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Motivation

• New challenges are demanded by the
society.
– Availability of the information

• At any time
• From everywhere

• Becoming in growing complexity day by
day.



Motivation

• The growing complexity causes:

– Necessity for brilliant IT professionals.
– Increment of the Total owner Cost of the IT

infrastructures.
– Increment of the faults/outages due to

(directly or indirectly) the complexity.



Motivation

• These faults/outages have an important
impact of the revenue of the companies:
– Around US$125,000 per hour, direct impact
– A part of the indirect impact

• Several studies show that the current
system outages are more often due to
software faults.



Motivation: Software Aging

• One of the most important reasons for
software failures is the software aging
phenomenon.

• The software aging
– Accumulation of errors, usually provoking

resource contention during long running
application

– Gradual performance degradation could also
accompany software aging phenomena.



Motivation: Software Aging

• Software aging related with:
– Memory bloating/leaks
– Unterminated threads
– Data corruption
– Unreleased file-locks
– Overruns
– Potentially some of them together



Motivation: Software Aging

• The applications have to deal with
software aging in production stage.
– The unaffordable and hardly cost task to

avoid all software bugs.

• What is it the solution?
– Software rejuvenation



Motivation: Software Rejuvenation

• Software rejuvenation
– Basically, reboot the system, although there

are most sophisticated techniques like micro-
rebooting.

– There are two main strategies:
• Time based strategy.
• Proactive based strategy.



Motivation: Software Rejuvenation

• Time based strategies:
– Rejuvenation is applied regularly and periodically.
– Well-known used in web servers.

• Proactive based strategies:
– System metrics are monitored continuously
– The rejuvenation action is triggered when the

system is near to the crash according to the
system metrics.



Motivation: Software Rejuvenation

• The proactive approach is better because:
– We can reduce the rejuvenation actions

• The effectiveness of the proactive
approach depends on the accuracy of the
monitoring metrics.



Motivation: Root cause rejuvenation

• However, traditional monitoring tools
understand the applications as “black
boxes”.

• This fact makes impossible to know what
the root cause of the software aging is.
– We understand as “root cause” the system

component/s causing of the software aging.



Motivation: Root cause rejuvenation

• Monitoring tools do not offer enough clues about the
root cause of failure.
– The most used rejuvenation mechanisms are based 

on rebooting or application restarting.

• Rebooting implies also a reduction of availability
– New more accurate techniques are proposed to reduce the

Mean Time to Repair (MTTR), increasing the Availability.

Availability = .      MTTF      .
MTTF + MTTR



Motivation: Root cause rejuvenation

• Micro Rebooting
– Apply the recovery technique only over the 

component of the application that causes the 
failure.

– However, this technique needs a monitoring 
tool or detection mechanism that allow us to 
determinate the root cause of the failure.



Our Contribution

• We present a monitoring framework to
help to determine the “root cause” of the
software aging phenomena.

• Using technologies:
– Aspect Oriented Programming (AOP)
– Java Management Extensions (JMX)

• For J2EE infrastructures.



Our Contribution

• The idea:
– Monitoring the resources consumed by every

software component of a J2EE application
– Monitoring the trend of the consumption
– Allowing to build a resource-component

consumption map.

• All of all:
– Without modify the source code.
– With low overhead.



Our Contribution: Preliminary concepts

• Aspect Oriented Programming:
– Allows to isolate the main business logic of the

application from secondary functions like logs or
authentication.

– The core of AOP: Aspects.
• Aspects are composed by: Advices and Join Points.

– AOP allows to inject code in compile, load or
runtime without to know the source code.

• We are injecting our observers using AOP



Our Contribution: Preliminary concepts

• Java Management Extensions:
– a set of capabilities to manage and monitor

any system component:
• from devices to Java objects

– is based on a 3-level architecture:
• Probe level, Agent level and Remote Management

Level.



Our Contribution: Architecture

• Aspect Component (AC)
– Associated to every application component.
– Manage the measurements of resource consumed and the trend.

• Aspect Component Proxy (AC-Proxy).
– creates a communication channel between the AC and the JMX

Manager Agent
• JMX Monitoring Agents

– Access to the OS and collect system metrics for every component.
• JMX Manager Agent

– has the responsibility to collect the metrics of each component and build
the resource-component map.

– Activate and deactivate ACs on demand.
• External Front-end

– allow administrators to communicate with the JMX Manager Agent in
real time or activate new ACs or new JMX Monitor Agents.



Our Contribution: Architecture



Our Contribution: Root cause determination 
strategy

• The JMX Manager Agent has a
responsibility to build resource-component
map:
– The map is based on two axis:

• Component usage
• Resource consumption

• The map helps the engineers to priorize
component “repair”



low Resource 
Consumption

high Resource 
Consumption

Component 
Usage High

Component 
Usage Low

More 
Suspicious 
Component

Our Contribution: Root cause determination 
strategy

Less 
Suspicious 
Component



Experimental Case Study

• We have used TPC-W J2EE application to
evaluate of our approach.

• TPC-W simulates a on-line book store and uses
Emulated Browsers (EBs) to simulate clients.

• The EBs calculate a thinking time to simulate the
time used by a human to decide what will be his
next step in the web.

• We have modified a set of TPC-W servlets to
inject memory leaks at different ratios.



Experimental Case Study

• Overhead measurement: 
– Around 5% of overhead. 



Experimental Case Study
• Effectiveness to determine a memory leak:

– Only one component injects a memory leak (100Kb every injection):



Experimental Case Study
• Effectiveness to determine a memory leak:

– Four components inject a memory leak (100Kb every injection):



Experimental Case Study
• The map built in the last experiment was:



Experimental Case Study
• Effectiveness to determine a memory leak:

– Four components inject a memory leak (A = 100Kb every injection, B = 
10KB, C and D = 1MB):

A B

C D
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Experimental Case Study
• The map built in the last experiment was:

C

AB

D



Conclusion & Future work

• We have presented our framework and its utility
and effectiveness to help to determine the root
cause failure.

• We have focused on one type of software aging:
memory leaks.

• The resource-component consumption could be
an useful tool to help to determine the riskiest
component

• We have to evaluate the effectiveness of that
approach to determine other type of software
aging due to different resources or even an
interaction of more than one resource.
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