Lemma 2 -- Statement
Let u  and v  be any two nodes in T  such that next (u ) = v  
by a Deterministic Compass algorithm for a destination t . 
Define Δuv  as the triangle in T  that lies in the half-plane 
bounded by the line through uv  and containing t . Then 
we have the following lemma on the visibility of Δuv ’s in 
a trapping cycle.

Lemma 2: If a Deterministic Compass algorithm is trapped in 
a cycle v0 v1 v2… vk-1v0 for a source/destination pair (s, t) in a 
triangulation T, Δ vivi+1 is either identical to  Δ vi-1vi or obscures  
Δ vi-1vi with respect to the viewpoint  t . (0<=i <k , and all 
subscripts are the results of  mod k ).



Lemma 2 -- Proof
Proof: In the figure below, let w  be the third node of Δ vivi+1 , then w  can 
only lie in the regions I, II, or III. 
If w  is in region I, there will be crossing links in T , contradicting to the 
planarity of T . Note that we assume vi-1 is located in the upper half plane 
here; otherwise, there are only regions II and III, and this proof step can be 
omitted. If w  is in region III, next (vi) cannot be vi+1. So w  can only lie in 
region II. In this case, the ray from t  to vi reaches the link vi+1w  first and 
then reaches vi, a point in Δ vi-1vi. Therefore, Δ vivi+1 obscures Δ vi-1vi. 
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Theorem 2
A triangulation is regular , if it can be obtained by 
vertically projecting the faces of the lower convex hull of 
a 3-dimension polytope onto the plane.

Theorem 2: Any Deterministic Compass algorithm works for 
regular triangulations.

Proof: Edelsbrunner proved that if a triangulation T  is a 
regular triangulation, T  has no set of triangles that can form 
an obscuring cycle with respect to any viewpoint in T . Given 
Lemma 1 and Lemma 2, if a Deterministic Compass algorithm 
does not work for T , there must exist a set of triangles forming 
an obscuring cycle, thus causing contradictions. Therefore, 
this theorem holds. 



Corollary 2
Since a DT is the projection onto the plane of the lower 
convex hull of a set of points that all lie on a paraboloid, 
a DT is a special case of the regular triangulations. 
Thus, the following corollary holds.

Corollary 2: Any Deterministic Compass algorithm works for 
DTs.

It is worth noting that the Compass Routing algorithm and 
the Greedy Compass algorithm are the special cases of this 
set of MOR algorithms.



The Compass Midpoint algorithm
This algorithm is obtained by setting the deterministic rule 
to the following: select the cw(v)  and ccw(v)  whichever 
has a smaller Euclidean distance to m , where m  is the 
midpoint of the line segment vt . 
Since the Compass Midpoint algorithm belongs to the 
Deterministic Compass algorithms, we have the following 
corollary.

Corollary 3: The Compass Midpoint algorithm works for the 
regular triangulations, especially DTs.



Evaluations

Euclidean and link deviation ratios of the five 
MOR algorithms: 

Compass Routing
Greedy Routing
Greedy Compass
Midpoint Routing
Compass Midpoint



Experiment Setup
We develop a 
computer program that 
implements the above 
five MOR algorithms 
and calculates their 
Euclidean deviation 
ratios and link deviation 
ratios.
We totally conduct 
experiments on 1000 
DTs of 100 nodes. For 
each DT, the positions 
of its 100 nodes are 
randomly uniformly 
distributed in a square 
area.



Euclidean deviation ratios 



Euclidean deviation ratios (cont’d)
Both average and 99th percentile Euclidean deviation 
ratios of these five algorithms are very small (all below 
1.1).

So all of them perform well in average and general cases, and 
hence are practical for applications.

ComRtg performs the best, and the next four ones are in 
turn ComMid, MidRtg, ComGdy, and GdyRtg. 

This reflects that minimizing the angle to the destination at each 
routing step is very effective in reducing the Euclidean distances 
of the paths, while minimizing the Euclidean distance to the 
destination is less effective.

The two new algorithms MidRtg and ComMid perform in 
the middle among these five algorithms.



Link deviation ratios 



Link deviation ratios (cont’d)
Both average and 99th percentile link deviation ratios of 
these five algorithms are very small (all below 1.32).

So all of them perform well in average and general cases, and 
hence are practical for applications.

GdyRtg performs the best, and the next four ones are in 
turn ComGdy, MidRtg, ComMid, and ComRtg. 

This reflects that minimizing the Euclidean distance to the 
destination at each routing step is very effective in reducing the 
link distances of the paths, while minimizing the angle to the 
destination is less effective. 

The two new algorithms MidRtg and ComMid perform in 
the middle among these five algorithms. 



An Open Problem
It was proved that the Greedy Compass algorithm 
works for arbitrary triangulations.

Suggesting that combining the references to angles and 
to Euclidean distances can generate more capable 
MOR algorithms.

This leads to the conjecture that the Compass 
Midpoint algorithm presented in this paper works for 
arbitrary triangulations. 
Right now, we cannot prove or disprove this 
conjecture. If this conjecture is proved true, the 
Compass Midpoint algorithm becomes more 
meaningful. 



Conclusions
We found and proved two new MOR algorithms that work 
for DTs. 
More significantly, we generalized each of them into a set 
of MOR algorithms that work for DTs. 
Our evaluations showed that 

All the evaluated five algorithms can find paths with low 
link and Euclidean deviation ratios on DTs in average and 
general cases, so they are practical for applications. 
The two algorithms perform in the middle among these five 
algorithms in terms of both link and Euclidean deviation 
ratios, so they are suitable for the applications requiring 
satisfactory performance in both link and Euclidean 
metrics. 



Thank you!
Questions and 
suggestions?


