
Supporting Fault Tolerance in a
Data-Intensive Computing

Middleware

Tekin Bicer, Wei Jiang and Gagan Agrawal
Department of Computer Science and Engineering

The Ohio State University

IPDPS 2010

IPDPS 2010, Atlanta, Georgia

Motivation

Data Intensive computing
Distributed Large
Datasets
Distributed Computing
Resources
Cloud Environments

Long execution time
High Probability of Failures

A Data Intensive Computing API
FREERIDE

Reduction Object represents the intermediate state of the
execution
Reduce func. is commutative and associativeSorting, grouping.. overheads are eliminated with red.
func/obj.

Simple Example

3 5 8 4 1 3 5 2 6 7 9 4 2 4 8

Our large Dataset �

Our Compute
Nodes

Robj[1]= Robj[1]= Robj[1]=

Local Reduction (+) Local Reduction(+)
Local
Reduction(+)

8 15 1421 23 27

Result= 71 Global Reduction(+)

Remote Data Analysis

Co-locating resources gives best performance…
But may not be always possible

Cost, availability etc.
Data hosts and compute hosts are separated
Fits grid/cloud computing
FREERIDE-G is a version of FREERIDE that
supports remote data analysis

Fault Tolerance Systems

Checkpoint based
System or Application level snapshot
Architecture dependent
High overhead

Replication based
Service or Application
Resource Allocation
Low overhead

Outline

Motivation and Introduction
Fault Tolerance System Approach
Implementation of the System
Experimental Evaluation
Related Work
Conclusion

A Fault Tolerance System based
on Reduction Object

Reduction object…
represents intermediate state of the computation
is small in size
is independent from machine architecture

Reduction obj/func show associative and
commutative properties

Suitable for Checkpoint based Fault Tolerance System

An Illustration

Robj=

Local
Reduction (+)

3 5 8 4 1 5 2 61 3 7 9 4 2

0821

Robj = 8Robj = 21

Robj= 0

Robj = 21

21

Local
Reduction (+)

25

Modified Processing Structure
for FTS

{ * Initialize FTS * }
While {
Foreach (element e) {
(i, val) = Process(e);
RObj(i) = Reduce(RObj(i), val);
{ * Store Red. Obj. * }
}
if (CheckFailure())
{ * Redistribute Data * }
{ * Global Reduction * }
}

Outline

Motivation and Introduction
Fault Tolerance System Design
Implementation of the System
Experimental Evaluation
Related Work
Conclusion

Simple Implementation of the Alg.

Reduction object is stored another comp. node
Pair-wise reduction object exchange

Failure detection is done by alive peer

CNn

Reduction
Object
Exchange

.... CNn-
1

CN1

Reduction
Object
Exchange

CN0

Demonstration

N0

Robj N0

Local Red.

N1

Robj N1

Local Red.

Robj N0Robj N1

N2

Robj N2

Local Red.

N3

Robj N3

Local Red.

Robj N2Robj N3

Failure DetectedFinal Result
Global Red.

Redistribute Failed Node’
s Remaining Data

Outline

Motivation and Introduction
Fault Tolerance System Design
Implementation of the System
Experimental Evaluation
Related Work
Conclusion

Goals for the Experiments

Observing reduction object size
Evaluate the overhead of the FTS
Studying the slowdown in case of one node’s
failure
Comparison with Hadoop (Map-Reduce imp.)

Experimental Setup

FREERIDE-G
Data hosts and compute nodes are separated

Applications
K-means and PCA

Hadoop (Map-Reduce Imp.)
Data is replicated among all nodes

Experiments (K-means)
Without Failure Configurations

Without FTS
With FTS

With Failure Configuration
Failure after processing %50
of data (on one node)

Execution Times with K-means 25.6 GB Dataset

Reduction obj. size: 2KB
With FT overheads: 0 - 1.74%

Max: 8 Comp. Nodes, 25.6
GB

Relative: 5.38 – 21.98%
Max: 4 Comp. Nodes, 25.6
GB

Absolute: 0 – 4.78%
Max: 8 Comp. Nodes, 25.6
GB

Experiments (PCA)

Execution Times with PCA, 17 GB Dataset

Reduction obj. size: 128KB
With FT overheads: 0 –
15.36%

Max: 4 Comp. Nodes, 4 GB
Relative: 7.77 – 32.48%

Max: 4 Comp. Nodes, 4 GB
Absolute: 0.86 – 14.08%

Max: 4 Comp. Nodes, 4 GB

Comparison with Hadoop

K-means Clustering, 6.4GB Dataset

Overheads
Hadoop

23.06 | 71.78 | 78.11
FREERIDE-G

20.37 | 8.18 | 9.18

w/f = with failure
Failure happens after
processing 50% of the
data on one node

Comparison with Hadoop

K-means Clustering, 6.4GB Dataset, 8 Comp. Nodes

Overheads
Hadoop

32.85 | 71.21 | 109.45
FREERIDE-G

9.52 | 8.18 | 8.14

One of the comp.
nodes failed after
processing 25, 50 and
75% of its data

Outline

Motivation and Introduction
Fault Tolerance System Design
Implementation of the System
Experimental Evaluation
Related Work
Conclusion

Related Work

Application level checkpointing
Bronevetsky et. al.: C^3 (SC06, ASPLOS04, PPoPP03)
Zheng et. al. : Ftc-charm++ (Cluster04)

Message logging
Agrabia et. al. : Starfish (Cluster03)
Bouteiller et. al. : Mpich-v (Int. Journal of High Perf.
Comp. 06)

Replication-based Fault Tolerance
Abawajy et. al. (IPDPS04)

Outline

Motivation and Introduction
Fault Tolerance System Design
Implementation of the System
Experimental Evaluation
Related Work
Conclusion

Conclusion

Reduction object represents the state of the
system
Our FTS has very low overhead and effectively
recovers from failures
Different designs can be implemented using Robj.
Our system outperforms Hadoop both in absence
and presence of failures

Thanks

