

Supporting Fault Tolerance in a Data-Intensive Computing Middleware

Tekin Bicer, Wei Jiang and Gagan Agrawal

Department of Computer Science and Engineering

The Ohio State University

IPDPS 2010, Atlanta, Georgia

Motivation

Data Intensive computing

Distributed LargeDatasets

 Distributed Computing Resources

Cloud Environments

Long execution time

High Probability of Failures

A Data Intensive Computing API FREERIDE

```
Map-Reduce
FREERIDE
                                              { * Outer Sequential Loop *}
{* Outer Sequential Loop *}
                                              While() {
While() {
                                                 { * Reduction Loop *}
   { * Reduction Loop *}
                                                 Foreach(element e) {
   Foreach(element e) {
                                                     (i, val)
                                                                    Process(e)
                 = Process(e);
       (i, val)
                    Reduce(RObj(i),val)
       RObj(i)
                                                 Sort (i,val) pairs using i
                                                 Reduce to compute each RObj(i
   Global Reduction to Combine RObj
```

- Reduction Object represents the intermediate state of the execution
- Bedung, tymupingomonutativesand associative with red. func/obj.

Simple Example

Remote Data Analysis

- Co-locating resources gives best performance...
- But may not be always possible
 - Cost, availability etc.
- Data hosts and compute hosts are separated
- Fits grid/cloud computing
- FREERIDE-G is a version of FREERIDE that supports remote data analysis

Fault Tolerance Systems

- Checkpoint based
 - System or Application level snapshot
 - Architecture dependent
 - High overhead
- Replication based
 - Service or Application
 - Resource Allocation
 - Low overhead

- Motivation and Introduction
- Fault Tolerance System Approach
- Implementation of the System
- Experimental Evaluation
- Related Work
- Conclusion

A Fault Tolerance System based on Reduction Object

- Reduction object...
 - represents intermediate state of the computation
 - o is small in size
 - o is independent from machine architecture
- Reduction obj/func show associative and commutative properties

Suitable for Checkpoint based Fault Tolerance System

An Illustration

35 841 13 526 79 42

Modified Processing Structure for FTS

```
{ * Initialize FTS * }
While {
Foreach (element e) {
(i, val) = Process(e);
RObj(i) = Reduce(RObj(i), val);
{ * Store Red. Obj. * }
if (CheckFailure())
{ * Redistribute Data * }
{ * Global Reduction * }
```


- Motivation and Introduction
- Fault Tolerance System Design
- Implementation of the System
- Experimental Evaluation
- Related Work
- Conclusion

Simple Implementation of the Alg.

- Reduction object is stored another comp. node
 - Pair-wise reduction object exchange
- Failure detection is done by alive peer

Demonstration

- Motivation and Introduction
- Fault Tolerance System Design
- Implementation of the System
- Experimental Evaluation
- Related Work
- Conclusion

Goals for the Experiments

- Observing reduction object size
- Evaluate the overhead of the FTS
- Studying the slowdown in case of one node's failure
- Comparison with Hadoop (Map-Reduce imp.)

Experimental Setup

- FREERIDE-G
 - Data hosts and compute nodes are separated
- Applications
 - K-means and PCA
- Hadoop (Map-Reduce Imp.)
 - Data is replicated among all nodes

Experiments (K-means)

Execution Times with K-means 25.6 GB Dataset

- Without Failure Configurations
 - Without FTS
 - With FTS
- With Failure Configuration
 - Failure after processing %50 of data (on one node)
- Reduction obj. size: 2KB
- With FT overheads: 0 1.74%
 - o Max: 8 Comp. Nodes, 25.6 GB
- Relative: 5.38 21.98%
 - Max: 4 Comp. Nodes, 25.6GB
- Absolute: 0 4.78%
 - Max: 8 Comp. Nodes, 25.6GB

Experiments (PCA)

- Reduction obj. size: 128KB
- With FT overheads: 0 15.36%
 - o Max: 4 Comp. Nodes, 4 GB
- Relative: 7.77 32.48%
 - o Max: 4 Comp. Nodes, 4 GB
- Absolute: 0.86 14.08%
 - Max: 4 Comp. Nodes, 4 GB

Execution Times with PCA, 17 GB Dataset

Comparison with Hadoop

- w/f = with failure
- Failure happens after processing 50% of the data on one node

Overheads

Hadoop

23.06 | 71.78 | 78.11

• FREERIDE-G

20.37 | 8.18 | 9.18

Comparison with Hadoop

One of the comp.
 nodes failed after
 processing 25, 50 and
 75% of its data

Overheads

Hadoop

32.85 | 71.21 | 109.45

FREERIDE-G

9.52 | 8.18 | 8.14

K-means Clustering, 6.4GB Dataset, 8 Comp. Nodes

- Motivation and Introduction
- Fault Tolerance System Design
- Implementation of the System
- Experimental Evaluation
- Related Work
- Conclusion

Related Work

- Application level checkpointing
 - Bronevetsky et. al.: C^3 (SC06, ASPLOS04, PPoPP03)
 - Zheng et. al.: Ftc-charm++ (Cluster04)
- Message logging
 - Agrabia et. al.: Starfish (Cluster03)
 - Bouteiller et. al.: Mpich-v (Int. Journal of High Perf. Comp. 06)
- Replication-based Fault Tolerance
 - Abawajy et. al. (IPDPS04)

- Motivation and Introduction
- Fault Tolerance System Design
- Implementation of the System
- Experimental Evaluation
- Related Work
- Conclusion

Conclusion

- Reduction object represents the state of the system
- Our FTS has very low overhead and effectively recovers from failures
- Different designs can be implemented using Robj.
- Our system outperforms Hadoop both in absence and presence of failures

Thanks

