
Application Performance Analysis on 
Petascale Systems

Felix Wolf, Brian J. N. Wylie

2010-04-19



• Joint venture between 
– Forschungszentrum Jülich 
– RWTH Aachen University

• Founded in 2007
• Research and education in 

simulation sciences
– International Master’s program
– Ph.D. program



Jülich Supercomputing Centre

Research in
• Computational Science
• Computer Science
• Mathematics

Jülich BG/P 294,912 cores

Jülich Nehalem Cluster 26,304 cores 



Outline

• Motivation
• Scalasca overview
• Scalable trace analysis
• Scalable task-local I/O
• Space-efficient time-series call-path profiles

• Conclusion & outlook



Higher degrees of parallelism 

• Increasing complexity 
of applications
– Higher resolutions
– Larger simulated time 

periods
– Multi-physics
– Multi-scale

• Increasing parallelism
– Multi-core



Higher degrees of parallelism (2)

• Also new demands on scalability of software tools 
– Familiar tools cease to work in a satisfactory manner for large 

processor counts

• Optimization of applications more difficult
– Increasing machine complexity
– Every doubling of scale reveals a new bottleneck

• Need for scalable performance tools
– Intelligent
– Robust
– Easy to use



• Scalable performance-analysis toolset for parallel codes
• Integrated performance analysis process

– Performance overview on call-path level via runtime summarization  
– In-depth study of application behavior via event tracing
– Switching between both options without recompilation or relinking

• Supported programming models 
– MPI-1, MPI-2 one-sided communication 

– OpenMP (basic features)
• Available under the New BSD open-source license
– http://www.scalasca.org/

Joint project of

http://www.scalasca.org/


Scalasca team



Summary 
report

Wait-state 
report

Optimized measurement configuration

Instrumenter 
compiler / 

linker

Instrumente
d executable

R
ep

or
t 

 
m

an
ip

ul
at

io
n



Event tracing

Section on 
display

• Typical events
– Entering and leaving a function
– Sending and receiving a message

• Problem: width and length of event trace



Scalable trace analysis via parallel replay

• Exploit distributed memory and processing capabilities
– Keep trace data in main memory
– Traverse local traces in parallel
– Exchange data at synchronization points of target application using 

communication operation of similar type

• Four applications

Parallel replay

Wait-state
analysis

Delay 
analysis

Synchronization 
of timestamps

Evaluation of 
optimization 
hypotheses



Wait-state analysis

• Classification
• Quantification

time

pr
oc

e
ss

(a) Late Sender

time

pr
oc

e
ss

(c) Late Receiver
time

pr
oc

es
s

(b) Late Sender / Wrong Order



Wait-state analysis (2)

… …

… …
time

pr
o

ce
ss



Scalability of parallel wait-state search (SWEEP3D) 



Redundant messages in XNS CFD code

Previous peak 
performance 

at 132 ts/h

Now scales up to 
4096 processes



XNS wait-state analysis of tuned version



Delay analysis

• Delay counterpart of waiting time
• Distinction between direct and indirect waiting times
• Essentially scalable version of  Meira Jr. et al.
• Analysis attributes costs of wait states to delay intervals

time

pr
oc

e
ss

Delay

Direct waiting time

  Indirect waiting time 



Origin of delay costs in Zeus-MP/2

Computation Waiting time Delay costs



Delay analysis of code Illumination

• Particle physics code (laser-plasma interaction)
• Delay analysis identified inefficient communication 

behavior as cause of wait states

Computation Short-term costs of indirect delay:
Original vs. optimized code

Costs of direct delay
in optimized code



Insufficiently synchronized clocks on clusters

• Misrepresentation of logical event order in traces
• Distorted interval lengths
• Simple approach: linear offset interpolation 
• Problem unstable drifts



Postmortem correction using logical clocks

• Controlled logical clock algorithm by Rolf Rabenseifner
– Restores logical event order based on happened-before relation while 

introducing only marginal local inaccuracies
– Shortcoming 1: Only point-to-point communication
– Shortcoming 2: Sequential algorithm

• Extended to cover MPI collective communication
and OpenMP shared-memory programming 
– Mapped collectives and OpenMP regions

onto point-to-point messages 

• Parallelized through parallel replay
– Challenge: backward replay required to smooth 

jump discontinuities without introducing new violations

– Scalability tested on up to 4,000 processors



Evaluation of optimization hypotheses

• Wait states often caused by load or communication 
imbalance occurring much earlier in the program
– Hard to estimate impact of potential changes 
– Requires modeling the communication infrastructure to answer 

“What if…?” questions

• Alternative
– Parallel real-time replay of modified event traces to verify 

hypotheses on wait state formation
• Elapse computation time
• Re-enact communication

– Advantage: scalability and accuracy



Simulated removal of redundant messages

• 1 iteration of 1024 processor-run of XNS on Blue Gene/L
• All zero-sized messages removed from trace 

– 90% of all messages > 1.2 billion messages  

Metric Original Hand-
Optimized

Simulated

Total 100.0 50.6 53.1

MPI 59.9 16.9 19.4

P2P 54.2 8.6 11.2

Late Sender 30.6 5.7 8.0

Wait at Barrier 5.1 7.7 7.7



SIONlib: Scalable parallel I/O for task-local data

• Use case: task-local binary I/O from 
thousands of tasks
– Trace files
– Scratch/checkpoint files

• Often does not scale
– Contention at metadata server
– File handling (e.g., directory listing)

• Map many logical files onto a 
few physical files
– Application-level file system

– Optimized I/O via block alignment

T1

File 

T2

File 

T3

File 

T4

File 

File 



Parallel open / create on JUGENE



Time-dependent performance behavior

MPI point-to-point time of 129.tera_tf

IterationIteration

T
im

e 
[s

] 

P
ro

ce
ss

 #
 

max

mean

min



Time-series call-path profiling

• Manual instrumentation to 
distinguish iterations of the 
main loop

• Complete call-tree recorded 
for each iteration
– With multiple metrics 

collected for every call-path

• Huge growth in the amount of 
data collected
– Reduced scalability



Incremental on-line clustering

• Exploits that many iterations are 
very similar
– Summarizes similar iterations in a 

single iteration, their average

• On-line to save memory at run-time

• Process-local to
– Avoid communication
– Adjust to local temporal patterns

• The number of clusters can never 
exceed a predefined maximum
– Merging of the two closest ones

Late Sender

# particles owned by a process

PEPC n-body tree code



MAGMAfill by MAGMASOFT® GmbH

• Simulates mold-filling in 
casting processes

• Scalasca used 
– To identify communication 

bottleneck 
– To compare alternatives using 

performance algebra utility

• 23% overall runtime 
improvement

• Further investigations ongoing 
 



Conclusion

• Integrated tool architecture
• Scalability in terms of machine size

– Trace-processing based on parallel replay
• Versatile: four applications

– Parallel task-local I/O

– Demonstrated on up to 295 K cores

• Scalability in terms of execution time
– Runtime compression of time-series profiles



Outlook

• Further scalability improvements
– Parallelization of internal management operations

– Scalabale output format and GUI

– In-memory trace analysis

• Emerging architectures and programming models
– PGAS languages

– Accelerator architectures

• Interoperability with 3rd-party tools
– Common measurement library for several performance tools 





Sweep3D – late sender



Sweep3D – execution time


