
Support of Cross Calls
between Microprocessor and FPGA
in CPU-FPGA Coupling Architecture

G. NguyenThiHuong and Seon Wook Kim
Microarchitecture and Compiler Laboratory

School of Electrical Engineering
Korea University

Motivation
void process (struct data* head)
{
struct data* p;
int ret = 0;
for(p = head; p; p = p->next){
p->content = (struct elem*) calloc (p->size);
if(!p->content){
ret = 1;
break;
} else{
…..
}
}
return ret;
}

struct data* head;
int main (void) {
…..
error = process (head);
…..
}

Microprocessor FPGA

process()

calloc()

…
calloc()

…

main()

process()

main()

call

call

return

call

return

Many code sections are executed more efficiently in microprocessor:
floating intensive codes, system calls, memory management functions,
etc.
To support codes containing these functions in FPGA, the FPGA should
be able to call back to microprocessor as a master component.

Previous work
Away from code coordination between CPU and FPGA

Handel-C, Impulse C
OCPIP, AMBA

Support nested and recursive only in hardware side
ASH (M. Budiu – ASPLOS ‘04), HybridThreads (E. Anderson-ERSA
‘07)
Do not allow hardware to call software

Allows hardware to return back to software for software code
execution

Comrade (H. Lange-FPL ‘07)
Do not support communication among compute units in FPGANo work to support the cross calls

between SW and HW without any limitation!

GCC2Verilog approach
GCC2Verilog: A C-to-Verilog translator based on GCC compiler

Including a Verilog backend to generate Verilog code from GCC’s
RTL

Making hardware follows software calling convention
Software and hardware share one stack space.

Arguments passing through argument registers and stack.
Preserve software stack layout when performing calls in hardware
side.

Supporting:
Unlimited nesting calls in hardware including recursive calls.
Unlimited nesting cross calls between software and hardware.

Any hardware function in FPGA can be a master in the system!

Contents

Compilation and Execution Model
Address Resolution
Additional Components
Cross Calling Convention
Experiment Results
Conclusion

GCC2Verilog: Compilation & Execution Model

Code partitioning process:
Divides codes into hardware and software sections
Prepares the address resolution

Compilation process:
Compiles software code section into executable objects
Translates hardware code section into Verilog code and synthesizes them to HW bitstreams
(HWIPs).

Execution process:
Running SW executable code in a microprocessor & HWIPs in FPGA
The FPGA communicates with the host processor through a communication channel and memory.

Processor
M
e
m
or
y

C
code

GCC2Veril
og

translator

GCC
compiler

Executa
ble

code

Hardwa
re

bitstrea
m

HW
codes

SW
codes

Verilo
g

code
FPGA

Address Resolution
Hardware address resolution:

Assigning an hardware identification number hwid to each HWIP
Software address resolution:

Static link: use the symbol table obtained an executable file to resolve software
addresses at HLL-to-HDL translation.
Dynamic link:

Assign an identification number swid to each SW callee called from HW
Use an address_resolver() to obtain SW callee address at run time from swid

SW address resolution in dynamic linking

Additional Components

Processor

Argument
Reg

Argument
RegArgument
Reg

Argument
Reg

SP

LR HW controllerSW/HW
interface

…Control
unit

Datapath

HWIP 1

Argument

…
Local

variables
Control

unit
Datapath

HWIP N
HW controller:

Controls and schedules
the execution between a
processor and HWIPs

SW/HW interface:
Provides a uniform
interface to communicate
with the host processor

HW register set: set of
registers for calls:

Argument registers
HW stack pointer
Link register

Stack space

Software Calls Hardware

Control
unit

Datapath
HWIP1

Argument 0

Argument 2

Argument 3

Argument 1

SP

HW controller

Control
unit

Datapath
HWIP N

SW/HW
interface

…

hwid = 1

enable

Argument 4

Pushed registers

1. The wrapper function passes arguments, and calls the HW callee

…

SW return
addr

call + hwid

2. HW controller enables the HW callee3. HW callee reads its arguments, and starts to
execute

Processor

Wrapper

Stack space

Caller ID (return
addr)

Hardware Callee Returns to Software Caller

HW controller

Control
unit

Datapath
HWIP N

SW/HW
interface

…

Argument 4

Pushed registers Control
unit

Datapath
HWIP1

finish

interrupt

…

4. HW controller interrupts the host processor when the HW callee finishes

Processor
Interrupt
handlerWrapper

HW_finish
=1

5. The interrupt handler notifies the HW finishing to the wrapper

SW return
addr

Stack space

Caller ID (return
addr)

Hardware Calls Software

Control
unit

Datapath
HWIP1

Argument 0

Argument 2

Argument 3

Argument 1

SP
HW return

addr HW controller

Control
unit

Datapath
HWIP N

SW/HW
interface

…

HWIP’s Argument
4

Pushed registers

…

SW callee
argument 4

call + swid

interrupt +
swid

1. HW caller passes arguments and notifies to the controller about the call
2. HW controller interrupts the processor with SW callee ID

Processor
Interrupt
handlerWrapper

func_ptr
=0xaef0

3. The interrupt handler resolves the SW callee’s actual address from
swid & the wrapper calls the function.

pc=func_ptr

Stack space

Caller ID (return
addr)

Hardware Calls Software

Argument 0

Argument 2

Argument 3

Argument 1

SP
HW return

addr HW controller

Control
unit

Datapath
HWIP N

SW/HW
interface

…

HWIP’s Argument
4

Pushed registers

…

SW callee
argument 4

Processor

SW callee

4. SW callee executes its code & returns to the wrapper when finish

Control
unit

Datapath
HWIP 1

Wrapper Pushed registers

Stack space

Caller ID (return
addr)

return addr

Software Callee Returns to Hardware caller

return value

HW return
addr HW controller

Control
unit

Datapath
HWIP N

SW/HW
interface

…
HWIP’s Argument

4
Pushed registers

…

Caller ID (return
addr)

SW finish

enable

Processor

Wrapper

5. The wrapper notifies to HW controller about SW finish

Control
unit

Datapath
HWIP1

6. The HW caller is enabled again to continue its execution

Stack space

SW callee
argument 4

Hardware Calls Hardware

Processor

Interrupt
handler

Argument 0

Argument 2

Argument 3

Argument 1

SP

Return addr

HW controller
SW/HW

interface

HWIP1’s argument
4

Pushed registers

…

call +
hwid = 2

enable

Control
unit

Datapath
HWIP2

HWIP2’s argument
4

…
Control

unit
Datapath

HWIP1

Pushed registers

Stack space

Return addr

Hardware Calls Hardware Interrupt
handler

return value

return addr

HW controller

Control
unit

Datapath
HWIP2

SW/HW
interface

HWIP1’s argument
4

Pushed registers

…

HWIP2’s argument
4

finish
enable

Control
unit

Datapath
HWIP1

Processor
…

Pushed registers

Stack space

Return addr

Experiment Result

Experiment setup
Host processor: ARM922T
Benchmarks: EEMBC + factorial (recursion)

Calling overhead:
Cross calls between SW and HW (exclude interrupting time)

Static link: 99 cycles
Dynamic link: 125 cycles

Calls among HWIPs:
Less than 5 cycles

Experiment Result

Call overhead including interrupt time

Benchmarks Number of calls Call overhead (%)
aifftr 300 3.52

aiifft 300 4.00

fft 100 2.71

bezier 20 0.11

idctrn 600 4.62

rgbyiq 10 0.02

viterb 200 8.37

autcor 100 0.05

factorial 10 19.91

Conclusion
Novel method to fully support cross calls among
microprocessor and FPGA

Allowing FPGA to perform calls back to a microprocessor
Supporting unlimited nested and recursive calls in FPGA

Reasonable cross calling overhead
An importance step toward the full automatic translation of
HLL to HDL
Implemented a C-to-Verilog translator based on GCC
compiler

Questions & Answers

