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Birds-eye view of data storage

Storage systems face a trade-off between the speed of 
inserts/deletes/updates and the speed of queries. 
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answers

incoming data

stored data
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How should we 
organize our 
stored data?

x

Parallel 
computing is 
about high 
performance.  
To get high 
performance, we 
need fast access 

to our data.

The tradeoff 
hurts.

This is a data-
structural 
question.
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How should we organize our stored data? 

(1,1)

(2,0)

(4,3)

(5,2)

(8,1)

indexing
Sort in logical order.

Find a key:  fast. 
Insert a key:  slower.

logging
Sort in arrival order.

Find a key:  slow. 
Insert a key:  fast.

(5,2)

(8,1)

(2,0)

(1,1)

(4,3)
or range of keys
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• in-place file systems                log-structured file systems

file systemsext4 LFSf2fs

The tradeoff comes under many different names and guises:

• etc!

NoSQL key-value stores WiscKeyLevelDB
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file system

Indexing vs logging: universal data structures question
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DBs, kv-stores, and file systems are different beasts.
But they grapple with the similar data-structures problems.

Similar problems ⟹ similar solutions

persistent data 
structure 
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structure 

write-optimization
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Some “write-optimized” data structures can mitigate or 
overcome the indexing-logging trade-off.

Disk/SSD

TokuDB core

• SQL processing 
• query optimization

TokuDB 
SQL database

• noSQL processing 

TokuMX 
noSQL database

• file and directory 
operations

BetrFS 
file system

*acquired by Percona

TokuDB core TokuDB core

I’ll talk about my 
experiences using the 
same data structure to 
help all three systems. 

At our DB company Tokutek,* we sold 
open-source write-optimized databases.

Since it was sold, we’ve built 
an open-source file system.
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Point of this talk

The performance 
landscape is 
fundamentally changing. 
• New data structures

• New hardware

This has created tons of 
new research 
opportunities. 
• For algorithmists/theorists

• For systems builders

There’s still lots to do.



An algorithmic view of the 
insert-query tradeoff
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Performance characteristics of storage
Sequential access is fast.
Random access is slower.



How computation works:   
• Data is transferred in blocks between RAM and disk. 

• The # of block transfers dominates the running time. 


Goal: Minimize # of I/Os 
• Performance bounds are parameterized by  

block size B, memory size M, data size N.

A model for I/O performance

DiskRAM

B

B

M

[Aggarwal+Vitter ’88]Disk-Access Machine (DAM) model



I/Os are slow

RAM: ~60 nanoseconds per access 
Disks: ~6 milliseconds per access. 
Analogy:  
• RAM � escape velocity from earth (40,250 kph)

• disk � walking speed of the giant tortoise (0.4 kph)
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How realistic is the DAM model?

[George Box 1978]

What is reality anyway?

• Unrealistic in various ways.
• Great for reasoning about I/O 

and for high-level design. 
• You can optimize the model 

to hone constants.

"All models are wrong, but some are useful”



How computation works:   
• Data is transferred in blocks between RAM and disk. 

• The # of block transfers dominates the running time. 


Goal: Minimize # of I/Os 
• Performance bounds are parameterized by  

block size B, memory size M, data size N.

A model for I/O performance

DiskRAM

B

B

M

[Aggarwal+Vitter ’88]Disk-Access Machine (DAM) model
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Don’t Thrash: How to Cache Your Hash in Flash

B

I/O cost for logging.
• query: scan all blocks ⟹ O(N/B)
• insert: append to end of log ⟹ O(1/B) 

N

What’s the I/O cost for logging?

�17
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What’s the I/O cost for indexing?

�18

Queries: O(logBN) 
Updates: O(logBN)

The classic structure is the B-tree.

B

Q: What’s the I/O cost for indexing?  
A: It depends on the indexing data structure.  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Beating B-tree Bounds

Queries: O(logBN) 
Inserts: O(logBN)

optimal

not optimal!!not optimal!!

Goal: 
 Inserts that run faster than a B-tree. 
Queries that don’t run slower.
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Start with a regular B-tree



Making a BƐ tree

Reduce the fanout. 
• Now the nodes are mostly empty

 [Brodal, Fagerberg 03]



Making a BƐ tree

Put B1/2-sized buffers in each internal node. 

 [Brodal, Fagerberg 03]
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Inserts and deletes in a BƐ tree
Inserts + deletes: 

• Send insert/delete messages down from the root and 
store them in buffers. 


• When a buffer fills up, flush. 

Deletes are tombstone messages.
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Difficulty of key searches

This is a keynote talk... 
so note the keys.
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Searches cost O(logBN) 
• Look in all buffers on root-to-leaf path.



Insertions analysis in BƐ tree

Inserts cost O((logBN)/√B) per insert/delete.  
• Each flush cost 1 I/O and flushes √B elements.

• Flush cost per element is 1/√B.

• There are O(logBN) levels in a tree.
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Bε-tree insertion speedups

Example:

Bε-Trees B-Trees

I/Os per
insert O( log√B N

√B ) O(log
B
N )

Record size: 128 bytes
Node size:    128 KB
B:                  1024 records
Speedup:      

≈√1024
2

=16

Inserts are one-to-two
orders-of-magnitude

faster than in a
B-tree

Inserts run 1-2 orders of magnitude 
faster than in a B-tree.



Optimal insertion-search 
tradeoff curve

[Brodal, Fagerberg 03]



Optimal Search-Insert Tradeoff  [Brodal, Fagerberg 03]

Change the fanout from B1/2 to BƐ.
Change the fanout to 

from B1/2 to Bε.
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insert point query

Optimal tradeoff 
(function of ɛ=0...1)
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Illustration of Optimal Tradeoff [Brodal, Fagerberg 03]
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Write performance on large data 

MongoDB                       MySQL

(up is good)
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Other write-optimized data structures

The most famous write-optimized data structure is the 
log structured merge tree  

Data structures: [O'Neil,Cheng, Gawlick, O'Neil 96], [Buchsbaum, Goldwasser, Venkatasubramanian, Westbrook 00], 
[Argel 03], [Graefe 03], [Brodal, Fagerberg 03], [Bender, Farach,Fineman,Fogel, Kuszmaul, Nelson’07], [Brodal, 
Demaine, Fineman, Iacono, Langerman, Munro 10], [Spillane, Shetty, Zadok, Archak, Dixit 11]. [
Systems: BetrFS, BigTable, Cassandra, H-Base, LevelDB, PebblesDB, RocksDB, TokuDB, TableFS, TokuMX. 

[O'Neil,Cheng, Gawlick, O'Neil 96]

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Brodal:Gerth_St=oslash=lting.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Demaine:Erik_D=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/i/Iacono:John.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Langerman:Stefan.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Munro:J=_Ian.html
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The most famous write-optimized data structure is the 
log structured merge tree  

There are many others (BƐ-tree, buffered repository 
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A write-optimized 
dictionary (WOD) 
data structure….

… searches like 
a B-tree…

… but inserts 
asymptotically 
faster.

WODs beat the 
tradeoff from the 
beginning of the talk.



Write-optimization in 
databases
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ACID-compliant database built on a BƐ-tree
We built a write-optimized SQL databases at our DB 
company Tokutek.

Disk/SSD

file system

application

database index
(traditionally a B-tree)

• SQL processing 
• query optimization

SQ
L 

da
ta

ba
se

Replace the B-tree 
with a Bɛ-tree.

(The Bε-tree must be full-featured and 
persistent to power a databases.)

Result: indexing runs 10x-100x 
faster than traditional structures.
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Transactions, logging, ACID-compliant crash recovery

Ingredients 
• a regular write-optimized structure


• a log


• periodic checkpoints of the WOD

Yeah, but what 
about transactions? 

sequential access

sequential access…  
… if checkpoints are done right

Result: even with crash recovery and 
transactional semantics, indexing is 10x-100x 
faster than traditional structures.



Point of this talk
WODs change 
the performance 
landscape.

x

WODs help in 
ways that, at first 
glance, have 
little to do with 
fast insertions.
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Remember the logging/indexing dilemma?

TokuDB
a company

We can’t.

Why not?
We cannot get our 

insertion rate to keep up.

Moral: insertion problems often 
masquerade as query problems.  

We can insert data 
10x-100x faster.

Our inserts are fine. 
Our queries run too slowly.

We don’t have an insertion bottleneck.   
We have a query bottleneck. 

With TokuDB you can 
index data 10x-100x faster.

In this case, put a 
rich set of database 
indexes in your DB 

schema.

Just use a richer 
set of indexes.

We wish we could.



The right read optimization is write optimization

The right index makes queries run fast.  
WODS can maintain them.


I/O
 L

oa
d

Fast writing is a currency we use to make 
queries faster. 



WODs force you to reexamine 
your system design…



What the world looks like

Insert/point query asymmetry 
• Inserts can be fast:  

50-100K random writes/sec on a disk.

• Point queries are provably slow:  

<200 random reads/sec on a disk.

Reading is hard.

Writing is easier.

O

✓ logB
N

p
B

◆

Systems are often designed assuming reads and 
writes have about the same cost.   

In fact, writing is easier than reading.  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Systems often assume search cost = insert cost

Ancillary search—a search with each insert. 
• Insert with uniqueness check—  

is the key is already present?

• Delete with acknowledgement— 

was a key actually deleted? 
 

These ancillary searches throttle insertions 
down to the performance of B-trees.

In a B-tree, the leaf is already fetched, 
so reading it has no extra cost.


In a WOD, it’s expensive.



How can we get rid of ancillary searches?

Write-optimized systems must get rid of or 
mitigate ancillary searches whenever possible.

It’s remarkable that uniqueness 
checking is hard, but ACID 

compliance is asymptotically easy.

We now live with a different model for 
what’s expensive and what’s cheap.
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foo.c

directory tree

How should we organize the files on disk?

 logical order • grep -r “bar” . 
• ls -R .

logical order ⟹ sequential scans are fast

update order ⟹ small writes are fast

The empirical tradeoff between 
writing and querying appears in 

file systems.

But we no longer have a B-tree 
to replace with a Bε-tree.

Updates are slow.

Scans are slow.
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…
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…

Some file-system operations don’t seem to map cheaply.

<path, file metadata> <path, file data>

mv These keys change their names.  
They move to a different place in the order.



WODs open questions

Moral: how can we make write-optimized 
data structures that support the richer set of 
operations needed by the applications? 

We need more than just insert and delete.



Other WODs 
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• Better compression

• Less fragmentation. 


BƐ-trees file systems do not  
age the way B-tree based  
file systems do. 

write- 

optim
ized

We cannot see this in the DAM model.   
We need a more refined model.

[Conway, Bakshi, Jiao, Zhan, Bender, Jannen,  
Johnson, Kuszmaul, Porter, Yuan, Farach-Colton 17]




Revisit I/O model to harness full power of write-optimization

DAM is realistic enough to  
make powerful predictions. 
Some things it doesn’t predict, such as aging.



Revisit I/O model to harness full power of write-optimization

DAM is realistic enough to  
make powerful predictions. 
Some things it doesn’t predict, such as aging.
Technology is changing. 
• I/O speeds are accelerating faster than CPU.

• Storage technology supports lots of I/Os in parallel.



Revisit I/O model to harness full power of write-optimization

DAM is realistic enough to  
make powerful predictions. 
Some things it doesn’t predict, such as aging.
Technology is changing. 
• I/O speeds are accelerating faster than CPU.

• Storage technology supports lots of I/Os in parallel.

Need multithreading and lots of parallel I/Os to 
drive the device to its capacity. 
• Data structures for older storage don’t work so well now.
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Summery Slide

We should revisit the 
performance model.  

To get performance now we need 
parallelism everywhere.

WODS are accessible.  
They are teachable in 
standard curricula.

We should rethink applications and the storage 
stack given new write-optimized data structures. 

The traditional 
search-insert tradeoff 
can be improved.


