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A Challenge Problem

• Extracting a subgraph from a larger 

graph.

- The input graph: An R-MAT* graph 

(undirected, unweighted) with approx. 

4.29 billion vertices and 275 billion 

edges (7.4 TB in text format).

- Extract subnetworks that cover 10%, 

5%, and 2% of the vertices.

• Finding a single-pair shortest path 

(for up to 30 pairs).
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* D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A recursive model for 
graph mining,” SIAM Int’l Conf. on Data Mining (SDM), 2004.
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Presentation Outline

• Justify the challenge problem.

• Solve the problem using three different systems: A 

MapReduce cluster, a highly multithreaded system, 

and the hybrid system.

• Show the effectiveness of the hybrid system by

- Algorithm level analyses

- System level analyses

- Experimental results
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Highlights

Efficient in 

solving the 

challenge 

problem.

Incapable of storing 

the input graph

Five orders of magnitude 

slower than the highly 

multithreaded system in 

finding a shortest path

Experi-

ments

BWinter is 

important.

Limited aggregate 

computing power, 

disk capacity, and 

I/O bandwidth

Bisection bandwidth and 

disk I/O overhead

System 

level 

analysis

Effective if

|Thmt - TMapReduce| 

> n / BWinter

Work optimalGraph extraction: 

WMapReduce(n) ≈ θ(T*(n))

Shortest path: 

WMapReduce(n) > θ(T*(n))

Theory 

level 

analysis

A hybrid system 

of the two

A highly 

multithreaded 

system

A MapReduce cluster
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Various Complex Networks

• Friendship network

• Citation network

• Web-link graph

• Collaboration network
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Source: http://www.facebook.com

Source: 
http://academic.research.microsoft.com

Source: http://www.eigenfactor.org



Extracting a graph 

representation from raw data

Source: 
http://academic.research.microsoft.com

“Explore over 
5,226,317 papers, 
90,930 were added 
last week.”
�

Need to filter large 
volumes of raw data 
(papers) to extract a 
graph.
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Analyzing an extracted graph
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Even with the optimal partitioning,
a large fraction of the links crosses
partition boundaries.



A Hybrid System to Address the

Distinct Computational Challenges
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1. graph extraction
2. graph
analysis
queriesA MapReduce cluster

A highly
multithreaded

system



The MapReduce Programming Model

• Scans the entire 

input data in the map 

phase.

• # MapReduce 

iterations = the 

depth of a directed 

acyclic graph (DAG) 

for MapReduce 

computation
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Evaluating the efficiency of

MapReduce Algorithms

• WMapReduce = Σi = 1 to k ( O( ni•(1 + fi•( 1+ ri ) ) + 
pr•Sort( nifi / pr ) )

- k: # MapReduce iterations.

- ni: the input data size for the ith iteration.

- fi: map output size / map input size

- ri: reduce output size / reduce input size.

- pr: # reducers

• Extracting a subgraph

- k = 1 and fi << 1 � WMapReduce(n) ≈ θ(T*(n)), T*(n): the time 

complexity of the best sequential algorithm

• Finding a single-pair shortest path

- k =┌ d/2 ┐, fi ≈ 1 � WMapReduce(n) > θ(T*(n))
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A single-pair shortest path
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Source: 
http://academic.research.microsoft.com



Bisection Bandwidth 

Requirements for a MapReduce Cluster

• The shuffle phase, which requires inter-node 
communication, can be overlapped with the map 
phase.

• If Tmap > Tshuffle, Tshuffle does not affect the overall 
execution time.
- Tmap scales trivially.

- To  scale Tshuffle linearly, bisection bandwidth also needs 
to scale in proportion to a number of nodes. Yet, the cost 
to linearly scale bisection bandwidth increases super-
linearly.

- If f << 1, the sub-linear scaling of Tshuffle does not 
increase the overall execution time.

- If f ≈ 1, it increases the overall execution time.
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Disk I/O overhead

• Disk I/O overhead is unavoidable if the size of data 

overflows the main memory capacity.

• Raw data can be very large.

• Extracted graphs are much smaller.

- The Facebook network: 400 million users × 130 friends 

per user � less than 256 GB using the sparse 

representation.
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A Highly Multithreaded System

w/ the Shared Memory Programming Model

• Provide a random access 

mechanism.

• In SMPs, non-contiguous 

accesses are expensive.*

• Multithreading tolerates memory 

access latency.+

• There is a work optimal parallel 

algorithm to find a single-pair 

shortest path.
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Source: Cray

Sun Fire T2000 (Niagara)

Source: Sun Microsystems

* D. R. Helman and J. Ja’Ja’, “Prefix computations on symmetric multiprocessors,” J. of parallel and 
distributed computing, 61(2), 2001.
+ D. A. Bader, V. Kanade, and K. Madduri, “SWARM: A parallel programming framework for multi-core 
processors,” Workshop on Multithreaded Architectures and Applications, 2007.

Cray XMT



A single-pair shortest path
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Source: 
http://academic.research.microsoft.com



Low Latency High Bisection

Bandwidth Interconnection Network

• Latency increases as the size of a system increases.

- A larger number of threads and additional parallelism are 

required as latency increases.

• Network cost to linearly scale bisection bandwidth 

increases super-linearly.

- But not too expensive for a small number of nodes.

• These limit the size of a system.

- Reveal limitations in extracting a subgraph from a very 

large graph.
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The Time Complexity of an

Algorithm on the Hybrid System

• Thybrid = Σi = 1 to k min( Ti, MapReduce + Δ, Ti, hmt + Δ )

- k: # steps

- Ti, MapReduce and Ti, hmt: time complexities of the ith step on a 

MapReduce cluster and a highly multithreaded system, 

respectively.

- Δ: ni / BWinter ×δ( i – 1, i ), 

- ni : the input data size for the ith step.

- BWinter: the bandwidth between a MapReduce cluster and 

a highly multithreaded system.

- δ( i – 1, i ): 0 if selected platforms for the i - 1th and ith
steps are same. 1, otherwise.
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Test Platforms

• A MapReduce cluster

- 4 nodes

- 4 dual core 2.4 GHz Opteron 
processors and 8 GB main memory 
per node.

- 96 disks (1 TB per disk).

• A highly multithreaded system

- A single socket UltraSparc T2 1.2 
GHz processor (8 core, 64 threads).

- 32 GB main memory.

- 2 disks (145 GB per disk)

• A hybrid system of the two

Source: http://hadoop.apache.org/

Sun Fire T2000 (Niagara)

Source: Sun Microsystems
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A subgraph that covers 10%

of the input graph
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Once the subgraph is loaded into the memory, the hybrid 
system analyzes the subgraph five orders of magnitude faster 
than the MapReduce cluster (103 hours vs 2.6 seconds).
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Conclusions

• Performance and programmability are highly 

correlated with the match between a workload’s 

computational requirements and a programming 

model and an architecture.

• Our hybrid system is effective in addressing the 

distinct computational challenges in large scale 

complex network analysis.
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