
The Pilot Approach to Cluster
Programming in C

J. Carter, Bill Gardner, G. Grewal
Modeling & Design Automation Group

Dept. of Computing & Information Science
University of Guelph

Ontario, Canada

23/APR/10 PDSEC 2

Outline

Introduction & relationship to MPI
Abstractions for parallel program design
Programming with Pilot API
Implementation overview
Integrated deadlock detection
Performance
Experiences & future work

23/APR/10 PDSEC 3

Introduction

Pilot is a C library for SPMD-style,
message-passing cluster programming

Latest version introduces Fortran API
Target audience: novice HPC programmers,
scientific programmers

Goal: break down barriers to adopting HPC
Features:

Simple abstractions for parallel program design
Small, easy-to-remember API
Built-in deadlock detection

23/APR/10 PDSEC 4

Relationship to MPI

Not intended to “replace MPI”
Built as thin layer on top of any standard MPI

Purposes
Simpler way to teach message-passing programming
May be “good enough” for novice programmer

But still suitable for realistic applications in own right (not a toy)
Applications mentioned below

Can serve as “ramp” to transition novice to MPI
if/when they require more advanced functionality

23/APR/10 PDSEC 5

Theoretical basis

Pilot embodies the process and channel
abstractions of Communicating Sequential
Processes (CSP) formal process algebra
Users design solutions based on
process/channel architecture before they code
Easy to translate design into Pilot function calls
Users need not know CSP (concepts kept under
the hood)

23/APR/10 PDSEC 6

Using process/channel design

Visualize the organization of your algorithm
Draw processes to divide up your work
Draw channels, using arrows since they’re directional

Master

Worker
2

Worker
1

Worker
3

Main

Stage
1

Stage
2

23/APR/10 PDSEC 7

stdio metaphor

How to make Pilot functions simple, easy to
remember?

Engineered to conform to fprintf/fscanf syntax
Printf: “Most common method of debugging”
Even novice C programmer will be familiar

Channel objects like FILE* variable/array
Message list like format string

Example

23/APR/10 PDSEC 8

Simple code sample

#include “pilot.h”
Create 2 processes, blue and green:
PI_PROCESS *blue = PI_CreateProcess(blue_func, 0, NULL);
PI_PROCESS *green = PI_CreateProcess(green_func, 0, NULL);

Like POSIX pthread_create(), function can execute multiple processes

Create a channel from blue to green:
PI_CHANNEL *chan = PI_CreateChannel(blue, green);

int blue_func(int n, void *v)
{

PI_Write(chan, “%d”, 25);
}

int green_func(int n, void *v)
{

int data;
PI_Read(chan, “%d”, &data);

}

23/APR/10 PDSEC 9

Comparing APIs

Goal: send an array of 12 float coefficients, 888
double data values, and the 888 length
float coeffs[12]; double data[1000]; int len = 888;

Pilot version:
PI_Write(chan, “%12f %*lf %d”, coeffs, len, data, len);

MPI version:
MPI_Send(coeffs, 12, MPI_FLOAT, dest, tag, comm);
MPI_Send(data, 888, MPI_DOUBLE, dest, tag, comm);
MPI_Send(len, 1, MPI_INT, dest, tag, comm);

23/APR/10 PDSEC 10

Benefits

Eliminates ability to commit some kinds of
communication errors

No low-level arguments (dest, tag, communicator)
Removes some (not all) deadlock opportunities

Messages allowed to flow between designated
processes only

Pilot detects channel not bound to calling process,
process at “read” end trying to write, etc.

Channels not typed data type not checked
Avoids undue proliferation

23/APR/10 PDSEC 11

Collective abstraction

MPI (and underlying hardware) may implement
collective operations with special efficiency

How to take advantage in Pilot without breaking the
CSP-based model?

Solution: Add one more abstraction
Arbitrary group of channels bundle
Must have one common process endpoint

23/APR/10 PDSEC 12

Bundle design

“Cone” denotes the bundle of channels

Master

Worker
2Worker

1
Worker

3

Master

Worker
2Worker

1
Worker

3

Broadcasting to workers

(“Master” is a role; does not
have to be rank 0 process)

Selecting on channels
from workers:
Which has data to read?

23/APR/10 PDSEC 13

Bundle functions

Concept:
In MPI, why do we code MPI_Bcast in a process that
is receiving data??

Rationale lies in pure SPMD approach
Not obvious for novice programmer to grasp

Pilot draws a veil over this peculiarity
Master N Workers

PI_Broadcast(bundle) PI_Read(channeli)
PI_Gather(bundle) PI_Write(channeli)
n = PI_Select(bundle) PI_Write(channeli)
PI_Read(channel[n])

23/APR/10 PDSEC 14

Pilot skeleton program

Configuration phase (executed on all
processors):

Interprets command line args, starts MPI
PI_CreateProcess … Channel … Bundle

Execution phase: PI_StartAll
Each Pilot process begins executing its
associated function

Exits by returning from function
main() continues as rank 0 process
(aka PI_MAIN)

Exits by calling PI_StopMain

Configuration
PI_Configure

PI_CreateXXX

Execution
PI_StartAll

PI_MAIN
...

PI_StopMain

process
functionprocess

function

process
function

23/APR/10 PDSEC 15

Implementation overview

Pilot processes MPI processes
Pilot channels MPI tags
Pilot bundles MPI communicators
Extensive runtime error checking

Diagnostic prints out file name/line no. of Pilot call
Level of checking can be turned lower for less
overhead

23/APR/10 PDSEC 16

Deadlock: common
parallel programming hazard

Deadlock exacts a harsh penalty
MPI program typically keeps running till time budget
exhausted
Baffling for novice users to diagnose

Concept: “Why do users resist tools?”
DeSouza & Squyres ‘05, “Why MPI Makes You Scream!”

Many barriers to overcome re 3rd-party tools (e.g.,
deadlock detector like Umpire)
May not be installed on your system
May cost $$$
(Feared to) involve additional serious learning curve

23/APR/10 PDSEC 17

Pilot’s deadlock detection

Solution: integrate D/D into Pilot
Trivial to turn on: “-pisvc=d” command line arg
Consumes one additional MPI process
Aborts program with diagnosis of Pilot function calls
involved in:

Deadly embrace
Circular wait
“Dead” wait (other end of channel process exited)

Since Pilot functions utilize tiny subset of MPI,
D/D implementation much less complex

23/APR/10 PDSEC 18

Performance

Pilot adds very little overhead to MPI

IMB V3.1 pingpong Timings
SHARCNET 2.2 GHz Opteron Cluster

0.1

1

10

100

1000

10000

0 1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

44
52

42
88

10
48

57
6

20
97

15
2

41
94

30
4

Message Size (bytes)

Ti
m

e
(u

se
c)

 &
 N

o.
 R

ep
s.

0

200

400

600

800

1000

1200

1400

1600

Th
ru

pu
t (

M
B
/s

ec
)

No. Reps.
MPI Time
Pilot Time
MPI Thruput
Pilot Thruput

23/APR/10 PDSEC 19

Experiences

Pilot development sponsored by SHARCNET
consortium (SW Ontario)
Pilot used for graduate HPC course {Guelph,
McMaster, Brock, UOIT}

Projects: parallel MRI reconstruction,
scatter search metaheuristic

Pilot used for undergrad
parallel programming course

Fortran: Mars Rover
“search for water”
spectroscopy simulation

23/APR/10 PDSEC 20

Future work

More collective functions
More performance measurement
Usability study (we think it’s easier to use…)
Applying to mixed cluster of Cell BE’s and
other platforms

SHARCNET has, but almost no one using it
Pilot for intra-Cell PPE SPE, and inter-node
communication
Programmer uses same process/channel paradigm
rather than two or three different libraries

Formal verification (based on CSP)

23/APR/10 PDSEC 21

Home page:
http://carmel.cis.uoguelph.ca/pilot

Free download,
install guide, tutorial
Fortran API tested with
Intel and Sun Studio

Uses ISO_C_BINDING

Upcoming Toronto
area tutorials

SHARCNET Summer
School, May 31
HPCS, June 5

23/APR/10 PDSEC 23

Significance of name

1. Surface meaning: one who safely guides
your parallel program to its destination

2. Nod to formalism:
π-calculus

3. Nod to MPI
4. Nod to SHARCNET:

pilot fish =
“friend of sharks”

23/APR/10 PDSEC 24

Reactions

Users (undergrad and graduate students)
appreciate getting a model to use in designing
parallel programs
Deadlock detector uncovers mysterious hangs

Still have to remind them to turn it on
Quote from scientific programmer:

“It's less headache to organize channels and bundles
than bothering about synchronization between
processors. It turned out more simple and
understandable for me. PILOT fits my way of thinking.”

23/APR/10 PDSEC 25

Just teach subset of MPI?

Certainly valid, but…
Pilot process/channel abstractions teach a
generalized conceptual model for designing a
parallel solution
MPI programmers still have to deal with low-level
arguments
Pilot provides helpful diagnosis for usage problems,
including integrated deadlock checking

23/APR/10 PDSEC 26

IP Status

Not (yet) open source
Source code copyright by Univ. of Guelph
Free for anyone to download/use
Prefer to control development at early stage to
avoid…

bloating of API
breaking underlying formalism

Eventual open source release planned

	The Pilot Approach to Cluster Programming in C
	Outline
	Introduction
	Relationship to MPI
	Theoretical basis
	Using process/channel design
	stdio metaphor
	Simple code sample
	Comparing APIs
	Benefits
	Collective abstraction
	Bundle design
	Bundle functions
	Pilot skeleton program
	Implementation overview
	Deadlock: common�parallel programming hazard
	Pilot’s deadlock detection
	Performance
	Experiences
	Future work
	Home page:�http://carmel.cis.uoguelph.ca/pilot
	Significance of name
	Reactions
	Just teach subset of MPI?
	IP Status

