Data-Intensive Computing
Middleware

Tekin Bicer, Wei Jiang and Gagan Agrawal
Department of Computer Science and Engineering
The Ohio State University

IPDPS 2010, Atlanta, Georgia

IPDPS 2010

Motivation

e Data Intensive computing T

o Distributed Large
Datasets

o Distributed Computing

L
Resources , :
o Cloud Environments 00 !

e Long execution time Y

Compute Cloud

Cloud Store

High Probability of Failures Mo st

IPDPS, 2010

A Data Intensive Computing API
FREERIDE

FREERIDE Map-Reduce
{* Outer Sequential Loop *) {* Qu,te'r Sequential Loop *}
While() { While() {

{* Reduction Loop g {* Reduction Loop *

Process(e) ;

Reduce(RODbj(i),v

e Reduction Object represents the intermediate state of the
execution

o Seding, youphgoronsiatesene assapiatésd with red.

func/obj.

IPDPS, 2010

Simple Example

35841352679 @48]

Our larg taset [

. Local
Local Reduction (+) Local Reduction(+) Reduction(+)
Robj[1]=3I Ropj[1]= 28 Robj[1]= 24

= duction(+)

Nodes

IPDPS, 2010

Remote Data Analysis

e Co-locating resources gives best performance...
e But may not be always possible
o Cost, availability etc.
e Data hosts and compute hosts are separated
e Fits grid/cloud computing
e FREERIDE-G is a version of FREERIDE that
supports remote data analysis

IPDPS, 2010

Fault Tolerance Systems

e Checkpoint based
o System or Application level snapshot
o Architecture dependent
o High overhead
e Replication based
o Service or Application
o Resource Allocation
o Low overhead

IPDPS, 2010

Outline

e Motivation and Introduction

e Fault Tolerance System Approach
e Implementation of the System

e Experimental Evaluation

e Related Work
e Conclusion

IPDPS, 2010

r o~ R
N7 T
. . \ {

g..,. .;,: | A Fault Tolerance System based
T on Reduction Object

e Reduction object...
o represents intermediate state of the computation
o Is small in size
o is independent from machine architecture

e Reduction obj/func show associative and
commutative properties

Suitable for Checkpoint based Fault Tolerance System

IPDPS, 2010

An lllustration

35 || 8a1 |[13 || 526 |[79 || 42 |

Local
Reduction (+) Regliction (+)

Robj=81 —
Robj= 05

IPDPS, 2010

Modified Processing Structure
for FTS

{ * Initialize FTS * }

While {

Foreach (element e) {

(1, val) = Process(e);

RODbj(i) = Reduce(RODbij(i), val);
{ * Store Red. Obj. * }

}
if (CheckFailure())

{ * Redistribute Data * }
{ * Global Reduction *}

}

IPDPS, 2010

Outline

e Motivation and Introduction

e Fault Tolerance System Design
e Implementation of the System
e Experimental Evaluation

e Related Work
e Conclusion

IPDPS, 2010

¥ Simple Implementation of the Alg.

Reduction Reduction
Object Object
Exchange Exchange
CNo > CN1 CNn- e CNn
1

e Reduction object is stored another comp. node
o Pair-wise reduction object exchange

e Failure detection is done by alive peer

IPDPS, 2010

Demonstration

b oo bl

ssRemaMW@[lﬁé"

N1 N2 N3

Local Red. Local Red. Local Red. Local Red.

Robj no

Robj N1

IPDPS, 2010

Outline

e Motivation and Introduction

e Fault Tolerance System Design
e Implementation of the System
e Experimental Evaluation

e Related Work
e Conclusion

IPDPS, 2010

Goals for the Experiments

e Observing reduction object size
e Evaluate the overhead of the FTS

e Studying the slowdown in case of one node’s
failure

e Comparison with Hadoop (Map-Reduce imp.)

IPDPS, 2010

Experimental Setup

e FREERIDE-G
o Data hosts and compute nodes are separated

e Applications
o K-means and PCA

e Hadoop (Map-Reduce Imp.)
o Data is replicated among all nodes

IPDPS, 2010

Experiments (K-means)

Execution Time (secs)

400

350

300 -+

N

0N

o
1

n

o

o
1

—

0

o
1

-h
o
o

0
o
1

o

8
No. Compute Nodes

U Without FTS
B with FTS
M With Failure

Without Failure Configurations
o Without FTS

o With FTS

With Failure Configuration

o Failure after processing %50
of data (on one node)

Execution Times with K-means 25.6 GB Dataset

IPDPS, 2010

Reduction obj. size: 2KB

With FT overheads: 0 - 1.74%

o Max: 8 Comp. Nodes, 25.6
GB

Relative: 5.38 — 21.98%

o Max: 4 Comp. Nodes, 25.6
GB

Absolute: 0 — 4 78%

o Max: 8 Comp. Nodes, 25.6
GB Y M+ E

Experiments (PCA)

Execution Time (secs)

3000

2500+

N
(=
o
o

—
0
Qo
o

1000 -

3

] Without FTS
M With FTS
M With Failure

8
No. Compute Nodes

Reduction obj. size: 128KB

With FT overheads: 0 —
15.36%

o Max: 4 Comp. Nodes, 4 GB
Relative: 7.77 — 32.48%

o Max: 4 Comp. Nodes, 4 GB

Absolute: 0.86 — 14.08%

Execution Times with PCA, 17 GB Dataset

IPDPS, 2010

o Max: 4 Comp. Nodes, 4 GB™

Comparison with Hadoop

Execution Time (secs)

8
No. Compute Nodes

@ Hadoop

B Hadoop w/f

B FREERIDE-G

B FREERIDE-G w/f

o w/f = with failure

e Failure happens after
processing 50% of the
data on one node

Overheads
e Hadoop
23.06|71.78|78.11
e FREERIDE-G
20.3718.189.18

K-means Clustering, 6.4GB Dataset

IPDPS, 2010

Comparison with Hadoop

Execution Time (secs)

200
180
160
140
120
100
80
60
40

20

l Hadoop
Il FREERIDE-G

None 25 S0
Failure Points (%)

e One of the comp.
nodes failed after
processing 25, 50 and
75% of its data

Overheads
e Hadoop
32.85|71.21]109.45
e FREERIDE-G
9.52|8.18|8.14

K-means Clustering, 6.4GB Dataset, 8 Comp. Nodes

IPDPS, 2010

Outline

e Motivation and Introduction

e Fault Tolerance System Design
e Implementation of the System
e Experimental Evaluation

e Related Work

e Conclusion

IPDPS, 2010

Related Work

e Application level checkpointing
o Bronevetsky et. al.. C*3 (SC06, ASPLOS04, PPoPP03)
o Zheng et. al. : Ftc-charm++ (Cluster04)

e Message logging
o Agrabia et. al. : Starfish (Cluster03)

o Boutelller et. al. : Mpich-v (Int. Journal of High Pert.
Comp. 06)

e Replication-based Fault Tolerance
o Abawajy et. al. (IPDPS04)

IPDPS, 2010

Outline

e Motivation and Introduction

e Fault Tolerance System Design
e Implementation of the System
e Experimental Evaluation

e Related Work

e Conclusion

IPDPS, 2010

Conclusion

e Reduction object represents the state of the
system

e Our FTS has very low overhead and effectively
recovers from failures

e Different designs can be implemented using Rob;.

e Our system outperforms Hadoop both in absence
and presence of failures

IPDPS, 2010

Thanks

IPDPS, 2010

