
J2EE Instrumentation for software aging
root cause application component

determination with AspectJ

Javier Alonso
Josep Ll. Berral
Ricard Gavaldà

Jordi Torres

Technical University of Catalonia,
Spain

Contents

• Motivation
• Our Contribution

– Preliminary concepts
– Architecture
– Root cause determination strategy

• Experimental Case Study
• Conclusion & Future work

Motivation

• New challenges are demanded by the
society.
– Availability of the information

• At any time
• From everywhere

• Becoming in growing complexity day by
day.

Motivation

• The growing complexity causes:

– Necessity for brilliant IT professionals.
– Increment of the Total owner Cost of the IT

infrastructures.
– Increment of the faults/outages due to

(directly or indirectly) the complexity.

Motivation

• These faults/outages have an important
impact of the revenue of the companies:
– Around US$125,000 per hour, direct impact
– A part of the indirect impact

• Several studies show that the current
system outages are more often due to
software faults.

Motivation: Software Aging

• One of the most important reasons for
software failures is the software aging
phenomenon.

• The software aging
– Accumulation of errors, usually provoking

resource contention during long running
application

– Gradual performance degradation could also
accompany software aging phenomena.

Motivation: Software Aging

• Software aging related with:
– Memory bloating/leaks
– Unterminated threads
– Data corruption
– Unreleased file-locks
– Overruns
– Potentially some of them together

Motivation: Software Aging

• The applications have to deal with
software aging in production stage.
– The unaffordable and hardly cost task to

avoid all software bugs.

• What is it the solution?
– Software rejuvenation

Motivation: Software Rejuvenation

• Software rejuvenation
– Basically, reboot the system, although there

are most sophisticated techniques like micro-
rebooting.

– There are two main strategies:
• Time based strategy.
• Proactive based strategy.

Motivation: Software Rejuvenation

• Time based strategies:
– Rejuvenation is applied regularly and periodically.
– Well-known used in web servers.

• Proactive based strategies:
– System metrics are monitored continuously
– The rejuvenation action is triggered when the

system is near to the crash according to the
system metrics.

Motivation: Software Rejuvenation

• The proactive approach is better because:
– We can reduce the rejuvenation actions

• The effectiveness of the proactive
approach depends on the accuracy of the
monitoring metrics.

Motivation: Root cause rejuvenation

• However, traditional monitoring tools
understand the applications as “black
boxes”.

• This fact makes impossible to know what
the root cause of the software aging is.
– We understand as “root cause” the system

component/s causing of the software aging.

Motivation: Root cause rejuvenation

• Monitoring tools do not offer enough clues about the
root cause of failure.
– The most used rejuvenation mechanisms are based

on rebooting or application restarting.

• Rebooting implies also a reduction of availability
– New more accurate techniques are proposed to reduce the

Mean Time to Repair (MTTR), increasing the Availability.

Availability = . MTTF .
MTTF + MTTR

Motivation: Root cause rejuvenation

• Micro Rebooting
– Apply the recovery technique only over the

component of the application that causes the
failure.

– However, this technique needs a monitoring
tool or detection mechanism that allow us to
determinate the root cause of the failure.

Our Contribution

• We present a monitoring framework to
help to determine the “root cause” of the
software aging phenomena.

• Using technologies:
– Aspect Oriented Programming (AOP)
– Java Management Extensions (JMX)

• For J2EE infrastructures.

Our Contribution

• The idea:
– Monitoring the resources consumed by every

software component of a J2EE application
– Monitoring the trend of the consumption
– Allowing to build a resource-component

consumption map.

• All of all:
– Without modify the source code.
– With low overhead.

Our Contribution: Preliminary concepts

• Aspect Oriented Programming:
– Allows to isolate the main business logic of the

application from secondary functions like logs or
authentication.

– The core of AOP: Aspects.
• Aspects are composed by: Advices and Join Points.

– AOP allows to inject code in compile, load or
runtime without to know the source code.

• We are injecting our observers using AOP

Our Contribution: Preliminary concepts

• Java Management Extensions:
– a set of capabilities to manage and monitor

any system component:
• from devices to Java objects

– is based on a 3-level architecture:
• Probe level, Agent level and Remote Management

Level.

Our Contribution: Architecture

• Aspect Component (AC)
– Associated to every application component.
– Manage the measurements of resource consumed and the trend.

• Aspect Component Proxy (AC-Proxy).
– creates a communication channel between the AC and the JMX

Manager Agent
• JMX Monitoring Agents

– Access to the OS and collect system metrics for every component.
• JMX Manager Agent

– has the responsibility to collect the metrics of each component and build
the resource-component map.

– Activate and deactivate ACs on demand.
• External Front-end

– allow administrators to communicate with the JMX Manager Agent in
real time or activate new ACs or new JMX Monitor Agents.

Our Contribution: Architecture

Our Contribution: Root cause determination
strategy

• The JMX Manager Agent has a
responsibility to build resource-component
map:
– The map is based on two axis:

• Component usage
• Resource consumption

• The map helps the engineers to priorize
component “repair”

low Resource
Consumption

high Resource
Consumption

Component
Usage High

Component
Usage Low

More
Suspicious
Component

Our Contribution: Root cause determination
strategy

Less
Suspicious
Component

Experimental Case Study

• We have used TPC-W J2EE application to
evaluate of our approach.

• TPC-W simulates a on-line book store and uses
Emulated Browsers (EBs) to simulate clients.

• The EBs calculate a thinking time to simulate the
time used by a human to decide what will be his
next step in the web.

• We have modified a set of TPC-W servlets to
inject memory leaks at different ratios.

Experimental Case Study

• Overhead measurement:
– Around 5% of overhead.

Experimental Case Study
• Effectiveness to determine a memory leak:

– Only one component injects a memory leak (100Kb every injection):

Experimental Case Study
• Effectiveness to determine a memory leak:

– Four components inject a memory leak (100Kb every injection):

Experimental Case Study
• The map built in the last experiment was:

Experimental Case Study
• Effectiveness to determine a memory leak:

– Four components inject a memory leak (A = 100Kb every injection, B =
10KB, C and D = 1MB):

A B

C D

low Resource
Consumption

high Resource
Consumption

Component
Usage High

Component
Usage Low

Experimental Case Study
• The map built in the last experiment was:

C

AB

D

Conclusion & Future work

• We have presented our framework and its utility
and effectiveness to help to determine the root
cause failure.

• We have focused on one type of software aging:
memory leaks.

• The resource-component consumption could be
an useful tool to help to determine the riskiest
component

• We have to evaluate the effectiveness of that
approach to determine other type of software
aging due to different resources or even an
interaction of more than one resource.

J2EE Instrumentation for software aging
root cause application component

determination with AspectJ

Javier Alonso
Josep Ll. Berral
Ricard Gavaldà

Jordi Torres

Technical University of Catalonia,
Spain

	J2EE Instrumentation for software aging root cause application component determination with AspectJ
	Contents
	Motivation
	Motivation
	Motivation
	Motivation: Software Aging
	Motivation: Software Aging
	Motivation: Software Aging
	Motivation: Software Rejuvenation
	Motivation: Software Rejuvenation
	Motivation: Software Rejuvenation
	Motivation: Root cause rejuvenation
	Motivation: Root cause rejuvenation
	Motivation: Root cause rejuvenation
	Our Contribution
	Our Contribution
	Our Contribution: Preliminary concepts
	Our Contribution: Preliminary concepts
	Our Contribution: Architecture
	Our Contribution: Architecture
	Our Contribution: Root cause determination strategy
	Our Contribution: Root cause determination strategy
	Experimental Case Study
	Experimental Case Study
	Experimental Case Study
	Experimental Case Study
	Experimental Case Study
	Experimental Case Study
	Experimental Case Study
	Conclusion & Future work
	J2EE Instrumentation for software aging root cause application component determination with AspectJ

