

GPU Sample Sort

Nikolaj Leischner, Vitaly Osipov, Peter Sanders

Institut für Theoretische Informatik - Algorithmik II

Overview

Introduction

- Tesla architecture
- Computing Unified Device Architecture Model
- Performance Guidelines
- Sample Sort Algorithm Overview
- High Level GPU Algorithm Design
- Flavor of Implementation Details
- Experimental Evaluation
- Future Trends

multi-way sorting algorithms

Sorting is important

Divide-and-Conquer approaches:

- recursively split the input in tiles until the tile size is *M* (e.g cache size)
- sort each tile independently
- combine intermidiate results
- Two-way approaches:
 - two-way distribution quicksort $\rightarrow \log_2(n/M)$ scans to partition the input
 - two-way merge sort $\rightsquigarrow \log_2(n/M)$ scans to combine intermidiate results
- Multi-way approaches:
 - *k*-way distribution sample sort \rightsquigarrow only $\log_k (n/M)$ scans to partition
 - *k*-way merge sort \rightarrow only $\log_k(n/M)$ scans to combine
- Multiway approaches are benifitial when the memory bandwidth is an issue!

multi-way sorting algorithms

- Sorting is important
- Divide-and-Conquer approaches:
 - recursively split the input in tiles until the tile size is M (e.g cache size)
 - sort each tile independently
 - combine intermidiate results
- Two-way approaches:
 - two-way distribution quicksort $\rightsquigarrow \log_2(n/M)$ scans to partition the input
 - two-way merge sort $\rightsquigarrow \log_2(n/M)$ scans to combine intermidiate results
- Multi-way approaches:
 - k-way distribution sample sort \rightsquigarrow only $\log_k(n/M)$ scans to partition
 - *k*-way merge sort \rightarrow only $\log_k(n/M)$ scans to combine
- Multiway approaches are benifitial when the memory bandwidth is an issue!

multi-way sorting algorithms

- Sorting is important
- Divide-and-Conquer approaches:
 - recursively split the input in tiles until the tile size is M (e.g cache size)
 - sort each tile independently
 - combine intermidiate results
- Two-way approaches:
 - two-way distribution quicksort $\rightsquigarrow \log_2(n/M)$ scans to partition the input
 - two-way merge sort $\rightsquigarrow \log_2(n/M)$ scans to combine intermidiate results
- Multi-way approaches:
 - *k*-way distribution sample sort \rightsquigarrow only $\log_k (n/M)$ scans to partition
 - *k*-way merge sort \rightsquigarrow only $\log_k(n/M)$ scans to combine
- Multiway approaches are benifitial when the memory bandwidth is an issue!

multi-way sorting algorithms

- Sorting is important
- Divide-and-Conquer approaches:
 - recursively split the input in tiles until the tile size is M (e.g cache size)
 - sort each tile independently
 - combine intermidiate results
- Two-way approaches:
 - two-way distribution quicksort $\rightsquigarrow \log_2(n/M)$ scans to partition the input
 - two-way merge sort $\rightsquigarrow \log_2(n/M)$ scans to combine intermidiate results
- Multi-way approaches:
 - k-way distribution sample sort \rightsquigarrow only $\log_k (n/M)$ scans to partition
 - *k*-way merge sort \rightsquigarrow only $\log_k (n/M)$ scans to combine
- Multiway approaches are benifitial when the memory bandwidth is an issue!

NVidia Tesla Architecture

- **30** Streaming Processors (SM) × 8 Scalar Processors (SP) each
- overall 240 physical cores
- 16KB shared memory per SM similar to CPU L1 cache
- 4GB global device memory

Computing Unified Device Architecture Model

- Similar to SPMD (single-program multiple-data) model
 - block of concurrent threads execute a scalar sequential program, a kernel
 - thread blocks constitute a grid

5 Vitaly Osipov: GPU Sample Sort

Performance Guidelines

General pattern in GPU algorithm design

- decompose the problem into many data-independent sub-problems
- solve sub-problems by blocks of cooperative parallel threads
- Performance Guidelines
 - conditional branching
 - follow the same execution path
 - shared memory
 - exploit fast on-chip memory
 - coalesced global memory operations
 - load/store requests to the same memory block \rightsquigarrow fewer memory accesses

Algorithm Overview

SampleSort($e = \langle e_1, \ldots, e_n \rangle, k$) begin if n < M then return SmallSort(e) choose a random sample $S = S_1, \ldots, S_{ak-1}$ of e Sort(S) $\langle s_0, s_1, \ldots, s_k \rangle = \langle -\infty, S_a, \ldots, S_{a(k-1)}, \infty \rangle$ for 1 < i < n do find $j \in \{1, \ldots, k\}$, such that $s_{i-1} \leq e_i \leq s_i$ place e_i in bucket b_i **return** Concatenate(SampleSort(b_1, k),..., SampleSort(b_k, k)) end end

Algorithm 1: Serial Sample Sort

Parameters:

- distribution degree k = 128
- threads per block t = 256
- elements per thread / = 8
- number of blocks $p = n/(t \cdot I)$

Phase 1. Choose splitters

Phase 2. Each of p TB:

- computes its elements bucket indices
 - id, $0 \leq id \leq k-1$
- stores the bucket sizes in DRAM
- Phase 3. Prefix sum over the $k \times p$ table \rightsquigarrow global offsets
- Phase 4.
 - as in Phase 2 → local offsets
 - local + global offsets ~> final positions

Parameters:

- distribution degree k = 128
- threads per block t = 256
- elements per thread / = 8
- number of blocks $p = n/(t \cdot I)$

- Phase 1. Choose splitters
- Phase 2. Each of *p* TB:
 - computes its elements bucket indices
 - id, $0 \leq id \leq k-1$
 - stores the bucket sizes in DRAM
- Phase 3. Prefix sum over the $k \times p$ table \rightsquigarrow global offsets
- Phase 4.
 - as in Phase 2 → local offsets
 - local + global offsets ~> final positions

Parameters:

- distribution degree k = 128
- threads per block t = 256
- elements per thread / = 8
- number of blocks $p = n/(t \cdot I)$

- Phase 1. Choose splitters
- Phase 2. Each of *p* TB:
 - computes its elements bucket indices
 - id, $0 \leq id \leq k-1$
 - stores the bucket sizes in DRAM
- Phase 3. Prefix sum over the $k \times p$ table \rightsquigarrow global offsets

Phase 4.

- as in Phase 2 → local offsets
- local + global offsets ~> final positions

Parameters:

8

Vitaly Osipov: GPU Sample Sort

- distribution degree k = 128
- threads per block t = 256
- elements per thread / = 8
- number of blocks $p = n/(t \cdot I)$

- Phase 1. Choose splitters
- Phase 2. Each of *p* TB:
 - computes its elements bucket indices
 - id, $0 \leq id \leq k-1$
 - stores the bucket sizes in DRAM
- Phase 3. Prefix sum over the $k \times p$ table \rightsquigarrow global offsets
- Phase 4.
 - as in Phase 2 ~→ local offsets
 - local + global offsets ~> final positions

computing element bucket indices

$$bt = \langle s_{k/2}, s_{k/4}, s_{3k/4}, s_{k/8}, s_{3k/8}, s_{5k/8}, s_{7k/8} \dots \rangle$$

TraverseTree(e_i)

begin

$$j := 1$$

// go left or right?
repeat log k times
 $j := 2j + (e_i > bt[j])$
// bucket index
 $j := j - k + 1$

end

- Srore the tree in fast shared memory
- Use predicated instructions ~> no path divergence

Unroll the loop

computing element bucket indices

$$bt = \langle s_{k/2}, s_{k/4}, s_{3k/4}, s_{k/8}, s_{3k/8}, s_{5k/8}, s_{7k/8} \dots \rangle$$

TraverseTree(e_i)

begin

$$j := 1$$

// go left or right?
repeat log k times
 $j := 2j + (e_i > bt[j])$
// bucket index
 $j := j - k + 1$
end

Srore the tree in fast shared memory

Use predicated instructions ~> no path divergence

Unroll the loop

computing element bucket indices

$$bt = \langle s_{k/2}, s_{k/4}, s_{3k/4}, s_{k/8}, s_{3k/8}, s_{5k/8}, s_{7k/8} \dots \rangle$$

TraverseTree(e_i)

begin

$$j := 1$$

// go left or right?
repeat log k times
 $j := 2j + (e_i > bt[j])$
// bucket index
 $j := j - k + 1$
end

- Srore the tree in fast shared memory
- Use predicated instructions ~> no path divergence

Unroll the loop

computing element bucket indices

$$bt = \langle s_{k/2}, s_{k/4}, s_{3k/4}, s_{k/8}, s_{3k/8}, s_{5k/8}, s_{7k/8} \dots \rangle$$

TraverseTree(e_i)

begin

$$j := 1$$

// go left or right?
repeat log k times
 $j := 2j + (e_i > bt[j])$
// bucket index
 $j := j - k + 1$
end

- Srore the tree in fast shared memory
- Use predicated instructions ~> no path divergence
- Unroll the loop

NVidia Tesla C1060

- 30 SMs x 8 SPs = 240 cores
- 4GB RAM
- Data types
 - 32- and 64-bit integers
 - key-value pairs
- Distributions
 - Uniform
 - Gausian
 - Bucket Sorted
 - Staggered
 - Deterministic Duplicates

- GPU sorting Algorithms
 - CUDPP and THRUST radix sort
 - THRUST merge sort
 - quicksort
 - hybrid sort
 - bbsort

Uniform 32-bit integers

11 Vitaly Osipov: GPU Sample Sort Fakultät für Informatik Institut für Theoretische Informatik

Uniform key-value pairs

Uniform 64-bit integers

13 Vitaly Osipov: GPU Sample Sort Fakultät für Informatik Institut für Theoretische Informatik

Future Trends

GPU	G80	GT200	Fermi
Transistors	681 million	1.4 billion	3.0 billion
CUDA Cores	128	240	512
Double Precision Floating Point Capability	None	30 FMA ops / clock	256 FMA ops /clock
Single Precision Floating	128 MAD	240 MAD ops /	512 FMA ops /clock
Point Capability	ops/clock	clock	
Special Function Units	2	2	4
(SFUs) / SM			
Warp schedulers (per SM)	1	1	2
Shared Memory (per SM)	16 KB	16 KB	Configurable 48 KB or 16 KB
L1 Cache (per SM)	None	None	Configurable 16 KB or 48 KB
L2 Cache	None	None	768 KB
ECC Memory Support	No	No	Yes
Concurrent Kernels	No	No	Up to 16
Load/Store Address Width	32-bit	32-bit	64-bit

What about memory bandwidth? No significant improvements?

- multi-way approaches are likely to be even more beneficial
- multi-way merge sort?

Thank you!

15 Vitaly Osipov: GPU Sample Sort Fakultät für Informatik Institut für Theoretische Informatik