Highly Scalable Parallel Sorting

Edgar Solomonik and Laxmikant Kale University of Illinois at Urbana-Champaign April 20, 2010

Outline

- Parallel sorting background
- Histogram Sort overview
- Histogram Sort optimizations
- Results
- Limitations of work
- Contributions
- Future work

Parallel Sorting

- Input
 - There are <u>n</u> unsorted keys, distributed evenly over <u>p</u> processors
 - The distribution of keys in the range is unknown and possibly skewed
- Goal
 - Sort the data globally according to keys
 - Ensure no processor has more than (n/p)+threshold keys

Scaling Challenges

- Load balance
 - Main objective of most parallel sorting algorithms
 - Each processor needs a continuous chunk of data

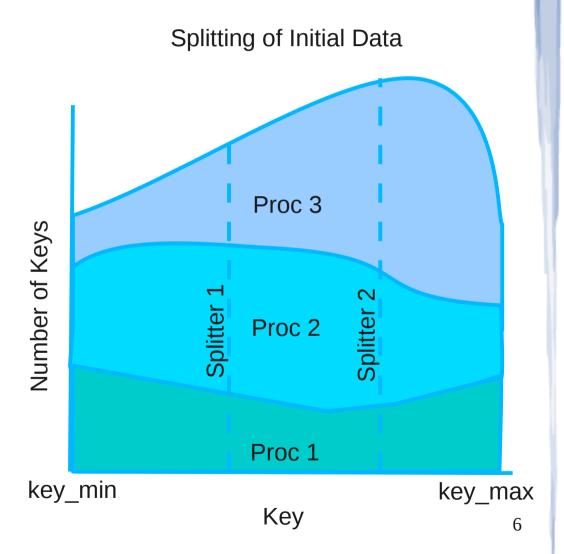
- Data exchange communication
 - Can require complete communication graph
 - All-to-all contains n elements in p^2 messages

Parallel Sorting Algorithms

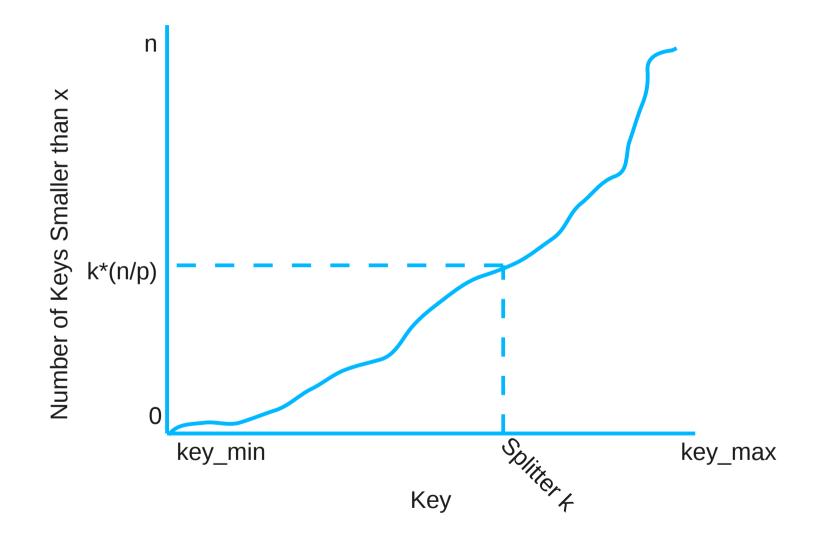
Туре	Data movement
 Merge-based 	
 Bitonic Sort 	¹ /2*n*log² (p)
 Cole's Merge Sort 	O(n*log(p))
 Splitter-based 	
-	
 Sample Sort 	n
– Sample Sort – Histogram Sort	n n
– Histogram Sort	

Splitter-Based Parallel Sorting

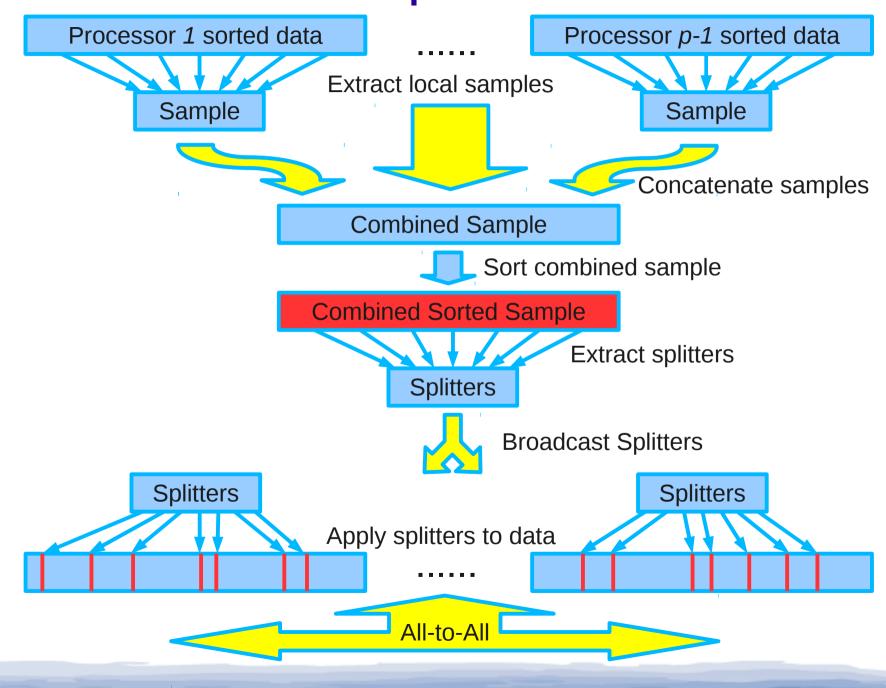
- A *splitter* is a key that partitions the global set of keys at a desired location
- *p-1* global splitters needed to subdivide the data into *p* continuous chunks
- Each processor can send out its local data based on the splitters
 - Data moves only once
- Each processor merges the data chunks as it receives them



Splitter on Key Density Function



Sample Sort

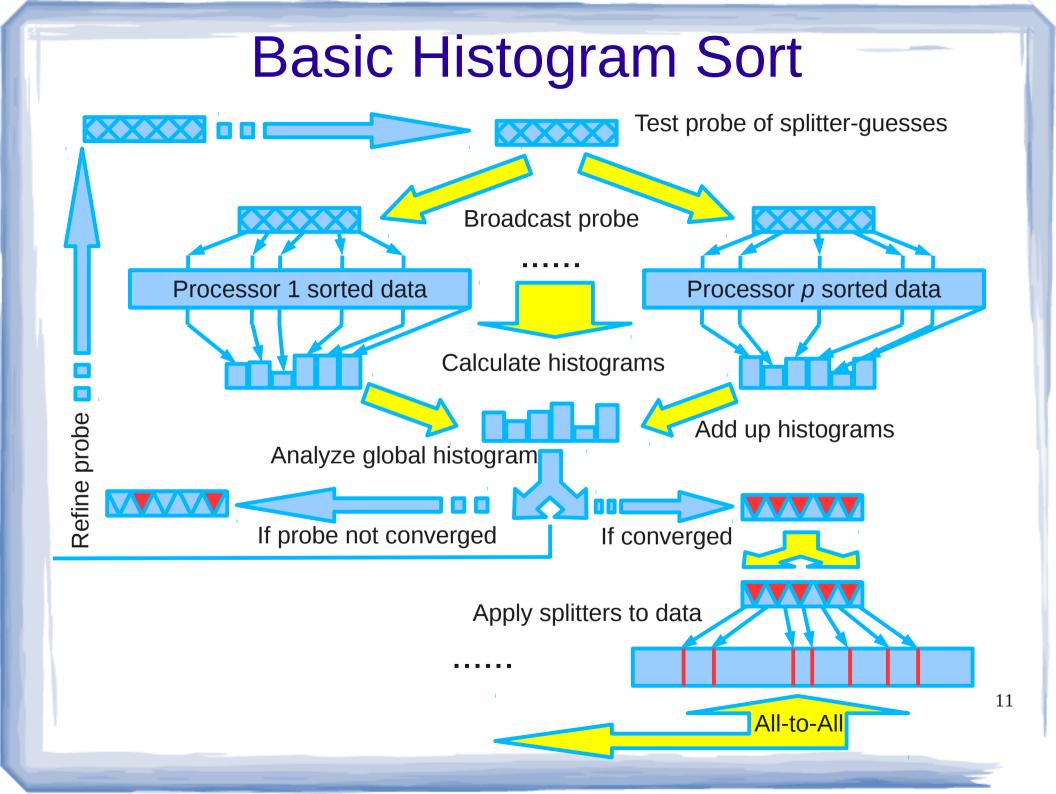


Sample Sort

- The sample is typically regularly spaced in the local sorted data s=p-1
 - Worst case final load imbalance is **2*(n/p)** keys
 - In practice, load imbalance is typically very small
- Combined sample becomes bottleneck since (s*p)~p²
 - With 64-bit keys, if *p* = **8192**, sample is **16 GB**!

Basic Histogram Sort

- Splitter-based
- Uses iterative guessing to find splitters
 - O(p) probe rather than O(p²) combined sample
 - Probe refinement based on global histogram
 - Histogram calculated by applying splitters to data
- Kale and Krishnan, ICPP 1993
- Basis for this work



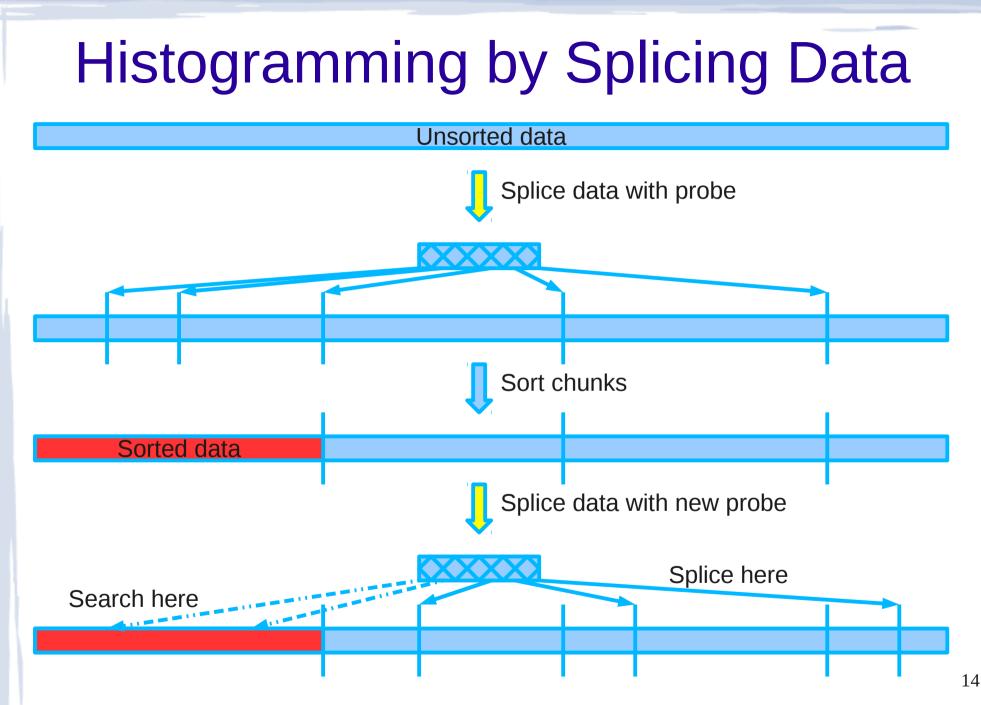
Basic Histogram Sort

Positives

- Splitter-based: single all-to-all data transpose
- Can achieve arbitrarily small threshold
- Probing technique is scalable compared to sample sort, O(p) vs O(p²)
- Allows good overlap between communication and computation (to be shown)
- Negatives
 - Harder to implement
 - Running time dependent on data distribution

Sorting and Histogramming Overlap

- Don't actually need to sort local data first
- Splice data instead
 - Use splitter-guesses as Quicksort pivots
 - Each splice determines location of a guess and partitions data
- Sort chunks of data while histogramming happens



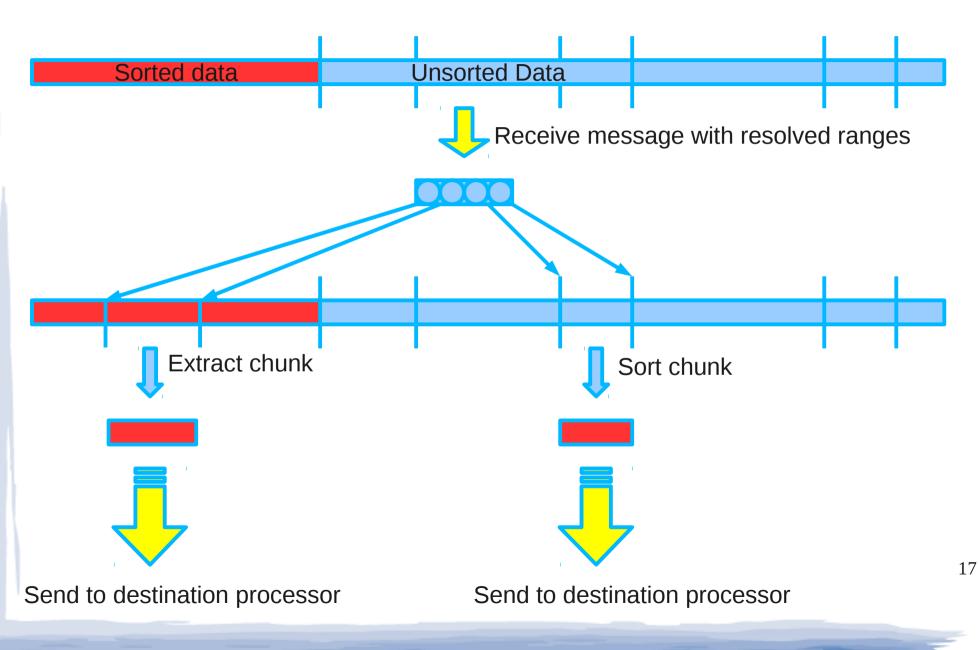
Histogram Overlap Analysis

- Probe generation work should be offloaded to one processor
 - Reduces critical path
- Splicing is somewhat expensive
 - O((n/p)*log(p)) for first iteration
 - *log(p)* approaches *log(n/p)* in weak scaling
 - Small theoretical overhead (limited pivot selection)
 - Slight implementation overhead (libraries faster)
 - Some optimizations/code necessary

Sorting and All-to-All Overlap

- Histogram and local sort overlap is good but the all-to-all is the worst scaling bottleneck
- Fortunately, much all-to-all overlap available
- All-to-all can initially overlap with local sorting
 - Some splitters converge every histogram iteration
 - This is also prior to completion of local sorting
 - Can begin sending to any defined ranges

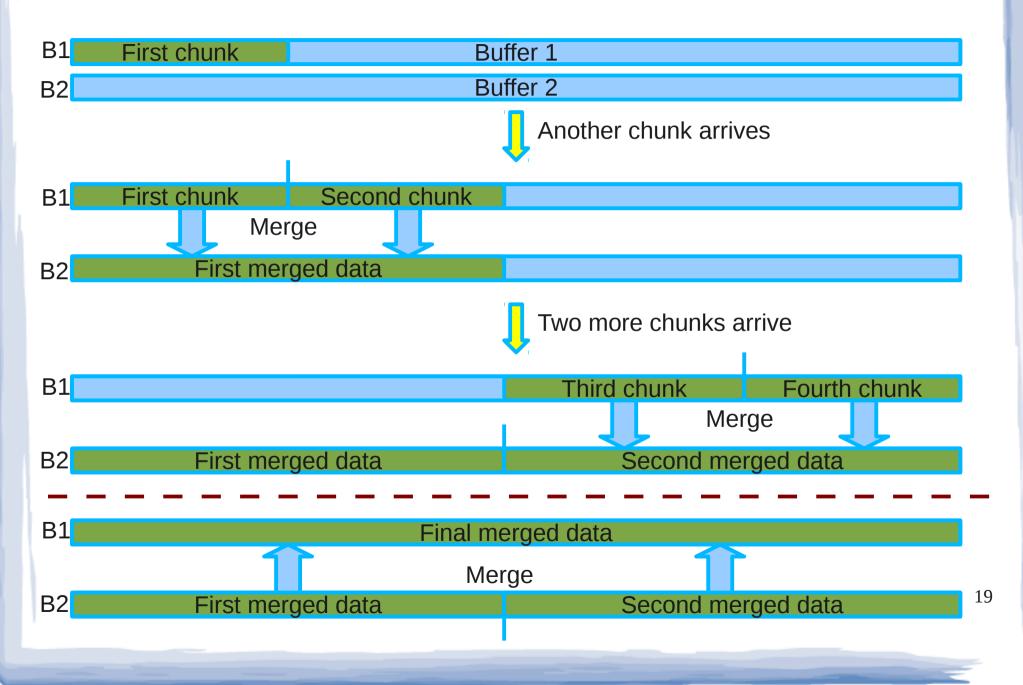
Eager Data Movement



All-to-All and Merge Overlap

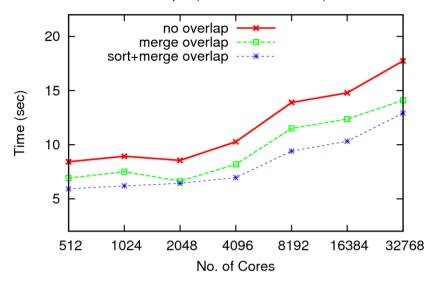
- The k-way merge done when the data arrives should be implemented as a tree merge
 - A k-way heap merge requires all k arrays
 - A tree merge can start with just two arrays
- Some data arrives much earlier than the rest
 - Tree merge allows overlap

Tree k-way Merging

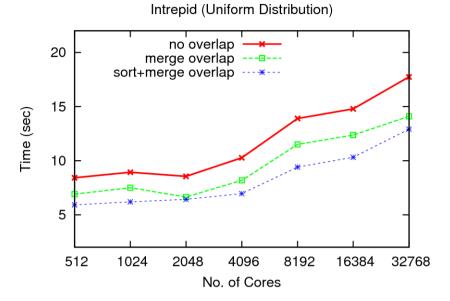


Overlap Benefit (Weak Scaling)

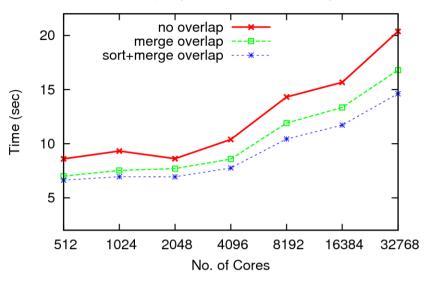
Intrepid (Uniform Distribution)



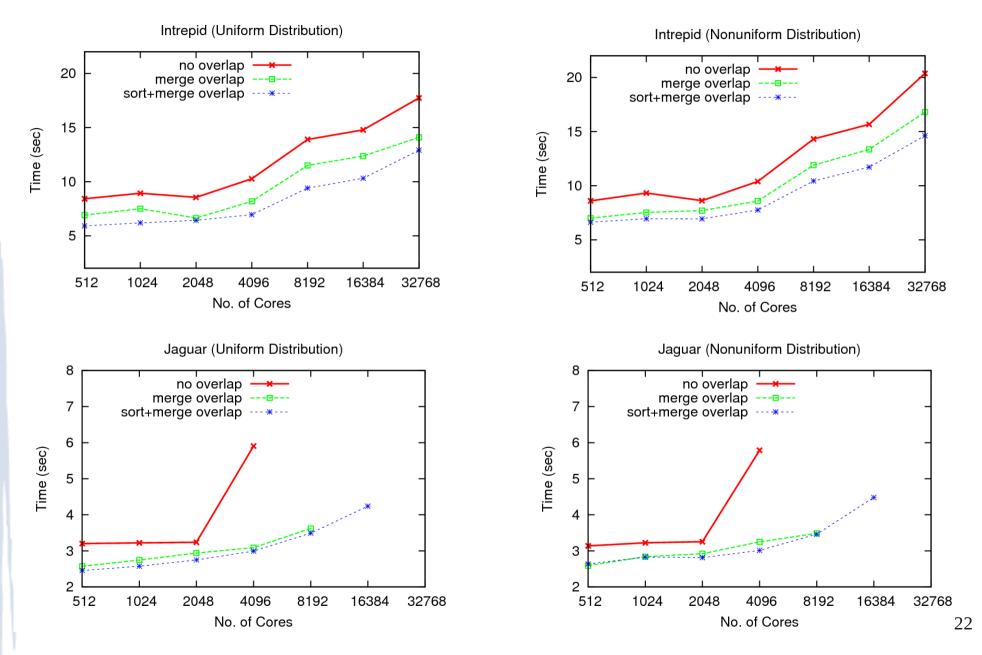
Overlap Benefit (Weak Scaling)



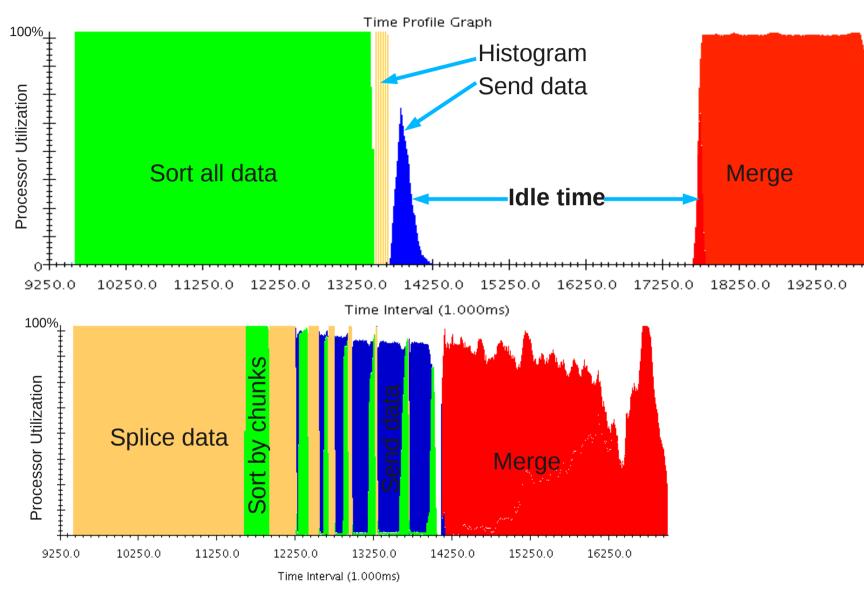
Intrepid (Nonuniform Distribution)



Overlap Benefit (Weak Scaling)



Effect of All-to-All Overlap

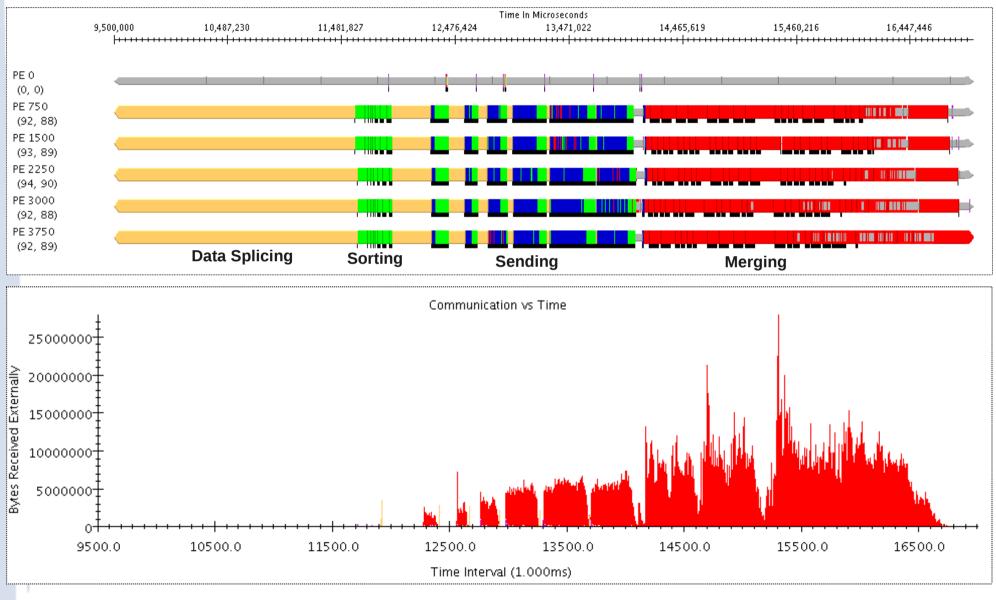


Tests done on 4096 cores of Intrepid (BG/P) with 8 million 64-bit keys per core.

All-to-All Spread and Staging

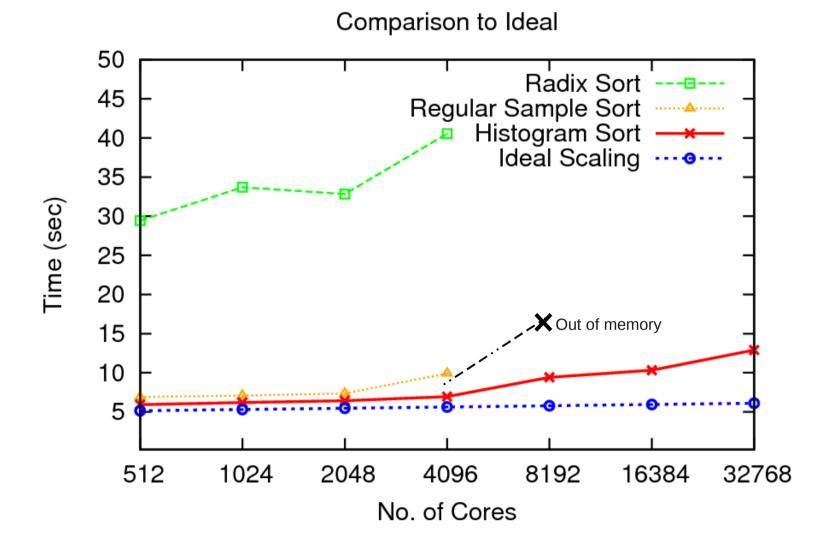
- Personalized all-to-all collective communication strategies important
 - All-to-all eventually dominates execution time
- Some basic optimizations easily applied
 - Varying order sends
 - Minimizes network contention
 - Only a subset of processors should send data to one destination at a time
 - Prevents network overload

Communication Spread



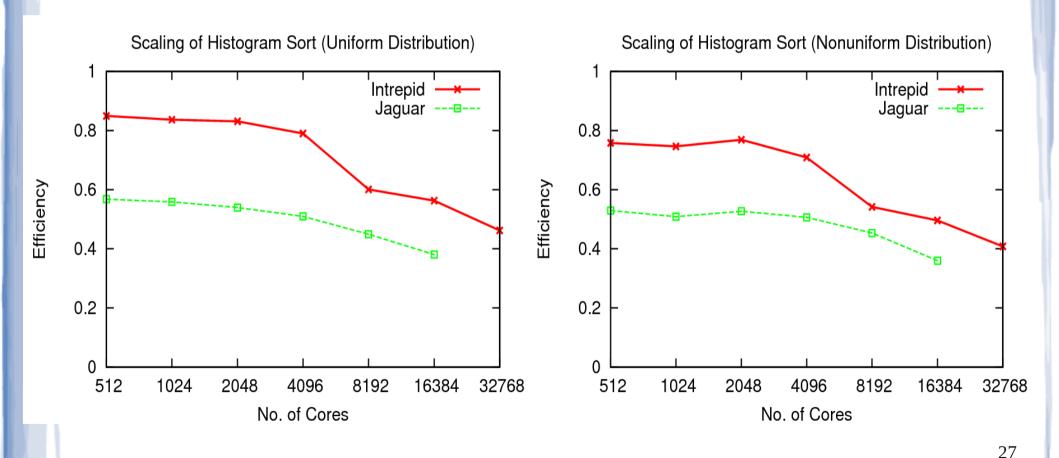
Tests done on 4096 cores of Intrepid (BG/P) with 8 million 64-bit keys per core.

Algorithm Scaling Comparison



Tests done on Intrepid (BG/P) with 8 million 64-bit keys per core.

Histogram Sort Parallel Efficiency



Some Limitations of this Work

- Benchmarking done with 64-bit keys rather than key-value pairs
- Optimizations presented are only beneficial for certain parallel sorting problems
 - Generally, we assumed $n > p^2$
 - Splicing useless unless n/p > p
 - Different all-to-all optimizations required if *n/p* is small (combine messages)
 - Communication usually cheap until *p*>512
- Complex implementation another issue

Future/Ongoing Work

- Write a further optimized library implementation of Histogram Sort
 - Sort key-value pairs
 - Almost completed, code to be released
- To scale past 32k cores, histogramming needs to be better optimized
 - As $p \rightarrow n/p$, probe creation cost matches the cost of local sorting and merging
 - One promising solution is to parallelize probing
 - Can use early determined splitters to divide probing

Contributions

- Improvements on original Histogram Sort algorithm
 - Overlap between computation and communication
 - Interleaved algorithm stages
- Efficient and well-optimized implementation
- Scalability up to tens of thousands of cores
- Ground work for further parallel scaling of sorting algorithms

Acknowledgements

- Everyone in PPL for various and generous help
- IPDPS reviewers for excellent feedback
- Funding and Machine Grants
 - DOE Grant DEFG05-08OR23332 through ORNL LCF
 - Blue Gene/P at Argonne National Laboratory, which is supported by DOE under contract DE-AC02-06CH11357
 - Jaguar at Oak Ridge National Laboratory, which is supported by the DOE under contract DE-AC05-00OR22725
 - Accounts on Jaguar were made available via the Performance Evaluation and Analysis Consortium End Station, a DOE INCITE project.