
The Algorithmics of Write Optimization

Michael A. Bender
Stony Brook University

Birds-eye view of data storage

queries

answers

incoming data

stored data

?

Birds-eye view of data storage

Storage systems face a trade-off between the speed of
inserts/deletes/updates and the speed of queries.

queries

answers

incoming data

stored data

Point of this talk

x

Parallel
computing is
about high
performance.  
To get high
performance, we
need fast access

to our data.

The tradeoff
hurts.

Point of this talk

How should we
organize our
stored data?

x

Parallel
computing is
about high
performance.  
To get high
performance, we
need fast access

to our data.

The tradeoff
hurts.

Point of this talk

How should we
organize our
stored data?

x

Parallel
computing is
about high
performance.  
To get high
performance, we
need fast access

to our data.

The tradeoff
hurts.

This is a data-
structural
question.

How should we organize our stored data?

How should we organize our stored data?

Like a librarian?

How should we organize our stored data?

Fast to find stuff.

Requires work to maintain.

Like a librarian?

How should we organize our stored data?

Like a teenager?

Fast to find stuff.

Requires work to maintain.

Like a librarian?

How should we organize our stored data?

Like a teenager?

Fast to find stuff.

Requires work to maintain.

Fast to add stuff.

Slow to find stuff.

Like a librarian?

How should we organize our stored data?

Like a teenager?

Fast to find stuff.

Requires work to maintain.

Fast to add stuff.

Slow to find stuff.

“Indexing” “Logging”

Like a librarian?

How should we organize our stored data?

(1,1)

(2,0)

(4,3)

(5,2)

(8,1)

indexing
Sort in logical order.

Find a key: fast. 
Insert a key: slower.

logging
Sort in arrival order.

Find a key: slow. 
Insert a key: fast.

(5,2)

(8,1)

(2,0)

(1,1)

(4,3)

How should we organize our stored data?

(1,1)

(2,0)

(4,3)

(5,2)

(8,1)

indexing
Sort in logical order.

Find a key: fast. 
Insert a key: slower.

logging
Sort in arrival order.

Find a key: slow. 
Insert a key: fast.

(5,2)

(8,1)

(2,0)

(1,1)

(4,3)

How should we organize our stored data?

(1,1)

(2,0)

(4,3)

(5,2)

(8,1)

indexing
Sort in logical order.

Find a key: fast. 
Insert a key: slower.

logging
Sort in arrival order.

Find a key: slow. 
Insert a key: fast.

(5,2)

(8,1)

(2,0)

(1,1)

(4,3)

How should we organize our stored data?

(1,1)

(2,0)

(4,3)

(5,2)

(8,1)

indexing
Sort in logical order.

Find a key: fast. 
Insert a key: slower.

logging
Sort in arrival order.

Find a key: slow. 
Insert a key: fast.

(5,2)

(8,1)

(2,0)

(1,1)

(4,3)

How should we organize our stored data?

(1,1)

(2,0)

(4,3)

(5,2)

(8,1)

indexing
Sort in logical order.

Find a key: fast. 
Insert a key: slower.

logging
Sort in arrival order.

Find a key: slow. 
Insert a key: fast.

(5,2)

(8,1)

(2,0)

(1,1)

(4,3)
or range of keys

Indexing vs logging spans domains & decades

SQL databases

in
de

xi
ng

/fa
st

 q
ue

rie
s

lo
gg

in
g/

fa
st

 d
at

a
in

ge
st

io
n

file systems

The tradeoff comes under many different names and guises:

NoSQL key-value stores

Indexing vs logging spans domains & decades

• clustered indexes unclustered indexes

SQL databases

in
de

xi
ng

/fa
st

 q
ue

rie
s

lo
gg

in
g/

fa
st

 d
at

a
in

ge
st

io
n

MyISAMInnoDB

file systems

The tradeoff comes under many different names and guises:

NoSQL key-value stores WiscKeyLevelDB

Indexing vs logging spans domains & decades

• clustered indexes unclustered indexes

SQL databases

in
de

xi
ng

/fa
st

 q
ue

rie
s

lo
gg

in
g/

fa
st

 d
at

a
in

ge
st

io
n

MyISAMInnoDB

• in-place file systems log-structured file systems

file systemsext4 LFSf2fs

The tradeoff comes under many different names and guises:

NoSQL key-value stores WiscKeyLevelDB

Indexing vs logging spans domains & decades

• clustered indexes unclustered indexes

SQL databases

in
de

xi
ng

/fa
st

 q
ue

rie
s

lo
gg

in
g/

fa
st

 d
at

a
in

ge
st

io
n

MyISAMInnoDB

• in-place file systems log-structured file systems

file systemsext4 LFSf2fs

The tradeoff comes under many different names and guises:

• etc!

NoSQL key-value stores WiscKeyLevelDB

Disk/SSD

persistent data
structure

• SQL processing
• query optimization

SQL database

• key-value operations

noSQL database

• file and directory
operations

file system

Indexing vs logging: universal data structures question

DBs, kv-stores, and file systems are different beasts.
But they grapple with the similar data-structures problems.

persistent data
structure

persistent data
structure

Disk/SSD

persistent data
structure

• SQL processing
• query optimization

SQL database

• key-value operations

noSQL database

• file and directory
operations

file system

Indexing vs logging: universal data structures question

DBs, kv-stores, and file systems are different beasts.
But they grapple with the similar data-structures problems.

Similar problems ⟹ similar solutions

persistent data
structure

persistent data
structure

Disk/SSD

persistent data
structure

• SQL processing
• query optimization

SQL database

• key-value operations

noSQL database

• file and directory
operations

file system

Indexing vs logging: universal data structures question

DBs, kv-stores, and file systems are different beasts.
But they grapple with the similar data-structures problems.

Similar problems ⟹ similar solutions

persistent data
structure

persistent data
structure

write-optimization

Indexing vs logging: universal data structures question

Some “write-optimized” data structures can mitigate or
overcome the indexing-logging trade-off.

Disk/SSD

TokuDB core

• SQL processing
• query optimization

TokuDB
SQL database

• noSQL processing

TokuMX
noSQL database

• file and directory
operations

BetrFS
file system

*acquired by Percona

TokuDB core TokuDB core

At our DB company Tokutek,* we sold
open-source write-optimized databases.

Since it was sold, we’ve built
an open-source file system.

Indexing vs logging: universal data structures question

Some “write-optimized” data structures can mitigate or
overcome the indexing-logging trade-off.

Disk/SSD

TokuDB core

• SQL processing
• query optimization

TokuDB
SQL database

• noSQL processing

TokuMX
noSQL database

• file and directory
operations

BetrFS
file system

*acquired by Percona

TokuDB core TokuDB core

I’ll talk about my
experiences using the
same data structure to
help all three systems.

At our DB company Tokutek,* we sold
open-source write-optimized databases.

Since it was sold, we’ve built
an open-source file system.

Point of this talk

The performance
landscape is
fundamentally changing.
• New data structures

• New hardware

Point of this talk

The performance
landscape is
fundamentally changing.
• New data structures

• New hardware

This has created tons of
new research
opportunities.
• For algorithmists/theorists

• For systems builders

Point of this talk

The performance
landscape is
fundamentally changing.
• New data structures

• New hardware

This has created tons of
new research
opportunities.
• For algorithmists/theorists

• For systems builders

There’s still lots to do.

An algorithmic view of the
insert-query tradeoff

Performance characteristics of storage

Performance characteristics of storage
Sequential access is fast.

Performance characteristics of storage
Sequential access is fast.
Random access is slower.

How computation works:
• Data is transferred in blocks between RAM and disk.

• The # of block transfers dominates the running time.

Goal: Minimize # of I/Os
• Performance bounds are parameterized by  

block size B, memory size M, data size N.

A model for I/O performance

DiskRAM

B

B

M

[Aggarwal+Vitter ’88]Disk-Access Machine (DAM) model

I/Os are slow

RAM: ~60 nanoseconds per access
Disks: ~6 milliseconds per access.
Analogy:
• RAM � escape velocity from earth (40,250 kph)

• disk � walking speed of the giant tortoise (0.4 kph)

How realistic is the DAM model?

How realistic is the DAM model?

[George Box 1978]

What is reality anyway?

"All models are wrong, but some are useful”

How realistic is the DAM model?

[George Box 1978]

What is reality anyway?

• Unrealistic in various ways.

"All models are wrong, but some are useful”

How realistic is the DAM model?

[George Box 1978]

What is reality anyway?

• Unrealistic in various ways.
• Great for reasoning about I/O

and for high-level design.

"All models are wrong, but some are useful”

How realistic is the DAM model?

[George Box 1978]

What is reality anyway?

• Unrealistic in various ways.
• Great for reasoning about I/O

and for high-level design.
• You can optimize the model

to hone constants.

"All models are wrong, but some are useful”

How computation works:
• Data is transferred in blocks between RAM and disk.

• The # of block transfers dominates the running time.

Goal: Minimize # of I/Os
• Performance bounds are parameterized by  

block size B, memory size M, data size N.

A model for I/O performance

DiskRAM

B

B

M

[Aggarwal+Vitter ’88]Disk-Access Machine (DAM) model

Don’t Thrash: How to Cache Your Hash in Flash

B

I/O cost for logging.

N

What’s the I/O cost for logging?

�17

Don’t Thrash: How to Cache Your Hash in Flash

B

I/O cost for logging.

N

What’s the I/O cost for logging?

�17

Don’t Thrash: How to Cache Your Hash in Flash

B

I/O cost for logging.
• query: scan all blocks ⟹ O(N/B)

N

What’s the I/O cost for logging?

�17

Don’t Thrash: How to Cache Your Hash in Flash

B

I/O cost for logging.
• query: scan all blocks ⟹ O(N/B)
• insert: append to end of log ⟹ O(1/B)

N

What’s the I/O cost for logging?

�17

Don’t Thrash: How to Cache Your Hash in Flash

What’s the I/O cost for indexing?

�18

Queries: O(logBN)
Updates: O(logBN)

The classic structure is the B-tree.

B

Q: What’s the I/O cost for indexing?  
A: It depends on the indexing data structure.  

Don’t Thrash: How to Cache Your Hash in Flash

The classic indexing structure is the B-tree.

What’s the I/O cost for indexing?

�19

O(logBN)

Don’t Thrash: How to Cache Your Hash in Flash

The classic indexing structure is the B-tree.

What’s the I/O cost for indexing?

�19

Queries: O(logBN)
Inserts: O(logBN)

O(logBN)

Don’t Thrash: How to Cache Your Hash in Flash

The classic indexing structure is the B-tree.

What’s the I/O cost for indexing?

�19

Queries: O(logBN)
Inserts: O(logBN)

optimal

O(logBN)

Don’t Thrash: How to Cache Your Hash in Flash

The classic indexing structure is the B-tree.

What’s the I/O cost for indexing?

�19

Queries: O(logBN)
Inserts: O(logBN)

optimal

not optimal!!

O(logBN)

Beating B-tree Bounds

Queries: O(logBN)
Inserts: O(logBN)

optimal

not optimal!!not optimal!!

Beating B-tree Bounds

Queries: O(logBN)
Inserts: O(logBN)

optimal

not optimal!!not optimal!!

Goal:
 Inserts that run faster than a B-tree.
Queries that don’t run slower.

Making a BƐ tree

Start with a regular B-tree

Making a BƐ tree

Reduce the fanout.
• Now the nodes are mostly empty

 [Brodal, Fagerberg 03]

Making a BƐ tree

Put B1/2-sized buffers in each internal node.

 [Brodal, Fagerberg 03]

Inserts and deletes in a BƐ tree
Inserts + deletes:

• Send insert/delete messages down from the root and
store them in buffers.

• When a buffer fills up, flush.

Inserts and deletes in a BƐ tree
Inserts + deletes:

• Send insert/delete messages down from the root and
store them in buffers.

• When a buffer fills up, flush.

Inserts and deletes in a BƐ tree
Inserts + deletes:

• Send insert/delete messages down from the root and
store them in buffers.

• When a buffer fills up, flush.

Inserts and deletes in a BƐ tree
Inserts + deletes:

• Send insert/delete messages down from the root and
store them in buffers.

• When a buffer fills up, flush.

Inserts and deletes in a BƐ tree
Inserts + deletes:

• Send insert/delete messages down from the root and
store them in buffers.

• When a buffer fills up, flush.

Inserts and deletes in a BƐ tree
Inserts + deletes:

• Send insert/delete messages down from the root and
store them in buffers.

• When a buffer fills up, flush.

Inserts and deletes in a BƐ tree
Inserts + deletes:

• Send insert/delete messages down from the root and
store them in buffers.

• When a buffer fills up, flush.

Inserts and deletes in a BƐ tree
Inserts + deletes:

• Send insert/delete messages down from the root and
store them in buffers.

• When a buffer fills up, flush.

Inserts and deletes in a BƐ tree
Inserts + deletes:

• Send insert/delete messages down from the root and
store them in buffers.

• When a buffer fills up, flush.

Inserts and deletes in a BƐ tree
Inserts + deletes:

• Send insert/delete messages down from the root and
store them in buffers.

• When a buffer fills up, flush.

Deletes are tombstone messages.

Difficulty of key searches

Difficulty of key searches

Difficulty of key searches

This is a keynote talk...
so note the keys.

Search analysis in BƐ tree

Searches cost O(logBN)
• Look in all buffers on root-to-leaf path.

Search analysis in BƐ tree

Searches cost O(logBN)
• Look in all buffers on root-to-leaf path.

Insertions analysis in BƐ tree

Inserts cost O((logBN)/√B) per insert/delete.
• Each flush cost 1 I/O and flushes √B elements.

• Flush cost per element is 1/√B.

• There are O(logBN) levels in a tree.

Write-optimization [Brodal, Fagerberg 03]

insert point query

fanout B

O

✓
logB Np

B

◆

O (logB N)

O (logB N)

fanout B1/2

O (logB N)

Write-optimization [Brodal, Fagerberg 03]

insert point query

fanout B

O

✓
logB Np

B

◆

O (logB N)

O (logB N)

fanout B1/2

O (logB N)

Bε-tree insertion speedups

Example:

Bε-Trees B-Trees

I/Os per
insert O(log√B N

√B) O(log
B
N)

Record size: 128 bytes
Node size: 128 KB
B: 1024 records
Speedup:

≈√1024
2

=16

Inserts are one-to-two
orders-of-magnitude

faster than in a
B-tree

Write-optimization [Brodal, Fagerberg 03]

insert point query

fanout B

O

✓
logB Np

B

◆

O (logB N)

O (logB N)

fanout B1/2

O (logB N)

Bε-tree insertion speedups

Example:

Bε-Trees B-Trees

I/Os per
insert O(log√B N

√B) O(log
B
N)

Record size: 128 bytes
Node size: 128 KB
B: 1024 records
Speedup:

≈√1024
2

=16

Inserts are one-to-two
orders-of-magnitude

faster than in a
B-tree

Inserts run 1-2 orders of magnitude
faster than in a B-tree.

Optimal insertion-search
tradeoff curve

[Brodal, Fagerberg 03]

Optimal Search-Insert Tradeoff [Brodal, Fagerberg 03]

Change the fanout from B1/2 to BƐ.
Change the fanout to

from B1/2 to Bε.

Optimal Search-Insert Tradeoff [Brodal, Fagerberg 03]

insert point query

Optimal tradeoff
(function of ɛ=0...1)

B-tree
(ɛ=1)

O

✓
logB Np

B

◆

O (logB N)

O (logB N)

ɛ=1/2

O

✓
logN

B

◆

O (logN)ɛ=0

O
�
log1+B" N

�
O

✓
log1+B" N

B1�"

◆

O (logB N)

10
x-

10
0x

 fa
st

er
 in

se
rts

Change the fanout to
from B1/2 to Bε.

Don’t Thrash: How to Cache Your Hash in Flash

0

2

4

6

8

10

0 0.5 1 1.5 2 2.5 3

Illustration of Optimal Tradeoff [Brodal, Fagerberg 03]

�34

I/O per Insert

I/O
 p

er
 P

oi
nt

 Q
ue

ry

Fast Slow

Sl
ow

Fa
st

B=105, N=1012

B-tree

Optimal
tradeoff

(function of ɛ=0...1)
O
�
log1+B" N

�
O

✓
log1+B" N

B1�"

◆
insert point query

Don’t Thrash: How to Cache Your Hash in Flash

0

2

4

6

8

10

0 0.5 1 1.5 2 2.5 3

Illustration of Optimal Tradeoff [Brodal, Fagerberg 03]

�35

I/O per Insert

I/O
 p

er
 P

oi
nt

 Q
ue

ry

Fast Slow

Sl
ow

Fa
st

Insertions improve by large
factors with almost no loss of

point-query performanceTarget of
opportunity

B-tree

Optimal
tradeoff

(function of ɛ=0...1)
O
�
log1+B" N

�
O

✓
log1+B" N

B1�"

◆
insert point query

B=105, N=1012

Don’t Thrash: How to Cache Your Hash in Flash

Illustration of Optimal Tradeoff [Brodal, Fagerberg 03]

�36

logging

iiBench Insertion Benchmark

 
Write performance on large data

MongoDB MySQL

(up is good)
(up is good)

tooting o
wn horn

Other WODS

Don’t Thrash: How to Cache Your Hash in Flash

Other write-optimized data structures

The most famous write-optimized data structure is the
log structured merge tree

Data structures: [O'Neil,Cheng, Gawlick, O'Neil 96], [Buchsbaum, Goldwasser, Venkatasubramanian, Westbrook 00],
[Argel 03], [Graefe 03], [Brodal, Fagerberg 03], [Bender, Farach,Fineman,Fogel, Kuszmaul, Nelson’07], [Brodal,
Demaine, Fineman, Iacono, Langerman, Munro 10], [Spillane, Shetty, Zadok, Archak, Dixit 11]. [
Systems: BetrFS, BigTable, Cassandra, H-Base, LevelDB, PebblesDB, RocksDB, TokuDB, TableFS, TokuMX.

[O'Neil,Cheng, Gawlick, O'Neil 96]

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Brodal:Gerth_St=oslash=lting.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Demaine:Erik_D=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/i/Iacono:John.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Langerman:Stefan.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Munro:J=_Ian.html

Don’t Thrash: How to Cache Your Hash in Flash

Other write-optimized data structures

The most famous write-optimized data structure is the
log structured merge tree

There are many others (BƐ-tree, buffered repository
tree, COLA, x-dict, write-optimized skip list).

Data structures: [O'Neil,Cheng, Gawlick, O'Neil 96], [Buchsbaum, Goldwasser, Venkatasubramanian, Westbrook 00],
[Argel 03], [Graefe 03], [Brodal, Fagerberg 03], [Bender, Farach,Fineman,Fogel, Kuszmaul, Nelson’07], [Brodal,
Demaine, Fineman, Iacono, Langerman, Munro 10], [Spillane, Shetty, Zadok, Archak, Dixit 11]. [
Systems: BetrFS, BigTable, Cassandra, H-Base, LevelDB, PebblesDB, RocksDB, TokuDB, TableFS, TokuMX.

[O'Neil,Cheng, Gawlick, O'Neil 96]

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Brodal:Gerth_St=oslash=lting.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Demaine:Erik_D=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/i/Iacono:John.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Langerman:Stefan.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Munro:J=_Ian.html

Don’t Thrash: How to Cache Your Hash in Flash

Other write-optimized data structures

The most famous write-optimized data structure is the
log structured merge tree

There are many others (BƐ-tree, buffered repository
tree, COLA, x-dict, write-optimized skip list).

Write optimization is having a large impact on systems.

Data structures: [O'Neil,Cheng, Gawlick, O'Neil 96], [Buchsbaum, Goldwasser, Venkatasubramanian, Westbrook 00],
[Argel 03], [Graefe 03], [Brodal, Fagerberg 03], [Bender, Farach,Fineman,Fogel, Kuszmaul, Nelson’07], [Brodal,
Demaine, Fineman, Iacono, Langerman, Munro 10], [Spillane, Shetty, Zadok, Archak, Dixit 11]. [
Systems: BetrFS, BigTable, Cassandra, H-Base, LevelDB, PebblesDB, RocksDB, TokuDB, TableFS, TokuMX.

[O'Neil,Cheng, Gawlick, O'Neil 96]

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Brodal:Gerth_St=oslash=lting.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Demaine:Erik_D=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/i/Iacono:John.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Langerman:Stefan.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Munro:J=_Ian.html

A write-optimized
dictionary (WOD)
data structure….

A write-optimized
dictionary (WOD)
data structure….

… searches like
a B-tree…

A write-optimized
dictionary (WOD)
data structure….

… searches like
a B-tree…

… but inserts
asymptotically
faster.

A write-optimized
dictionary (WOD)
data structure….

… searches like
a B-tree…

… but inserts
asymptotically
faster.

WODs beat the
tradeoff from the
beginning of the talk.

Write-optimization in
databases

ACID-compliant database built on a BƐ-tree

Disk/SSD

file system

application

database index
(traditionally a B-tree)

• SQL processing
• query optimization

SQ
L

da
ta

ba
se

ACID-compliant database built on a BƐ-tree

Disk/SSD

file system

application

database index
(traditionally a B-tree)

• SQL processing
• query optimization

SQ
L

da
ta

ba
se

ACID-compliant database built on a BƐ-tree

Disk/SSD

file system

application

database index
(traditionally a B-tree)

• SQL processing
• query optimization

SQ
L

da
ta

ba
se

Replace the B-tree
with a Bɛ-tree.

(The Bε-tree must be full-featured and
persistent to power a databases.)

ACID-compliant database built on a BƐ-tree
We built a write-optimized SQL databases at our DB
company Tokutek.

Disk/SSD

file system

application

database index
(traditionally a B-tree)

• SQL processing
• query optimization

SQ
L

da
ta

ba
se

Replace the B-tree
with a Bɛ-tree.

(The Bε-tree must be full-featured and
persistent to power a databases.)

ACID-compliant database built on a BƐ-tree
We built a write-optimized SQL databases at our DB
company Tokutek.

Disk/SSD

file system

application

database index
(traditionally a B-tree)

• SQL processing
• query optimization

SQ
L

da
ta

ba
se

Replace the B-tree
with a Bɛ-tree.

(The Bε-tree must be full-featured and
persistent to power a databases.)

Result: indexing runs 10x-100x
faster than traditional structures.

Write optimization. ✔ What’s missing?

Everything else
• Variable-sized rows

• Concurrency-control mechanisms

• Multithreading

• Transactions, logging, ACID-compliant crash recovery

• Optimizations for the special cases of sequential

inserts and bulk loads

• Compression

• Backup

Write optimization. ✔ What’s missing?

Everything else
• Variable-sized rows

• Concurrency-control mechanisms

• Multithreading

• Transactions, logging, ACID-compliant crash recovery

• Optimizations for the special cases of sequential

inserts and bulk loads

• Compression

• Backup

Yeah, but what
about transactions?

Transactions, logging, ACID-compliant crash recovery

Ingredients
• a regular write-optimized structure

• a log

• periodic checkpoints of the WOD

Yeah, but what
about transactions?

Transactions, logging, ACID-compliant crash recovery

Ingredients
• a regular write-optimized structure

• a log

• periodic checkpoints of the WOD

Yeah, but what
about transactions?

sequential access

Transactions, logging, ACID-compliant crash recovery

Ingredients
• a regular write-optimized structure

• a log

• periodic checkpoints of the WOD

Yeah, but what
about transactions?

sequential access

sequential access…  
… if checkpoints are done right

Transactions, logging, ACID-compliant crash recovery

Ingredients
• a regular write-optimized structure

• a log

• periodic checkpoints of the WOD

Yeah, but what
about transactions?

sequential access

sequential access…  
… if checkpoints are done right

Result: even with crash recovery and
transactional semantics, indexing is 10x-100x
faster than traditional structures.

Point of this talk
WODs change
the performance
landscape.

x

WODs help in
ways that, at first
glance, have
little to do with
fast insertions.

Remember the logging/indexing dilemma?

TokuDB
a company

Remember the logging/indexing dilemma?

TokuDB
a company

With TokuDB you can
index data 10x-100x faster.

Remember the logging/indexing dilemma?

TokuDB
a company

We don’t have an insertion bottleneck.  
We have a query bottleneck.

With TokuDB you can
index data 10x-100x faster.

Remember the logging/indexing dilemma?

TokuDB
a company

We don’t have an insertion bottleneck.  
We have a query bottleneck.

With TokuDB you can
index data 10x-100x faster.

In this case, put a
rich set of database
indexes in your DB

schema.

Remember the logging/indexing dilemma?

TokuDB
a company

We can’t.

We don’t have an insertion bottleneck.  
We have a query bottleneck.

With TokuDB you can
index data 10x-100x faster.

In this case, put a
rich set of database
indexes in your DB

schema.

Remember the logging/indexing dilemma?

TokuDB
a company

We can’t.

Why not?

We don’t have an insertion bottleneck.  
We have a query bottleneck.

With TokuDB you can
index data 10x-100x faster.

In this case, put a
rich set of database
indexes in your DB

schema.

Remember the logging/indexing dilemma?

TokuDB
a company

We can’t.

Why not?
We cannot get our

insertion rate to keep up.

We don’t have an insertion bottleneck.  
We have a query bottleneck.

With TokuDB you can
index data 10x-100x faster.

In this case, put a
rich set of database
indexes in your DB

schema.

Remember the logging/indexing dilemma?

TokuDB
a company

We can’t.

Why not?
We cannot get our

insertion rate to keep up.

Moral: insertion problems often
masquerade as query problems.

We don’t have an insertion bottleneck.  
We have a query bottleneck.

With TokuDB you can
index data 10x-100x faster.

In this case, put a
rich set of database
indexes in your DB

schema.

Remember the logging/indexing dilemma?

TokuDB
a company

We can’t.

Why not?
We cannot get our

insertion rate to keep up.

Moral: insertion problems often
masquerade as query problems.

We can insert data
10x-100x faster.

We don’t have an insertion bottleneck.  
We have a query bottleneck.

With TokuDB you can
index data 10x-100x faster.

In this case, put a
rich set of database
indexes in your DB

schema.

Remember the logging/indexing dilemma?

TokuDB
a company

We can’t.

Why not?
We cannot get our

insertion rate to keep up.

Moral: insertion problems often
masquerade as query problems.

We can insert data
10x-100x faster.

Our inserts are fine. 
Our queries run too slowly.

We don’t have an insertion bottleneck.  
We have a query bottleneck.

With TokuDB you can
index data 10x-100x faster.

In this case, put a
rich set of database
indexes in your DB

schema.

Remember the logging/indexing dilemma?

TokuDB
a company

We can’t.

Why not?
We cannot get our

insertion rate to keep up.

Moral: insertion problems often
masquerade as query problems.

We can insert data
10x-100x faster.

Our inserts are fine. 
Our queries run too slowly.

We don’t have an insertion bottleneck.  
We have a query bottleneck.

With TokuDB you can
index data 10x-100x faster.

In this case, put a
rich set of database
indexes in your DB

schema.

Just use a richer
set of indexes.

Remember the logging/indexing dilemma?

TokuDB
a company

We can’t.

Why not?
We cannot get our

insertion rate to keep up.

Moral: insertion problems often
masquerade as query problems.

We can insert data
10x-100x faster.

Our inserts are fine. 
Our queries run too slowly.

We don’t have an insertion bottleneck.  
We have a query bottleneck.

With TokuDB you can
index data 10x-100x faster.

In this case, put a
rich set of database
indexes in your DB

schema.

Just use a richer
set of indexes.

We wish we could.

The right read optimization is write optimization

The right index makes queries run fast.  
WODS can maintain them.

I/O
 L

oa
d

Fast writing is a currency we use to make
queries faster.

WODs force you to reexamine
your system design…

What the world looks like

Insert/point query asymmetry
• Inserts can be fast:  

50-100K random writes/sec on a disk.

• Point queries are provably slow:  

<200 random reads/sec on a disk.

Reading is hard.

Writing is easier.

O

✓ logB
N

p
B

◆

Systems are often designed assuming reads and
writes have about the same cost.

In fact, writing is easier than reading.  
 
 
 

Systems often assume search cost = insert cost

Ancillary search—a search with each insert.
• Insert with uniqueness check—  

is the key is already present?

• Delete with acknowledgement— 

was a key actually deleted? 
 

Systems often assume search cost = insert cost

Ancillary search—a search with each insert.
• Insert with uniqueness check—  

is the key is already present?

• Delete with acknowledgement— 

was a key actually deleted? 
 

These ancillary searches throttle insertions
down to the performance of B-trees.

Systems often assume search cost = insert cost

Ancillary search—a search with each insert.
• Insert with uniqueness check—  

is the key is already present?

• Delete with acknowledgement— 

was a key actually deleted? 
 

These ancillary searches throttle insertions
down to the performance of B-trees.

In a B-tree, the leaf is already fetched, 
so reading it has no extra cost.

In a WOD, it’s expensive.

How can we get rid of ancillary searches?

Write-optimized systems must get rid of or
mitigate ancillary searches whenever possible.

It’s remarkable that uniqueness
checking is hard, but ACID

compliance is asymptotically easy.

We now live with a different model for
what’s expensive and what’s cheap.

Using WODs in
File Systems

(BetrFS, TokuFS, TableFS are examples of write-optimized
file systems. I’ll talk about BetrFS)

Using WODs in
File Systems

The empirical tradeoff between
writing and querying appears in

file systems.

(BetrFS, TokuFS, TableFS are examples of write-optimized
file systems. I’ll talk about BetrFS)

Logging versus indexing tradeoff in file systems

hom
e

bender
local

2.jpg

videodoc

la
te

x 1.m
p4

a.
te

x b.tex
foo.c

directory tree

 logical order

Logging versus indexing tradeoff in file systems

hom
e

bender
local

2.jpg

videodoc

la
te

x 1.m
p4

a.
te

x b.tex
foo.c

directory tree

How should we organize the files on disk?

 logical order

Logging versus indexing tradeoff in file systems

hom
e

bender
local

2.jpg

videodoc

la
te

x 1.m
p4

a.
te

x b.tex
foo.c

directory tree

How should we organize the files on disk?

 logical order • grep -r “bar” .
• ls -R .

logical order ⟹ sequential scans are fast

Logging versus indexing tradeoff in file systems

hom
e

bender
local

2.jpg

videodoc

la
te

x 1.m
p4

a.
te

x b.tex
foo.c

directory tree

How should we organize the files on disk?

 logical order • grep -r “bar” .
• ls -R .

logical order ⟹ sequential scans are fast

update order ⟹ small writes are fast

Logging versus indexing tradeoff in file systems

hom
e

bender
local

2.jpg

videodoc

la
te

x 1.m
p4

a.
te

x b.tex
foo.c

directory tree

How should we organize the files on disk?

 logical order • grep -r “bar” .
• ls -R .

logical order ⟹ sequential scans are fast

update order ⟹ small writes are fast

Updates are slow.

Scans are slow.

Logging versus indexing tradeoff in file systems

hom
e

bender
local

2.jpg

videodoc

la
te

x 1.m
p4

a.
te

x b.tex
foo.c

directory tree

How should we organize the files on disk?

 logical order • grep -r “bar” .
• ls -R .

logical order ⟹ sequential scans are fast

update order ⟹ small writes are fast

The empirical tradeoff between
writing and querying appears in

file systems.

But we no longer have a B-tree
to replace with a Bε-tree.

Updates are slow.

Scans are slow.

Full-path indexing

hom
e

bender
local

2.jpg

videodoc

la
te

x 1.m
p4

a.
te

x

b.tex
foo.c

directory tree

/home/bender/doc

/home/bender/doc/latex/a.tex

…
…

/home/bender/doc/latex/b.tex

/home/bender/doc/latex/

/home/bender/doc/foo.c
/home/bender/local

…
…
…

Maintain two WODs, each indexed on the path names.

 logical order
/home/bender/doc

/home/bender/doc/latex/a.tex

…
…

/home/bender/doc/latex/b.tex

/home/bender/doc/latex/

/home/bender/doc/foo.c
/home/bender/local

…
…
…

File-system operations → inserts and range queries.

<path, file metadata> <path, file data>

Full-path indexing

hom
e

bender
local

2.jpg

videodoc

la
te

x 1.m
p4

a.
te

x

b.tex
foo.c

directory tree

/home/bender/doc

/home/bender/doc/latex/a.tex

…
…

/home/bender/doc/latex/b.tex

/home/bender/doc/latex/

/home/bender/doc/foo.c
/home/bender/local

…
…
…

Maintain two WODs, each indexed on the path names.

 logical order
/home/bender/doc

/home/bender/doc/latex/a.tex

…
…

/home/bender/doc/latex/b.tex

/home/bender/doc/latex/

/home/bender/doc/foo.c
/home/bender/local

…
…
…

File-system operations → inserts and range queries.

<path, file metadata> <path, file data>

Full-path indexing

hom
e

bender
local

2.jpg

videodoc

la
te

x 1.m
p4

a.
te

x

b.tex
foo.c

directory tree

/home/bender/doc

/home/bender/doc/latex/a.tex

…
…

/home/bender/doc/latex/b.tex

/home/bender/doc/latex/

/home/bender/doc/foo.c
/home/bender/local

…
…
…

Maintain two WODs, each indexed on the path names.

 logical order
/home/bender/doc

/home/bender/doc/latex/a.tex

…
…

/home/bender/doc/latex/b.tex

/home/bender/doc/latex/

/home/bender/doc/foo.c
/home/bender/local

…
…
…

File-system operations → inserts and range queries.

<path, file metadata> <path, file data>

ls -R

Full-path indexing

hom
e

bender
local

2.jpg

videodoc

la
te

x 1.m
p4

a.
te

x

b.tex
foo.c

directory tree

/home/bender/doc

/home/bender/doc/latex/a.tex

…
…

/home/bender/doc/latex/b.tex

/home/bender/doc/latex/

/home/bender/doc/foo.c
/home/bender/local

…
…
…

Maintain two WODs, each indexed on the path names.

 logical order
/home/bender/doc

/home/bender/doc/latex/a.tex

…
…

/home/bender/doc/latex/b.tex

/home/bender/doc/latex/

/home/bender/doc/foo.c
/home/bender/local

…
…
…

File-system operations → inserts and range queries.

<path, file metadata> <path, file data>

grep -rls -R

Full-path indexing

hom
e

bender
local

2.jpg

videodoc

la
te

x 1.m
p4

a.
te

x

b.tex
foo.c

directory tree

/home/bender/doc

/home/bender/doc/latex/a.tex

…
…

/home/bender/doc/latex/b.tex

/home/bender/doc/latex/

/home/bender/doc/foo.c
/home/bender/local

…
…
…

Maintain two WODs, each indexed on the path names.

 logical order
/home/bender/doc

/home/bender/doc/latex/a.tex

…
…

/home/bender/doc/latex/b.tex

/home/bender/doc/latex/

/home/bender/doc/foo.c
/home/bender/local

…
…
…

File-system operations → inserts and range queries.

<path, file metadata> <path, file data>

rm

0

5

10

15

20

Ti
m

e
(s

)

GNU Find

Microwrite and Scan Performance on BetrFs

put graphs.

0.1

1

10

100

*lower is better

Ti
m

e
(s

) BetrFS
btrfs
ext4
xfs
zfs

1000 Random 4−byte writes

1	GiB	file,	random	data	

1,000	random	4-byte	writes	

fsync()	at	end	

0.1

1

10

100

*lower is better

Ti
m

e
(s

) BetrFS
btrfs
ext4
xfs
zfs

1000 Random 4−byte writes

[BetrFS:	Jannen,	Yuan,	Zhan,	Akshintala,	Esmet,	Jiao,	MiEal,	Pandey,	Reddy,	Walsh,	Bender,	Farach-Colton,	Johnson,	Kuszmaul,	Porter,	FAST	15]	

0

5

10

15

20

Ti
m

e
(s

)

GNU Find

Microwrite and Scan Performance on BetrFs

put graphs.

0.1

1

10

100

*lower is better

Ti
m

e
(s

) BetrFS
btrfs
ext4
xfs
zfs

1000 Random 4−byte writes

1	GiB	file,	random	data	

1,000	random	4-byte	writes	

fsync()	at	end	

log scale

0.1

1

10

100

*lower is better

Ti
m

e
(s

) BetrFS
btrfs
ext4
xfs
zfs

1000 Random 4−byte writes

[BetrFS:	Jannen,	Yuan,	Zhan,	Akshintala,	Esmet,	Jiao,	MiEal,	Pandey,	Reddy,	Walsh,	Bender,	Farach-Colton,	Johnson,	Kuszmaul,	Porter,	FAST	15]	

Full-path indexing

hom
e

bender
local

2.jpg

videodoc

la
te

x 1.m
p4

a.
te

x

b.tex
foo.c

directory tree

/home/bender/doc

/home/bender/doc/latex/a.tex

…
…

/home/bender/doc/latex/b.tex

/home/bender/doc/latex/

/home/bender/doc/foo.c
/home/bender/local

…
…
…

Maintain two WODs, each indexed on the path names.

 logical order
/home/bender/doc

/home/bender/doc/latex/a.tex

…
…

/home/bender/doc/latex/b.tex

/home/bender/doc/latex/

/home/bender/doc/foo.c
/home/bender/local

…
…
…

Some file-system operations don’t seem to map cheaply.

<path, file metadata> <path, file data>

Full-path indexing

hom
e

bender
local

2.jpg

videodoc

la
te

x 1.m
p4

a.
te

x

b.tex
foo.c

directory tree

/home/bender/doc

/home/bender/doc/latex/a.tex

…
…

/home/bender/doc/latex/b.tex

/home/bender/doc/latex/

/home/bender/doc/foo.c
/home/bender/local

…
…
…

Maintain two WODs, each indexed on the path names.

 logical order
/home/bender/doc

/home/bender/doc/latex/a.tex

…
…

/home/bender/doc/latex/b.tex

/home/bender/doc/latex/

/home/bender/doc/foo.c
/home/bender/local

…
…
…

Some file-system operations don’t seem to map cheaply.

<path, file metadata> <path, file data>

mv

Full-path indexing

hom
e

bender
local

2.jpg

videodoc

la
te

x 1.m
p4

a.
te

x

b.tex
foo.c

directory tree

/home/bender/doc

/home/bender/doc/latex/a.tex

…
…

/home/bender/doc/latex/b.tex

/home/bender/doc/latex/

/home/bender/doc/foo.c
/home/bender/local

…
…
…

Maintain two WODs, each indexed on the path names.

 logical order
/home/bender/doc

/home/bender/doc/latex/a.tex

…
…

/home/bender/doc/latex/b.tex

/home/bender/doc/latex/

/home/bender/doc/foo.c
/home/bender/local

…
…
…

Some file-system operations don’t seem to map cheaply.

<path, file metadata> <path, file data>

mv These keys change their names.  
They move to a different place in the order.

WODs open questions

Moral: how can we make write-optimized
data structures that support the richer set of
operations needed by the applications?

We need more than just insert and delete.

Other WODs
advantages

Other WODs advantages

BƐ-trees can use bigger nodes  
than B-trees
• Better compression

• Less fragmentation.

BƐ-trees file systems do not  
age the way B-tree based  
file systems do.

write- 

optim
ized

[Conway, Bakshi, Jiao, Zhan, Bender, Jannen,  
Johnson, Kuszmaul, Porter, Yuan, Farach-Colton 17]

Other WODs advantages

BƐ-trees can use bigger nodes  
than B-trees
• Better compression

• Less fragmentation.

BƐ-trees file systems do not  
age the way B-tree based  
file systems do.

write- 

optim
ized

We cannot see this in the DAM model.  
We need a more refined model.

[Conway, Bakshi, Jiao, Zhan, Bender, Jannen,  
Johnson, Kuszmaul, Porter, Yuan, Farach-Colton 17]

Revisit I/O model to harness full power of write-optimization

DAM is realistic enough to  
make powerful predictions.
Some things it doesn’t predict, such as aging.

Revisit I/O model to harness full power of write-optimization

DAM is realistic enough to  
make powerful predictions.
Some things it doesn’t predict, such as aging.
Technology is changing.
• I/O speeds are accelerating faster than CPU.

• Storage technology supports lots of I/Os in parallel.

Revisit I/O model to harness full power of write-optimization

DAM is realistic enough to  
make powerful predictions.
Some things it doesn’t predict, such as aging.
Technology is changing.
• I/O speeds are accelerating faster than CPU.

• Storage technology supports lots of I/Os in parallel.

Need multithreading and lots of parallel I/Os to
drive the device to its capacity.
• Data structures for older storage don’t work so well now.

Summery Slide

Summery Slide

The traditional
search-insert tradeoff
can be improved.

Summery Slide

We should rethink applications and the storage
stack given new write-optimized data structures.

The traditional
search-insert tradeoff
can be improved.

Summery Slide

WODS are accessible.  
They are teachable in
standard curricula.

We should rethink applications and the storage
stack given new write-optimized data structures.

The traditional
search-insert tradeoff
can be improved.

Summery Slide

We should revisit the
performance model.

To get performance now we need
parallelism everywhere.

WODS are accessible.  
They are teachable in
standard curricula.

We should rethink applications and the storage
stack given new write-optimized data structures.

The traditional
search-insert tradeoff
can be improved.

