The Algorithmics of Write Optimization

Michael A. Bender
Stony Brook University



Birds-eye view of data storage

stored data




Birds-eye view of data storage

Storage systems face a trade-off between the speed of
inserts/deletes/updates and the speed of queries.



Parallel )

computing is
about high
performance.

To get high
performance, we
need fast access

Storage systems face a trade-off between the speed of QO ou r data' /

inserts/deletes/updates and the speed of queries.

Birds-eye view of data storage The trad eOﬁ




Birds-eye view of data storage

Storage systems face a trade-off between the speed of
inserts/deletes/updates and the speed of queries.

The tradeoff

Parallel )

computing is
about high
performance.

To get high
performance, we
need fast access

QO our data. /
N

How should we
organize our

\| stored data?
'\ /




The tradeoff Qrﬁ:)atzlt?rl]g i \
hurts. about high
performance.

To get high
performance, we
need fast access

Qo our data. /
N

How should we
organize our

. _Qtored data? /
@ This Is a data-
K| Structural

¥ question.

Birds-eye view of data storage

Storage systems face a trade-off between the speed of
inserts/deletes/updates and the speed of queries.




How should we organize our stored data?




How should we organize our stored data”?

Like a Ilbrarlan’?

I&\‘ . g\_\ﬂ s 4 W e
UL o R it LM i |
N L e u A

iy wm/ 0 el =
‘w m (L am._.lfl
i [ L
v m :_;r\ f/r/m W ai lll 1.,[.,




How should we organize our stored data”?

Like a Ilbrarlan?

i, JI _sx\\ﬂ |tL
“ G Lt H.. |
i ¢ .;i\\t\ | h!:'lll._’ M;;I!l il
QLU

w m ML».!! wu._,lj
L [ L 0 el 5 AN am
vy =Y NNl R

Fast to find stuff.
Requires work to maintain.



How should we organize our stored data”?

Like a Ilbrarlan’? Like a teenager?

m\ oL g\ﬂ s 4 W e
) s R i g LM ¥ |
| .E Q .am ‘L’.L-”-”l ‘:'f IIJ.M

i wﬂz/m 77 QUK
‘w m m it am._.lfl ‘
L [ L
s M :.:.f'-f\ I/ﬂ’ﬁ \\\\ i /li Ul l.,f

Fast to find stuff.
Requires work to maintain.



How should we organize our stored data”?

Like a Ilbrarlan’? Like a teenager?

m\ oL g\ﬂ s 4 W e
) s R i g LM ¥ |
| .E Q .am ‘L’.L-”-”l ‘:'f IIJ.M

i wﬂz/m 77 QUK
‘w m m it am._.lfl ‘
L [ L
s M :.:.f'-f\ I/ﬂ’ﬁ \\\\ i /li Ul l.,f

Fast to find stuff. Fast to add stuff.
Requires work to maintain. Slow to find stuff.



How should we organize our stored data”?

Like a Ilbrarlan’? Like a teenager?

u\‘ . .‘%\\M’ e 4 i
T LM ¥ |
: ! I A e i

i Wﬂzlm 77 QUK
‘w m m it am._.lfl ‘
i [ L

s .M :.:.f'-f\ I/ﬂ’ﬁ \\\\ i /li Ul l.,f
Fast to find stuff. Fast to add stuff.
Requires work to maintain. Slow to find stuff.

“Indexing” “Logging”



How should we organize our stored data?

iIndexing logging

Sort in logical order. Sort in arrival order.

(1,1) (5,2)

(2,0) (8,1)

(4,3) (2,0)

(5,2) (1,1)

(8,1) (4,3)
Find a key: fast. Find a key: slow.

Insert a key: slower. Insert a key: fast.
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Indexing vs logging: universal data structures question

DBs, kv-stores, and file systems are different beasts.

But they grapple with the similar data-structures problems.

SQL database noSQL database file system

* SQL processing * key-value operations * file and directory
* query optimization operations

persistent data persistent data persistent data

structure structure structure

Disk/SSD
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Indexing vs logging: universal data structures question

Some “write-optimized” data structures can mitigate or
overcome the indexing-logging trade-off.

At our DB company Tokutek,* we sold Since it was sold, we’ve built
open-source write-optimized databases. an open-source file system.
TokuDB TokuMX BetrFS
SQL database noSQL database file system

* SQL processing * noSQL processing * file and directory
* query optimization operations

TokuDB core TokuDB core TokuDB core

Disk/SSD

*acquired by Percona



Indexing vs logging: universal data structures question

Some “write-optimized” data structures can mitigate or
overcome the indexing-logging trade-off.

At our DB company Tokutek,* we sold Since it was sold, we’ve built
open-source write-optimized databases. an open-source file system.
TokuDB TokuMX BetrFS
SQL database noSQL database file system

* SQL processing * noSQL processing * file and directory
* query optimization

operations

TokuDB core TokuDB core TokuDB core

I’ll talk about my
experiences using the
same data structure to

help all three systems. Disk/SSD
*acquired by Percona
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Point of this talk

The performance

landscape is This has created tons of
fundamentally changing. new research

- New data structures opportunities.

« New hardware  For algorithmists/theorists

* For systems builders

There’s still lots to do.
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Performance characteristics of storage

Sequential access is fast.

Random access is slower.




A model for I/O performance

How computation works:

 Data is transferred in blocks between RAM and disk.
« The # of block transfers dominates the running time.

Goal: Minimize # of 1/0s

« Performance bounds are parameterized by
block size B, memory size M, data size N.

-<
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Disk-Access Machine (DAM) model [aggarwal+vitter ‘s8]



/Os are slow

RAM: ~60 nanoseconds per access \
Disks: ~6 milliseconds per access. "

Analogy:
« RAM o< escape velocity from earth (40,250 kph)
« disk o< walking speed of the giant tortoise (0.4 kph)
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* Unrealistic in various ways.




How realistic Is the DAM model?

[George Box 1978]




How realistic Is the DAM model?

[George Box 1978]

and for high-level design.
* You can optimize the model

c o= > to hone constants.
What is reality anyway?
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What'’s the |/O cost for logging”

I/0 cost for logging.
e query: scan all blocks = O(N/B)
e insert: append to end of log = O(1/B)




What's the |/O cost for indexing?

Q: What’s the I/0 cost for indexing?
A: It depends on the indexing data structure.
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Goal:
Inserts that run faster than a B-tree.

Queries that don’t run slower.

Beating B-tree Bounds

\ l optimal)

v Queries: O(logsN) s5
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Making a B¢ tree

Start with a regular B-tree
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Making a B¢ tree

Reduce the fanout.
* Now the nodes are mostly empty
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Making a Bt tree

Put B1/2-sjzed buffers in each internal node.
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Inserts and deletes in a Bt tree

Inserts + deletes:

« Send insert/delete messages down from the root and
store them in buffers.

« When a buffer fills up, flush.
—2=0 L
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Inserts + deletes:

« Send insert/delete messages down from the root and
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Inserts and deletes in a Bt tree

Inserts + deletes:

« Send insert/delete messages down from the root and
store them in buffers.

« When a buffer fills up, flush.
—2=0 L

Deletes are tombstone messages—p \rg —Sized l"‘ﬁ("s
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Difficulty of key searches

This is a keynote talk...
so note the keys.




Search analysis in B¢ tree

Searches cost O(logsN)
 Look in all buffers on root-to-leaf path.
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Search analysis in B¢ tree

Searches cost O(logsN)
 Look in all buffers on root-to-leaf path.




Insertions analysis in Bt tree

Inserts cost O((logsN)/,/B) per insert/delete.
 Each flush cost 1 I/0 and flushes /B elements.
* Flush cost per element is 1/B.
* There are O(logsN) levels in a tree.
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insert point query
fanout B O (logg N) O (logg N)
logg N
1/2
fanout B 0, ( iz ) O (logy N)

Example:

Record size: 128 bytes
Node size: 128 KB

B: 1024 records
Speedup: V1024
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insert point query
fanout B O (logg N) O (logg N)
logg N
1/2
fanout B O ( NiE ) O (log, N)
Example: 4 _
Record size: 128 bytes Insertsfrun 1-?1 orc!ers ;f magnitude
Node size: 128 KB | aster than in a B-tree.
B: 1024 records /
Speedup: J1024

=16
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Optimal insertion-search
tradeoff curve
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10x-100x faster inserts

Optimal tradeoff
(function of £=0...1)

B-tree
(e=1)

£=1/2

£=0

insert

O (logg N)

O (logHBs N

Bl—s

)

1. Optlmal SearCh'lnsert TradeOﬂ: [Brodal, Fagerberg 03]
'_? ,* Change the fanout to
' from B1/2 to BE.

point query

O (logy4 5= N)

@ (IOgB N)

O (logg N)

O (log N)



|||UStrat|Oﬂ Of Optlmal TradeOﬁ [Brodal, Fagerberg 03]

/O per Point Query

insert point query

Optimal

©2 tradeoff O ( Bi—c ) O (logy4 5= N)
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35

insert point query

©2 tradeoff O
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Insertions improve by large
factors with almost no loss of

Target of point-query performance

opportunity

B-tree
)""Mooooo O O O *
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B=105, N=1012
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IBench Insertion Benchmark

Write performance on large data

liBench Benchmark (throughput) iiBench - 1 Billion Row Insertion Test
TokuMX vs. MongoDB 45,000
(higher is better)
25000 o 40,000
TokuMX ——
MongoDB —— 35,000
20000 Al R - 30000
5 :
3 25,000 .
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a 2 %mwwmm
£ 10000 W 000 !
&
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Rows Inserted (M)
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Other write-optimized data structures

The most famous write-optimized data structure is the
|Og structured merge tree (oneil.cheng Gawlick, O'Neil 96]

Data structures: [O'Neil,Cheng, Gawlick, O'Neil 96], [Buchsbaum, Goldwasser, Venkatasubramanian, Westbrook 00],
[Argel 03], [Graefe 03], [Brodal, Fagerberg 03], [Bender, Farach,Fineman,Fogel, Kuszmaul, Nelson’07], [Brodal,
Demaine, Fineman, lacono, Langerman, Munro 10], [Spillane, Shetty, Zadok, Archak, Dixit 11]. [

Systems: BetrFS, BigTable, Cassandra, H-Base, LevelDB, PebblesDB, RocksDB, TokuDB, TableFS, TokuMX.
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There are many others (B¢-tree, buffered repository
tree, COLA, x-dict, write-optimized skip list).

Write optimization is having a large impact on systems.

Data structures: [O'Neil,Cheng, Gawlick, O'Neil 96], [Buchsbaum, Goldwasser, Venkatasubramanian, Westbrook 00],
[Argel 03], [Graefe 03], [Brodal, Fagerberg 03], [Bender, Farach,Fineman,Fogel, Kuszmaul, Nelson’07], [Brodal,
Demaine, Fineman, lacono, Langerman, Munro 10], [Spillane, Shetty, Zadok, Archak, Dixit 11]. [

Systems: BetrFS, BigTable, Cassandra, H-Base, LevelDB, PebblesDB, RocksDB, TokuDB, TableFS, TokuMX.
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ACID-compliant database

application

* SQL processing
* query optimization

database index

SQL database

(traditionally a B-tree)

file system

Disk/SSD
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SQL database

ACID-compliant database built on a Bt-tree

application

* SQL processing
* query optimization

database index

Replace the B-tree

with a BE-tree.
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ACID-compliant database built on a Bt-tree

We built a write-optimized SQL databases at our DB
company Tokutek.

application
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SQL database

ACID-compliant database built on a Bt-tree

We built a write-optimized SQL databases at our DB
company Tokutek.

application

Replace the B-tree

* SQL processing with a BE-tree.
* query optimization

: | / (The B&-tree must be full-featured and
database index B lo persistent to power a databases.)
(traditionally a B-tree)-\t;;,,\s; PN R

file system

Result: indexing runs 10x-100x
faster than traditional structures.

R

Disk/SSD




Write optimization. ¢ \What’s missing?

Everything else
* Variable-sized rows
« Concurrency-control mechanisms
* Multithreading
» Transactions, logging, ACID-compliant crash recovery

- Optimizations for the special cases of sequential
Inserts and bulk loads

« Compression
- Backup




Write optimization. ¢ \What’s missing?

Everything else
* Variable-sized rows
« Concurrency-control mechanisms
» Multithreading
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Transactions, logging, ACID-compliant crash recovery
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Ingredients | = e
- a regular write-optimized structure % 3
1 [ |

{ sequential access )
sequential access...
... if checkpoints are done right
- periodic checkpoints of the WOD

Yeah, but what
about transactions? \
Result: even with crash recovery and

transactional semantics, indexing is 10x-100x
faster than traditional structures.




4 )
WODs change

the performance
landscape.
/

— )
WODs help in

ways that, at first
glance, have
little to do with
 |fast insertions.
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In this case, put a
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schema.
i Why not’P
We cannot get our
insertion rate to keep up.
Our inserts are fine.
Our queries run too slowly.

We can insert data
= 10x-100x faster.
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\ok uDB set of indexes.
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Remember the logging/indexing dilemma?

( With TokuDB you can

index data 10x-100x faster We don’t have an insertion bottleneck.
We have a query bottleneck.

In this case, put a

rich set of database /
indexes in your DB
4 We can't. )

schema.
We cannot get our
insertion rate to keep up.

Our inserts are fine.
Our queries run too slowly.
We wish we could.

Moral: insertion problems often
masqguerade as query problems.

We can insert data
10x-100x faster.




The right read optimization is write optimization

100

I
=
60
20
ad a0
o
O~
... VRS, SV SN RPN, SN
~~ week 42 week 44 wWeek week 48 week 50 week 52
2011-10-11 9:35:09 0 2012-01-05 20:31:41
B data cur: 4,94 avg:40.01 max:101.00

The right index makes queries run fast.
WODS can maintain them.

Fast writing is a currency we use to make
queries faster.



WODs force you to reexamine




What the world looks like

P ', Insert/point query asymmetry
= o - Inserts can be fast:
U Y 50-100K random writes/sec on a disk.
L | - Point queries are provably slow:

<200 random reads/sec on a disk.

Systems are often designed assuming reads and
writes have about the same cost.

In fact, writing is easier than reading.



Systems often assume search cost = insert cost

Ancillary search—a search with each insert.

* Insert with uniqueness check—
is the key is already present?

* Delete with acknowledgement—
was a key actually deleted?
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Systems often assume search cost = insert cost

Ancillary search—a search with each insert.

* Insert with uniqueness check—
is the key is already present?

* Delete with aCknOWIedgement ~ [ In a B-tree, the leaf is already fetched,
was a key aCtuaIIy deleted? so reading it has no extra cost.

In a WOD, it’s expensive.
P—
B, 4\ B

L Ny I | . . I l . . |
P tot oot
] e || |

These ancillary searches throttle insertions
down to the performance of B-trees.




How can we get rid of ancillary searches?

Write-optimized systems must get rid of or
mitigate ancillary searches whenever possible.

It’s remarkable that uniqueness
checking is hard, but ACID
compliance is asymptotically easy.

We now live with a different model for
what’s expensive and what’s cheap.
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Logging versus indexing tradeoff in file systems

How should we organize the files on disk?

directory tree

logical order = sequential scans are fast

L e

Update
e grep -r “bar” .
* Is-R.

update order = small writes are fast

EEEENEEET -

Scans @

The empirical tradeoff between
writing and querying appears in
file systems.

But we no longer have a B-tree
to replace with a Be-tree.

™
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Full-path indexing

Maintain two WODs, each indexed on the path names.

<path, file metadata> <path, file data>
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/home/bender/doc/foo.c /home/bender/doc/foo.c

/home/bender/local /home/bender/local

directory tree

File-system operations — inserts and range queries.
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Full-path indexing

Maintain two WODs, each indexed on the path names.

<path, file metadata> <path, file data>
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directory tree

File-system operations — inserts and range queries.



Microwrite and Scan Performance on BetrFs

GNU Find
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1618 file,random data *lower is better
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fsync() atend

[BetrFS: Jannen, Yuan, Zhan, Akshintala, Esmet, Jiao, Mittal, Pandey, Reddy, Walsh, Bender, Farach-Colton, Johnson, Kuszmaul, Porter, FAST 15]
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Full-path indexing

Maintain two WODs, each indexed on the path names.

<path, file metadata> <path, file data>

/home/bender/doc /home/bender/doc
/home/bender/doc/latex/ /home/bender/doc/latex/

/home/bender/doc/latex/a.tex | |/home/bender/doc/latex/a.tex
/home/bender/doc/latex/b.tex¥l/home/bender/doc/latex/b.tex

/home/bender/doc/foo.c \m ender/doc/foo.c
/home/bender/local /ho\me/bender/local

directory tree

Some file-system operations don’t seem|to map cheaply.

These keys change their names.
They move to a different place in the order.




WODs open guestions

Moral: how can we make write-optimized
data structures that support the richer set of
operations needed by the applications?

We need more than just insert and delete.



Other WODs
advantages
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Bé-trees can use bigger nodes
than B-trees

« Better compression

 Less fragmentation.

Bt-trees file systems do not
age the way B-tree based
file systems do.

[Conway, Bakshi, Jiao, Zhan, Bender, Jannen,
Johnson, Kuszmaul, Porter, Yuan, Farach-Colton 17]



Other WODs advantages

Bé-trees can use bigger nodes
than B-trees

« Better compression

 Less fragmentation.

Bt-trees file systems do not
age the way B-tree based
file systems do.

[Conway, Bakshi, Jiao, Zhan, Bender, Jannen,
Johnson, Kuszmaul, Porter, Yuan, Farach-Colton 17]

We cannot see this in the DAM model.
We need a more refined model.
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Revisit I/0O model to harness full power of write-optimization

DAM is realistic enough to
make powerful predictions.

Some things it doesn’t predict, such as aging.

Technology is changing.
- |/O speeds are accelerating faster than CPU.
 Storage technology supports lots of I/Os in parallel.

Need multithreading and lots of parallel I/0s to
drive the device to its capacity.
 Data structures for older storage don’t work so well now.
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Summery Slide

The traditional
search-insert tradeoff
can be improved.

We should rethink applications and the storage
stack given new write-optimized data structures.

- - 7y T ,
%\ - 2l
WODS are accessible. @

They are teachable in
standard curricula. We should revisit the
T performance model.
| . | il To get performance now we need
: ' | parallelism everywhere.
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