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Motivation
void process (struct data* head) 
{
struct data* p;
int ret = 0;
for( p = head; p; p = p->next){
p->content = (struct elem*) calloc (p->size);
if( !p->content ){
ret = 1;
break;
} else{
…..
}
}
return ret;
}

struct data* head;
int main (void) {
…..
error = process (head);
…..
}

Microprocessor FPGA

process()

calloc()

…
calloc()

…

main()

process()

main()

call

call

return

call

return

Many code sections are executed more efficiently in microprocessor: 
floating intensive codes, system calls, memory management functions, 
etc. 
To support codes containing these functions in FPGA, the FPGA should 
be able to call back to microprocessor as a master component.



Previous work
Away from code coordination between CPU and FPGA

Handel-C, Impulse C
OCPIP, AMBA

Support nested and recursive only in hardware side
ASH (M. Budiu – ASPLOS ‘04), HybridThreads (E. Anderson-ERSA 
‘07)
Do not allow hardware to call software

Allows hardware to return back to software for software code 
execution

Comrade (H. Lange-FPL ‘07)
Do not support communication among compute units in FPGANo work to support the cross calls

between SW and HW without any limitation! 



GCC2Verilog approach
GCC2Verilog: A C-to-Verilog translator based on GCC compiler

Including a Verilog backend to generate Verilog code from GCC’s 
RTL

Making hardware follows software calling convention
Software and hardware share one stack space.

Arguments passing through argument registers and stack.
Preserve software stack layout when performing calls in hardware 
side.

Supporting:
Unlimited nesting calls in hardware including recursive calls.
Unlimited nesting cross calls between software and hardware.

Any hardware function in FPGA can be a master in the system! 
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GCC2Verilog: Compilation & Execution Model

Code partitioning process:
Divides codes into hardware and software sections
Prepares the address resolution

Compilation process:
Compiles software code section into executable objects
Translates hardware code section into Verilog code and synthesizes them to HW bitstreams 
(HWIPs).

Execution process:
Running SW executable code in a microprocessor & HWIPs in FPGA
The FPGA communicates with the host processor through a communication channel and memory.
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Address Resolution
Hardware address resolution:

Assigning an hardware identification number hwid  to each HWIP 
Software address resolution:

Static link: use the symbol table obtained an executable file to resolve software 
addresses at HLL-to-HDL translation.
Dynamic link:

Assign an identification number swid  to each SW callee called from HW
Use an address_resolver() to obtain SW callee address at run time from swid

SW address resolution in dynamic linking



Additional Components
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Software Calls Hardware
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Hardware Callee Returns to Software Caller

HW controller
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Hardware Calls Software
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Hardware Calls Software
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Software Callee Returns to Hardware caller
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Hardware Calls Hardware
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Hardware Calls Hardware Interrupt 
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Experiment Result

Experiment setup
Host processor: ARM922T
Benchmarks: EEMBC + factorial (recursion)

Calling overhead:
Cross calls between SW and HW (exclude interrupting time)

Static link: 99 cycles
Dynamic link: 125 cycles

Calls among HWIPs:
Less than 5 cycles



Experiment Result

Call overhead including interrupt time

Benchmarks Number of calls Call overhead (%)
aifftr 300 3.52

aiifft 300 4.00

fft 100 2.71

bezier 20 0.11

idctrn 600 4.62

rgbyiq 10 0.02

viterb 200 8.37

autcor 100 0.05

factorial 10 19.91



Conclusion
Novel method to fully support cross calls among 
microprocessor and FPGA

Allowing FPGA to perform calls back to a microprocessor
Supporting unlimited nested and recursive calls in FPGA

Reasonable cross calling overhead
An importance step toward the full automatic translation of 
HLL to HDL
Implemented a C-to-Verilog translator based on GCC 
compiler 



Questions & Answers


