
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, 
for the United States Department of Energyʼs National Nuclear Security Administration 

 under contract DE-AC04-94AL85000.

Hashing Strategies for the Cray XMT
MTAAP 2010

Eric Goodman (SNL)
David Haglin (PNNL)

Chad Scherrer (PNNL)
Daniel Chavarría-Miranda (PNNL)

Jace Mogill (PNNL)
John Feo (PNNL)

Hash Tables Background

•  Fundamental computer science concept and data structure
–  First described in 1953

•  A fast and scalable implementation for the Cray XMT has been lacking
•  Our contribution:

–  Two scalable algorithms that perform well on uniform and power law
distributions

•  Open addressing with linear probing – static table sizes
•  Hashing with Chaining and Region-based Memory Allocation

(HACHAR) – dynamic table sizes

The Cray XMT

• Shared memory machine
–  128 threads per processor
–  8 GB of globally accessible memory

per processor
–  500 MHz

• Custom compiler
–  Lightweight synchronization

mechanisms
•  Full/empty bit
•  readfe, writeef
•  int_fetch_add

–  Implicit Parallelism
•  For loops

–  Explicit Parallelism
•  Futures

• Hashing Considerations
–  Potential for memory contention with

frequently occurring keys

Memory

Avoiding Memory Contention:
Two-Step Acquisition

Open Addressing with Linear Probing

• Data Structures
– Key, Value, and

Occupied arrays all of
size table_size

• General Procedure
– Get an index for a key

with hash(key) %
table_size

–  If slot is claimed,
linearly probe forward
until open spot is found

• How to Claim a spot

int probed = occupied[i]; //non-blocking read
if(probed > 0) { //already taken
 if(compare(keys[i],key)) {
 return i;
 }
else { //not taken yet
 probed = readfe(&occupied[i]); //blocking read
 if (probed == 0) { //not taken yet
 keys[i] = key;
 writeef(&occupied[i], 1) //unlock the slot
 return i;
 } else { //already taken
 if (compare(keys[i], key)) { // the right slot
 writeef(&occupied[i], 1); //unlock the slot
 return i;
 }
 writeef(&occupied[i], 1);
 }

Global HACHAR – Initial Data Structure

0

0

Region Head Non-full Region

Next Free Slot = ∞ Next Free Slot = 0
Chain
Length

Ta
bl

e
/ C

hu
nk

 s
iz

e

Region 0 Region 1

   Use “two-step
acquire” on
length, region
linked list
pointers, chain
pointers.

   Use
int_fetch_add
on “next free
slot” to
allocate list
node.

Global HACHAR – Two items inserted

1

1

Region Head Non-full Region

Next Free Slot = ∞ Next Free Slot = 0
Chain
Length

H
as

h
Fu

nc
tio

n
R

an
ge

Word Word Id

Region 0 Region 1

   “locked” length
and inserted
into “head of
list”

   Potential
contention only
on length

   List node
shows
example for
Bag Of Words

Global HACHAR – Collisions

3

1

Region Head Non-full Region

Next Free Slot = ∞ Next Free Slot = x
Chain
Length

Ta
bl

e
/ C

hu
nk

 s
iz

e

Word Word Id

Region 0 Region 1

   Lookup: walk
chain, no
locking

   Malloc and free
limited to the
few region
buffer

   Growing a chain
requires lock of
only last pointer
(int_fetch_add
length)

Global HACHAR – Region Overflow

3

2

Region Head Non-full Region

Next Free Slot = ∞ Next Free Slot = ∞
Chain
Length

Ta
bl

e
/ C

hu
nk

 s
iz

e

Word Word Id

Region 0 Region 1

Next Free Slot = 1

Region 2

The Data Sets

• Uniform Random Data
–  5 billion integers in [-263,263-1]

• Zipfian Integers
– Zipf’s law: Element of rank k

occurs 2 times more often than
element of rank k/2.

–  ~5 billion integers in
 [1, 250 million]

• Wikipedia Instance
–  1.42 billion strings
–  16.3 million unique strings

Linear Probing on Uniform Random Data (5 Billion)

Comparison with HACHAR, Uniform Random Data

Comparison on Zipfian Integers (~5 Billion)

Wikipedia Instance

• 1.42 billion tokens
• 16.3 million unique keys
• Linear Probing used table
with 64 million slots
• HACHAR used 32 million

Hashing Conclusions and Future Work

• Two robust and fast solutions for hashing
– Works well on both uniform random and power law data

• Linear Probing best option when number of keys is known
• HACHAR best option when number of keys is not known

– Performs well even with large load factors
• Two-step acquisition process main contributing factor

behind performance
– May work well in other contexts

• Hash-reduce strategy
– May scale better

