

Wirelength driven floorplacement for FPGA-based partial reconfigurable systems

April 19, 2010

Alessio Montone: alessio.montone@dresd.org Marco D. Santambrogio: santambr@mit.edu Donatella Sciuto: sciuto@elet.polimi.it

- Problem statement
 - Given a reconfigurable architecture, find an on-chip position for each functional unit (FU)

- Innovative contribution: a *formalization* and an *approach* taking concurrently into account
 - Target Device Heterogeneity
 - Target Device reconfiguration capabilities
 - Inter-FU Communication
 - Inter-FU Wirelength

Outline

- Introduction and Useful Definitions
- Related Works
- Proposed Formalization & Area-Driven Approach
 - Wirelength-Driven Approach
- Results
- Conclusions and Future Work
- Question

Reconfigurable Architectures - I

- On FPGAs
 - Reconfigurable Devices
 - Heterogeneous
 - Reconfiguration Limits

- Different types of Reconfigurable Architectures:
 - Total
 - Partial (Static)
 - Partial (Dynamic)

Definitions

- Reconfigurable Functional Unit (RFU)
 - A netlist obtained after post synthesis and technology mapping (i.e., before placement and routing)
- Reconfigurable Region (RR)

Authors	Comm. Infrastructure	Resource Aware	Reconfiguration Aware	Device Limits Aware
Bazargan et al.	No	No	Yes	No
Yuh et al.	Limited, w/ High Overhead	Νο	Yes	Yes
Singhal et al.	No	No	Yes	No
Feng et al.	No	Yes	No	No

Proposed Problem Description

- Given an Application's Scheduled TG
 - Define RRs
 - For each task find
 - a suitable RR
 - a position inside RR
- Objective Function
 - Min. Fragmentation

- Constraints
 - Communication issues
 - Device limits

Proposed Approach: overview

1st Algorithm: Partitioning into RR

- Aim: identify the RRs and associate each RFU to one RR
- How: partitioning the TG minimizing resource requirement variance of the RRs (moving and swapping nodes) $\operatorname{Var}(\rho_{n,p,t}) = \frac{1}{P} \sum (\rho_{n,p,t} - \overline{\rho_{n,p,t}})^2 \qquad \rho_{n,p,t}$

2nd Algorithm:TFiRR

- Simulated Annealing
 - Objective Function (positive iif floorplacement is feasible)

$$\Theta = P - M \cdot N$$

- Data Structure
 - 4 Constraint Lists (one per row)
- Moves: Swap, Move, Span, Un-Span

Three simulated annealers written in C++ STL

- A Reconfigurable Architecture (for Biomedical Purpose) on XC5VLX30T
 - 1. Collecting data from sensor
 - 2. Elaborating them
 - 3. Sending to a host computer thorough the net

- Results w.r.t. the state of the art [*]:
 - 5% more chip area required
 - 2 OoM improved throughput communications

Results - II

Used Area		Area and Wirelength Metrics (normalized w.r.t. Area-driven approach)		
Metric	Variation/Value	1.2		
Blank Area	(5,35)% of the final floorplacement	1		
		0.8		
 Wirel 	ength-driven Approac	ch 0.6		
Metric	Variation/Value	0.4		
Links	(-90,0)% of the number of links required by a purely area-minimizing approach	0.2		

Conclusions & Future Work

An algorithm for the identification of area constraint for reconfigurable architectures has been introduced

Novelties: taking into account

- Target device heterogeneity
- Target device reconfiguration capabilities
- Communication issues
- Inter-RFU wirelength
- Future work
 - partitioning with different metrics (e.g., Clock Domains)
 - consider non-periodic Resources
 - use the floorplacer as feedback for a scheduler

