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A Data Intensive Computing API
FREERIDE

FREERIDE Map-Reduce
{* Outer Sequential Loop *) {* Qu,te'r Sequential Loop *}
While() { While() {

{* Reduction Loop g {* Reduction Loop *

Process(e) ;

Reduce(RODbj(i),v

e Reduction Object represents the intermediate state of the
execution

o Seding, youphgoronsiatesene assapiatésd with red.

func/obj.
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Simple Example
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Remote Data Analysis

e Co-locating resources gives best performance...
e But may not be always possible
o Cost, availability etc.
e Data hosts and compute hosts are separated
e Fits grid/cloud computing
e FREERIDE-G is a version of FREERIDE that
supports remote data analysis
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Fault Tolerance Systems

e Checkpoint based
o System or Application level snapshot
o Architecture dependent
o High overhead
e Replication based
o Service or Application
o Resource Allocation
o Low overhead
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g..,. .;,: | A Fault Tolerance System based
T on Reduction Object

e Reduction object...
o represents intermediate state of the computation
o Is small in size
o is independent from machine architecture

e Reduction obj/func show associative and
commutative properties

Suitable for Checkpoint based Fault Tolerance System
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An lllustration
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Modified Processing Structure
for FTS

{ * Initialize FTS * }

While {

Foreach ( element e ) {

(1, val) = Process(e);

RODbj(i) = Reduce(RODbij(i), val);
{ * Store Red. Obj. * }

}
if ( CheckFailure() )

{ * Redistribute Data * }
{ * Global Reduction *}

}
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¥ Simple Implementation of the Alg.

Reduction Reduction
Object Object
Exchange Exchange
CNo > CN1 CNn- e CNn
1

e Reduction object is stored another comp. node
o Pair-wise reduction object exchange

e Failure detection is done by alive peer

IPDPS, 2010



Demonstration
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Goals for the Experiments

e Observing reduction object size
e Evaluate the overhead of the FTS

e Studying the slowdown in case of one node’s
failure

e Comparison with Hadoop (Map-Reduce imp.)
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Experimental Setup

e FREERIDE-G
o Data hosts and compute nodes are separated

e Applications
o K-means and PCA

e Hadoop (Map-Reduce Imp.)
o Data is replicated among all nodes
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Experiments (K-means)
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Reduction obj. size: 2KB

With FT overheads: 0 - 1.74%

o Max: 8 Comp. Nodes, 25.6
GB

Relative: 5.38 — 21.98%

o Max: 4 Comp. Nodes, 25.6
GB

Absolute: 0 — 4 78%

o Max: 8 Comp. Nodes, 25.6
GB Y M+ E




Experiments (PCA)
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o Max: 4 Comp. Nodes, 4 GB™




Comparison with Hadoop

Execution Time (secs)
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o w/f = with failure

e Failure happens after
processing 50% of the
data on one node

Overheads
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Comparison with Hadoop

Execution Time (secs)
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e One of the comp.
nodes failed after
processing 25, 50 and
75% of its data

Overheads
e Hadoop
32.85|71.21]109.45
e FREERIDE-G
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K-means Clustering, 6.4GB Dataset, 8 Comp. Nodes
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Related Work

e Application level checkpointing
o Bronevetsky et. al.. C*3 (SC06, ASPLOS04, PPoPP03)
o Zheng et. al. : Ftc-charm++ (Cluster04)

e Message logging
o Agrabia et. al. : Starfish (Cluster03)

o Boutelller et. al. : Mpich-v (Int. Journal of High Pert.
Comp. 06)

e Replication-based Fault Tolerance
o Abawajy et. al. (IPDPS04)

IPDPS, 2010



Outline

e Motivation and Introduction

e Fault Tolerance System Design
e Implementation of the System
e Experimental Evaluation

e Related Work

e Conclusion

IPDPS, 2010



Conclusion

e Reduction object represents the state of the
system

e Our FTS has very low overhead and effectively
recovers from failures

e Different designs can be implemented using Rob;.

e Our system outperforms Hadoop both in absence
and presence of failures
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Thanks
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