|
" fr
I 'y,
1 | L
\ 7 /
\
\
1 ‘
| 1
,
,
\,
,
_

.*,-:O__:__
SN

tmiTechnology

e,
- \\

Something Really New Is Ready.
Are You?

b Janice McMahon jmcmahon@emutechnology.com
Tutorial at IPDPS 2018, Vancouver, May 22, 2018



fMiTechnology

Agenda

> Emerging Applications

> Emu System Architecture

> Application Mapping Example

» Programming and Execution Model

» Emu Hardware Roadmap

» Software Development: Current and Future
» Open Cilk/Cilk Hub

> Detailed Programming

Lo y
i 7



Evolution of Challenges Requires New Approaches to Solutions

EMERGING APPLICATIONS

fMiTechnology



o

Lo y
i 7

fMiTechnology

Big Deal About Big Data

> Big Data refers to large, unstructured datasets
containing huge amounts of disparate information

» Often represented as graphs or sparse matrices

> Many datasets are far too large to fit in a single memory
system

> Applications search out relationships between data
elements scattered throughout the dataset
» Requires accessing data across many (100s or thousands)
of memory systems
» Conventional computers are designed around an
assumption that the vast majority of references are to
local memory

> This is not the case for Big Data, so processing slows to a
crawl

T

=]
o
o, % p 4
4 O



_ o fMiTechnology
Data Intensive Characteristics

» Computation dominated by data access &
movement — not flops

> Large sets of data are often persistent
> but little reuse during computation

> No predictable regularity

> Scaling to 100s of TBs and more

> Streaming often important



o _ (miTechnology
Applications Are Evolving

Benchmark Name | Function Performed Conventional
System Efficiency

LINPACK Solve Ax=b, A is dense >90% of peak
GUPS Random updates ~10% of peak
HPCG: Hi Performance  Ax=Db, A sparse but regular ~2% of peak
Conjugate Gradient
SpMV: Sparse Matrix Ab; A sparse and irregular ~2% of peak
Vector
BFS: Breadth First Search  Find all reachable vertices from ~2% of peak
root
Firehose Find “events” in streams of data ~1% of peak

Emu system is efficient for data intensive applications
Lo > Expect 20-90% of peak

.- '. ;;}_
"‘-f -,
\ T~ ‘““a\" %
= ) \‘\x._ 1
6 ﬂ__u . . E I'I ..__ﬂ 6
N e I T
-tly—r “"{:D

_f
"



Markets and Applications

Threat Intelligence
Graph Analysis
Big Data Analytics
Risk and Fraud Analysis
Signal and Image Processing
Cybersecurity
Semi / Unsupervised Learning
NORA
Real-time Pattern Matching
Real-time Trend Analysis

AT L AR Pl
Koo PN UL (AT
".', _-,'--_ e o
- S 2
B e
feem y M
e . L
egle, i | . 59 b _f
o o R NS A,
Y. b y s R By .
V L T RN PR
- - /N o L) b
e 20 NLAY
. B
i Ly
q' -
, ';&
L

fMiTechnology




fMiTechnology

Built Around The Data

EMU SYSTEM ARCHITECTURE



: : fMiTechnology
Emu Innovation Overview

Designed from the ground up to deal with applications
that exhibit little locality

> Massive Shared Memory for in-Memory Computing
> No I/O bottlenecks

» EMU moves (“Migrates”) the program context to the
locale of the data accessed

> Lower energy — less data moved shorter distances
> Finely Grained Parallelism
> Reduces concurrency limits

» Compute, memory size, memory bandwidth and
software scale simultaneously



. ~ [miTechnology
Challenges of Conventional Designs

Massive amounts of data spread over many memories

Memory 1 Memory 4 000

Large amounts of data
are moved to and from
each memory area to the
program through a very
Program limited network

. (tiny compared to data)

N °




fMiTechnology
How the Emu Computer Works

The program context moves from memory to memory resulting
in 10x+ better usage of the network

Memory 1 Memory 2 Memory 3 Memory 4 000

Each Emu transaction covers unlimited
accesses at each locale
Conventional is “per cache line” accessed

11




. fMiTechnology
Reducing Data Movement

Gossamer cores migrate the program to the data vs. data
to the processing element

> Move registers, thread status word, program counter
> Application code replicated on each nodelet, never moves
> One-way trip
» Reference to non-local address triggers migration
> Largely invisible to programmer

> Latency is completely hidden if sufficient active
threads

;> Writes are transmitted on network without migrating

T
L & o
O (]
NN 2 12



] a

¥
.

o

L e Ny
I &

fMiTechnology

Big Win for Big Data

> Wins big when data access pattern is a series of
often brief “visits” to widely dispersed data

> Improved processor utilization
» Processors never stall for long periods waiting for remote
reads
> Simplified network
» Doesn’t need to support round trip (read / response)
messages

> Atomic operations always done “locally”

> Remote Writes can be performed directly or via
migrations, under programmer (compiler) control.

=

=]
o
o i D 13
L \ 4 G
&8



fMiTechnology

Highly Scalable Modular System

» Fine grain parallelism — scales to millions of cores
> Single code base
» Current design scales to over 2 Million cores

» 100X reduction in interproccessor communications

Partitioned Global Address Space (PGAS) to
Petabytes of memory

» Cacheless system
> Eliminates cache coherency

» High radix RapidlO network provides system-wide
shared memory environment

o
o, o o 14
: |



Nodelet: New unit of parallelism

_____

Memory

Memory-

........

Memory-
Side Processo

N

Memory-

Side Processor

' . . fMiTechnology
Emu Architecture Functional Diagram

All memory in single
global address space

Memory

Memory

Memory

Memory-
Side Processor

Memory-
Side Processor

Side Processor

Memory-

GC(s)

GC(s)

!

Network

g

Smart

Memory

Controllers
that also do atomics

Until they make a non-local reference And they are free to spawn

Threads execute here

And then moved to correct nodelet

independent children

15



fMiTechnology
Node Architecture

g 8 NOdEIetS Stationary Core
» Migration Engine Runs 08, Launches
» 6 RapidlO 2.3 4-lane network

ports

13|9pON
13|3pON
13|9pON

Migration Engine

» Stationary Cores (SCs)
. N/W 1/0
DualCore 64-bit Power E5500 T T

(5]
w

g
> 2GB DRAM (b) Node
> 1 TB SSD Migratir.lg Threa!ds
» PCle Gen 3 el o

» Runs Linux

% el s 16



fMiTechnology
Nodelet Architecture

> 8 GB DDR4 Narrow Channel Memory

> Supports 64-bit accesses Atomics run
. in Memory-Side
» Memory-side Processor (MSP) Processor (MSP)
» Handles atomics and remote writes at the
memory Memory

> Gossamer Cores (GCs) each with FMA FPU [\ wsp

> Nodelet Queue Manager

> Run Queue

> Incoming threads from migrations, spawns, or SC
> Loaded into vacant execution slots by hardware

240D9
9J0)D

2J0)D
9J0)0

(a) Nodelet

» Migration Queue Multi-Threaded
> Threads that need to migrate to non-local data Cores
, » Service Queue
N » Threads that need system services from the SC

o

o

o, " - 17
- . &8



fMiTechnology
Gossamer Core Architecture

> Deeply pipelined, multithreaded core
» Custom, accumulator-based ISA
» Support for 64 active hardware threads
» Thread Context

> Program Counter
> Registers
> Thread status words
» Multithreading hides instruction latency,
including local memory operations



fMiTechnology
Hardware Thread Management

» Thread scheduling in GCs automatically
performed by hardware

> SPAWN instruction
» Creates new thread and places it in Run Queue

> RELEASE instruction
> Places thread in Service Queue for processing by SC

» Non-local memory reference causes a migration

» Thread context packaged by hardware and placed in
Migration Queue

» Migration Engine sends packet to new location and
places in Run Queue

(]
o
o i o 19
' |z SR



fMiTechnology
Emu System Hierarchy

Atomics run
in Memory-Side
Processor (MSP)
Memory
= = =
o o o
Q- oo e Q- oo e Q_
¥ MSP % % %

Migration Engine

ollall dfa N/W /0 | &
o Q Q Q I/F I/F
) = =|| =
Ol ollo Up Links to
(b) Node (c) Inter-Chassis
(a) Nodelet Switch
Multi-Threaded . . .
Cores Migrating Threads Stationary Core
b ) are major traffic Runs OS, Launches
o on Network Jobs
w-.;-'.i.-' -,-\'u‘:hﬂ,-'ﬂ
— g\ N . R
o 0 ;

20



fMiTechnology

Emu Chick Topology

> System consists of 8 nodes connected in a
cube via RapidlO links
» Each node connects to 6 other nodes

» Cube edges and face diagonals are connected, but
not interior diagonals

> All routes are 2 hops or less

» 3D diagonals route through
intermediate node

> All others are 1 hop




fMiTechnology
System Software

» LINUX runs on the Stationary Cores (SCs).
» OS launches main() user program on a Gossamer
Core (GC)

» main() then spawns descendants that execute in parallel
and migrate throughout system as needed

> Runtime executes primarily on the SCs

> Handles service requests from threads running on the GCs
including: memory allocation, 1/O, exception handling, and
performance monitoring

» Threads return to main()upon completion, which
then returns to the OS

.. %, Dﬂ
e % 2 22



fMiTechnology

APPLICATION EXAMPLE: SPARSE

- MATRIX-VECTOR MULTIPLY



fMiTechnology

Sparse Matrix Vector Multiply (SpMV)
> Q = AX

> Distribute vectors X and Q across nodelets in

contiguous blocks

> Distribute matrix A as an array of row pointers to
the nonzero elements in that row on each nodelet



fMiTechnology

Q=AX

... Nodelet3

._.Nodelet2

._..Nodeleto _ _

LN I
b .
I
I
4 A "
i A _
I
32) I
— .
A A 1
A O = N 2|
A e e e e e e e —————————- |
i |
1 .
1~ |
I
o .
i -*I I
I
(o)) o i _
A .
A 1
) :
o0 O «H N ool
e o o — e — o — — — —— — — — —— —— — |
I
™~ y Y _
-H _
__/ _ 1
A .
I
LN 1
A A m
<t O «H N ool
e e e e e e e e m e m . ———————- |
I
o .
I
I
~ . :
A |
I
— I
A A .
I
O «H N ool
................................... -
x O <

-1

_"U_-



fMiTechnology

Migrating SpMV

» Thread computes a row, migrating to follow
linked list

> For row |

» Compute sum += A[i][j] * X[j] forentire
row

» MigratetoQ[1] and add sum
> Repeat for row i+1



fMiTechnology

Q=AX (Migrating threads)

i m
A . I
o0, / I
@ | / T
S I |
mm ™ / ] I
I / *: T3
. h.O 1__ N =k
A e | G ————————— — 4
[ i ! |
T ) o |
. — .
~ / _
L = I “ T !
Ol ] o)) [
N_ s\ —ﬂ_ _ ==m
. - 1 | 14 .
|0 ) Id +| ~] ... 91
o SRl Sl =3
I I [ I
. NN~ - I y'y .
I

! R |

t_ - _ I ;

b R~ — !

e-

21 |o| |1 ! _ !
[ - | A I A ::_
m < 1! o ~ ... o1l
e -
I ¥ I
I « 1! I I I

0_ - | I _

s |4 ) [ :

m_ _ I A A _
1 ﬁ _
_ O «H N !
I | Jg

X Q A I...”n”.
'.
_U!l._......

27

====="* Thread



fMiTechnology

Debugging and Optimization

> If all threads spawned on nodelet O
> Hotspot
> Limited parallelism — threads proceed in lock-step
» Solution: start threads at different nodelets

> If matrix is extremely sparse

» Cost of row headers with no elements can be high

> Solution: Add row index to represent only non-empty
rows

> Migration pattern
» May primarily use channel btwn nodelet i and i+1
> Limits available bandwidth

(]
o
o i o 28
' |z SR



fMiTechnology

SpMV Using Remote Updates

> Thread stays local to a single nodelet

> For row |

» Compute sum += A[i][]j] * X[Jj] forthe
nonzero elements on this nodelet

> Send a remote addtodo Q[1] += sum
> Repeat for row i+1



fMiTechnology

First Row of Matrix Multiply (Q=AX)

o
P+ r—— e+ et e e e e e e e e e e e - I
[ LN 1
™M, / __ A I
P S I N
v, |- I ! ! [
- 1 4 1 1 .
ol 1 1 I |
21 — 1 ~ !
m I S == e 7'y I
I © =H N 9!
bedede e e ST Al
I ﬂ I
m 1T |
~N! o _
LN A T . -
D1 [ ©
O - .
si |2 = 1 S
Nm vy T | © ..m
. 1 . %
1|0 O « N e CIT L £
: L
- e S s 1 E&
1 A |
b~ ] -4 4
I \\...l/ [ - .
. : i . L]
- I \ 1 Iy
4. I \ 1 :
e_ Kl \ I (I |
- .". (P i S
T [Te) s \ A I I
N . Iy — ’ “ ,, h .
_ ! =1 lll’l\\ 1 _
_ < o — N e ﬁ :
k- e e ki L
b : _
I 3 "™ I
. s ~=\ I .
o! ; At ) \ _ !
. 2 .. * — — .

- J K ._3 _ | O-&
1 0 Q —— a 1 @
m . . R “ 11 1 . 3

(O ... R 1! 1 le_g
E= C1 I R 1= \ HEE
=3 e | —.\ 7y S N- y Y :
Nm 1. SSc——— ’ I 44
_ | o N ]! o
R e i P
g o
x O < o
....ﬂ”n_
o o
AR
___.U_ I..—........




o fMiTechnology
Characteristics of Remote Updates

» More uniformly uses network channels

» Remote updates are typically smaller than
migrations, less network traffic

> Fewer threads needed because no migration
delay to mask

» May have multiple updates to Q per row,
rather than the 1 update for migrating threads

31



fMiTechnology

PROGRAMMING AND

- EXECUTION MODEL



. fMiTechnology
Programming Emu

» The Emu architecture is designed to address
large data problems that can be expressed
as highly multithreaded algorithms

» Graph or Sparse Matrix representations
work equally well

> Emu Cilk extends C for asynchronous
parallel threading



fMiTechnology

Emu’s Migratory Thread Model

Massive, fine-grained multithreading where
computation migrates to the data so that
accesses are always local

Key Issues:
» Thread control: spawning and synchronization
» Data distribution and affinity of execution

> Load balance
> Hotspots
> Migration patterns



fMiTechnology
Key Features

» Cilk: Extensions to C to support thread
management
> Cllk_spawn
> Cilk_sync
» cilk_for

> Intrinsics: Allow access to architecture specific
operations such as atomic updates

> Memory allocation library: Specialized
malloc/free for data distributed across
nodelets

35



fMiTechnology

Emu Cilk

Emu hardware dynamically creates and schedules threads
> Normally requires no software intervention

> When a thread completes, it returns values to its
parent and dies

> When a thread blocks, it may voluntarily place itself at
the back of the run queue (instead of “busy waiting”)

> Number of threads limited only by available memory

> Extremely lightweight — Cilk threads can be very small
and still be efficient

o0 =

e A
'I_ w.- . _;".‘I_‘;'a-.ﬂ
—d G . . B i o
(s LSS e, - . '. ;:- 36
g ..'L-|'- — .'"ﬁ.,_. o



_ , [MiTechnology
Cilk Functions

long f = cilk spawn fib(a, b);
> Specifies function may run in parallel with caller

» Child thread spawned to execute function and parent
continues in parallel w/child

» Otherwise parent executes a standard function call

» Spawn location determines location of
» Synchronization structure
» Stack frame (if needed)

» Spawn destination
> First address parameter indicates spawn location
> |If no parameters are pointers, then spawn is local

T

o

o

o, = R 37
- . &8



, , [MiTechnology
Cilk Functions

cilk sync;

» Current function cannot continue past the
cilk_sync until all children have completed

> Last thread to reach the cilk sync
continues execution — no waiting

> Implicit sync at termination of a function



, , [MiTechnology
Cilk Functions

#pragma cilk grainsize = 4
cilk_for(long i=0; 1i<SIZE; i++)
{..}

> Divides loop among parallel threads, each containing
one or more contiguous loop iterations

» Max number of iterations in each chunk is grainsize
> Best for situations where

» Threads are spawned locally
> Work per element is fairly uniform

L]
o
o . 39



Cilk Flbonacu Example

fMiTechnology

#include “memoryweb.h”
#include “cilk._.h”
#define N 10
flong fib(long n) {
if (n < 2)
return n;
long a = cil

long b =

- spawn fib(n-1);
cilk spawn fib(n-2);

Spawn a thread

for each of the
Tib() calls

© 00 N O O b~ W N

cilk_sygc;

=
o

return a + b;

e
N
(-

int main() {

long result =
printf(“fib(%d)

=
w

Fib(N);
= %ild\n”,

H
N

N,

=
6)

Wait for threads to
complete to ensure a
and b are valid

result);

40



fMiTechnology
Balancing Parallelism and Overhead

> Number of threads vs work per thread

» Enough parallelism to keep the cores busy and
mask migrations

» Enough work per thread to offset thread overhead
> Target ~64 threads per core

» Larger systems and/or more migrations may
require more threads to offset those in transit

» Maximum 512 threads per nodelet

41



fMiTechnology

Efficient Spawning

> Distribute spawns across the nodelets then
spawn additional local threads

> Recursively spawn threads in a tree-like
fashion (for large # threads)
> Allows parallel spawning rather than sequential

> Reduces hotspot at a single nodelet if spawning
across multiple nodelets

> Usedincilk for

42



fMiTechnology
Cilk for Spawn Tree Parallelization

cilk_for (i=0; i < E; i++) {c[i] = a[i]+ b[i];};

/ W}n two threads

(i=0; i < E/2; i++); (i=E/2; i < E; i++);
/ \ Each spawns 2 more threa(js/ \
(i=0; i <E/4; i++);  (i=E/4; i < E[2; i++); (i=E[2; i < 3*E/4; i++); (i=3*E/4; i < E; i++);

SN SN SN N

o o, ™ o :._,g " 43



. . fMiTechnology
Spawning Static Thread Teams

> Spawn a “team” of threads at each nodelet

» Each thread has a “home” nodelet

» Threads may stay entirely local

> Threads may migrate away then return for more work
> If work varies greatly, a work queue often

performs better than assigning N elements to
each thread

» Automatically load balances

» Reduces cost of spawn and sync by creating a single
set of threads

» Atomic increment used to grab next unit of work

o
B, N p 44
, P



: : fMiTechnology
Dynamic Spawning

» Traverse a data structure and spawn based on
characteristics of the structure

> Example: BFS
» Spawn a team of threads to process vertices

» Dynamically spawn additional threads to process
edges in parallel based on size of the edge list

»> Number of edges at each vertex is unknown and may
vary greatly

o
LN : 45
, P



.. fMiTechnology
Intrinsics

» Set of compiler recognized functions to access
architecture specific operations
» Atomic Arithmetic Operations
> Remote Arithmetic Operations
» Other Architecture Specific Operations
» Thread Management Functions
> System Queries

L]
o
% P 46



fMiTechnology
Memory

> Single, shared address space (PGAS)

» Capability to define memory Views and place data in
those Views

> Private automatic variables declared normally in Cilk

> Support for replicated data and allocation of
distributed data structures

-. ‘-.- 1 Dﬂ
G ¥ O T 47



, [MiTechnology
Memory Allocation

» Data sections defined on each nodelet
> Replicated — global replicated data
» Stack — local memory allocation

»> Thread frames
»malloc()/free()
»new()/delete()

> Heap — distributed memory allocation
> Specialized mw_*malloc*() functions

48



fMiTechnology
Global Replicated Data Structures

replicated long ¢ = 3927883;

> Instructs compiler to place an instance on each nodelet
» Uses a “View 0” address that always gives local instance
> Must be a global variable

» Example Uses:

» Constants
» Copy on each nodelet
> All initialized to the same unchanging value
> EX: Pl, pointer to shared data structure
» Local data
» Copy on each nodelet
> May have different values
> Use only when it does not matter which instance you access!
> EX: random number table, pointer to local work queue

o " P 49



fMiTechnology
Global Replicated Data Structures

> Replicating key shared data structures can
improve performance
> Pointers to shared distributed data e.g. array

» Copy at each nodelet avoids migrations to get
address

» Compiler generates the address rather than
having to pass the address to each function call
and carry it during migrations

» Can reduce spills at function calls

50



fMiTechnology
Initializing Replicated Data Structures

void mw_replicated_init(long *repl_addr, long value)
> Initializes each instance of replicated data structure to value
void mw_replicated _init multiple (long *repl_addr,
long (*init_func)(long) )
> Initializes each instance of replicated data structure using the
result of the user-defined function init_func(n) where n is
the nodelet number
void mw_replicated _init generic(long *repl_addr,
void (*init_func)(void *, long) )
> Initializes each instance of replicated data structure using the
user-defined function init_func(&obj, n), where objis the

address of the replicated data structure and n is the nodelet
number

o, o E 51



fMiTechnology
Accessing Replicated Data Structures

void * mw_get localto(void *r_ptr, void *dest ptr)

» Returns a pointer to the instance of a replicated data
structure co-located with the destination pointer

void * mw_get nth(void *r_ptr, unsigned n)

» Returns a pointer to the nth instance of a replicated
data structure

% el s 52



, [MiTechnology
Local Memory Allocation

> Allocate from the stack section on the current
nodelet using conventional C/C++ functions

> malloc and free
> new and delete



Co , fMiTechnology
Distributed Memory Allocation

void * mw_localmalloc(size_t eltsize, void *ptr)

> Block of memory located in same locale as another data
structure

void * mw_mallocldlong(unsigned numelements)
> Array of longs striped across nodelets round robin

void * mw_malloc2d(unsigned nelements,
size t eltsize)
> Array of pointers striped across nodelets round robin
"_ﬂ ;> Each points to a block of memory in the same locale

o
o o, a P " 54



o fMiTechnology
Distributed Free

void mw _free(void *allocedpointer)
> Free data allocated by mw_malloc2d

void mw _localfree(void *allocedpointer)
> Free data allocated by mw_localmalloc



fMiTechnology

EMU HARDWARE ROADMAP



fMiTechnology

The Current Chick Hardware

» 8 nodes (64 nodelets)
» 512 GB Shared Memory

o
0
ul »_
g ,3:;: T, g
N e T (NS . CH.
o ¥ N b 57
B I - T
- 9-10



fMiTechnology

Emu Hardware Roadmap

Emu Chick

Emu Rack
* 8192 concurrent threads « >260000 concurrent threads/rack
A z : gﬁ;\;::g:“ozr’“"m“me“t * Server room environment
’i._ ._bﬁu ; * In development
NP Q\%: b 58



Emu Rack

32 to 256 Gossamer-A / S Node Cards per rack
> 32,64, 128, or 256 nodes

> Single system images to 256 racks (64K nodes)

> 64 /128 GB DDR4 DRAM per node
> SRIO Gen 3 Switched Network Fabric (node

links are SRIO Gen 2 for Gossamer-A nodes)

Up to 16 PClexpress slots per Chassis
(128/rack)

Immersion cooled with OptiCool Fluid coolant
> Option for liquid-liquid or liquid-air heat exchanger

fMiTechnology

Y %

u

2

|‘ L.
4
-

al

59



Rack Internals

Rack Internals

Chassis Modules (1-8x)

Coolant Return

Ethernet Switch

Rack Controller

Coolant Pump

Facility
Water Supply/Return

O %
12 o
3.— ,:,.-D. .
= "‘?; s;" '\ s |
\_ ™~ L
—a *g R S -
E'j"" b‘“‘u \\ 2 I'| b

A"

i
|
| 4

4

d/da/e

h S

Y
;;i(
i .

fMiTechnology

SRIO Switch Cards
(both sides)

50Kw Power Supplies
(in rear)

Coolant Reservoir

Liquid-to-Liquid
Heat Exchanger

Coolant Supply

60



fMiTechnology

Chassis Module

Chassis Module

Chassis Controller Backplane (2x)

Nodeboards (16x)

SRIO Switch Cards (2x)

/O Module
(2 front, 2 rear)

Coolant Chamber

Coolant Drain

P Connection Coolant Supply Connection

61



Chassis Module

Service Access

Chassis with
Circuit Boards exposed

Cooling System
» accessible from front

LD 4

fMiTechnology

Chassis slides out
either direction

Switch Cards
Accessible from rear

62



fMiTechnology

SOFTWARE DEVELOPMENT:
- CURRENT AND FUTURE

63



s SN
G RS

o]

, , fMiTechnology
Emu Cilk Toolchain

Gossamer
Assembly

Cilk/C/C++ h I.

LLVM
Source File 'l IR 'I

» Cilk (clang) front-end modified
to support Emu Cilk

> Supports fine-grain asynchronous
task spawning and sync

» Supports thread placement hints

y

Gossamer
Object File
(ELF)

\

» Custom code generator for the Gossamer
Emu GCS Executable
» Custom calling convention and
run- tlme Support Support for C, C++, and

CilkPlus provides familiar

> Custom assembler and linker development environment

“e

(41 \ ' -]

] [t =t .-'-'¢"-1:t 64
» ":.'!- '_..'-":-:'_i-| ]

Ay ~,



fMiTechnology
Custom Code Generator for EMU CilkPlus / |

C++

> Accumulator-based architecture, emphasizing L

small code (smallest instruction is a nibble) GilkPlus Front-end
> Two accumulators and 16 GP registers, all 64-bits | (based on Clang)
> LLVM’s code generator is ok for traditional

LL
architectures, but lacks flexibility to effectively optimi\izﬂtions
accommodate out-of-the-box ideas i

Custom approach for code generation | instruction
> Instruction selection using BURG techniques ‘ selection
> Register allocation via graph coloring
> Trivial scheduling (no VLIW/SIMD/superscalar) | spilling
> Integrated, overcoming traditional phase-order T v

problems || resister
allocation

“«| Good algorithms, combined in new ways, carefully implemented l

EMU
AN Assembly




: fMiTechnology
Emu Compiler Features

» Thread spawn and migration via Cilk

> Manages cactus stack

» Manages limited register set

> Limits register spilling due to migration

> Use of remote write instructions vs.
migrating store

> Thread re-sizing



fMiTechnology

Standard C Library

> Port of musl-libc
> http://www.musl-libc.org/

> Prioritize most frequently used functionality
> No support for pthreads



fMiTechnology

Standard C++ Library

> Port of libcxx: https://libcxx.llvm.org/

> Supports most frequently used functionality:

» Containers — array, deque, forward_list, unordered_set,
vector

» General — algorithm, chrono, iterator, tuple
» Language support — limits, new, typeinfo
» Numerics — valarray, numeri, ratio
> Strings
> Streams
> No support for
» Exception handling (e.g. throw/catch)

» Atomic operations for data types less than 64 bits
> Distributed containers

- > Testing and debugging is ongoing.

™

T

e Ny =

o o °

o o, a p " 68
00



fMiTechnolo
CilkPlus Under Development e

> Latest Clang front-end to support
> C/C++ 11, 14
> CilkPlus Runtime

> Key CilkPlus features

> Reducers: list, min/max, addition, bitwise
AND/OR/XOR, multiplication, ostream, string, vector

> Pedigrees: unigue naming convention for threads

> No support for

> CilkPlus vector operations

> -» Currently being debugged

. o %
I & a
o o, a p " 69
¥ s



fMiTechnology

Toolchain Next Steps

» Complete CilkPlus debugging
» C++ exception handling
» Extend toolchain testing coverage

» Optimize frequently used features such as
cilk_for and reducer implementations

70



: : fMiTechnology
User Libraries

» GNU Multiple Precision Arithmetic (GMP)
Library

> Library for arbitrary precision arithmetic
» Currently support integer GMP for Emu
> Exploring

» Ligra Graph Library for Shared Memory (Cilk)
> http://jshun.github.io/ligra/docs/introduction.html




Collaborations

» STINGER Graph Library

> http://www.stingergraph.com/
» Georgia Tech

> Open MP
> http://www.openmp.org/
» Stony Brook

> GraphBLAS
> http://www.graphblas.org
> SEI/UMBC
» Kokkos C++ Programming EcoSystem
> https://github.com/kokkos
» Georgia Tech/Sandia

e

h

fMiTechnology

72



fMiTechnology
Software Roadmap

2018 2H ‘18 2019+
Cilk Centos 7.3 Open MP Machine Learning Lib
C++ Cilk Plus GraphBLAS Lustre/GPFS

GMP Lib Stinger Graph Lib Python Front End Python Libs on GCs
Cilk/Tapir Parallel Cilk Race Detector
Optimization Cilk Profiler

aYe 2 d
AL

73



fMiTechnology

Open Cilk

I-Ting Angelina Lee
Washington University in St. Louis

Emu Tutorial @ IPDPS
May 22, 2018

74



Open Cilk

I-Ting Angelina Lee
Washington University in St. Louis

Emu Tutorial @ IPDPS
May 22, 2018

fMiTechnology

75



fMiTechnology

What Is Cilk?

» Cilk extends C/C++ with a small set of linguistic
control constructs to support fork-join parallelism.

> Cilk focuses on:

Shared-memory multiprocessing

Client-side multiprogrammed environments
Regular and irregular computations

New applications and legacy codebases
Response-time-sensitive application programming

YV V V V VY V

Predictable and composable performance

o



: [MiTechnology
Features of Cilk

> A processor-oblivious programming model
with simple, effective, and composable
language constructs for expressing parallelism

> A provably and practically efficient work-
stealing scheduler
> A rich suite of productivity tools:
> Cilksan: Determinacy race detector
> Cilkscale: Scalability analyzer
> Cilkprof: Scalability profiler

77



, fMiTechnology
Features of Cilk

> A processor-oblivious programming model
with simple, effective, and composable
language constructs for expressing parallelism

> A provably and practically efficient work-
stealing scheduler

> A rich suite of productivity tools:
> Cilksan: Determinacy race detector
> Cilkscale: Scalability analyzer
> Cilkprof: Scalability profiler

e |

12 o

-'H'_'_ :'. o I_ -_D.
o '%%3' N
=3 _I_'-.n- ﬂ ."-_I \\x\:

s Oy \T_t.*};--—---- ! '-'-"'ff?““ 78
" = 4



fMiTechnology
Nested Parallelism in Cilk

uinté4 t fib(uint64 _t n)

if (n < 2) { The named
return n; functliloln mter\]ytﬁxecute In
} else { paral viththe

uinted4 t X, y;
x = cilk_ spawn fib(n-1);

= fib(n-2); :

Zilk ; r(|: ) Control cannot pass this
—>yne; mmmg Point until all spawned
return (X + y); BENRIENET NSttt

1K keywords grant permission for parallel execution. They
\ C:@i%'@?nd parallel execution (processor oblivious).

o



Loop Parallelism in Cilk

Example: CEE
In-place 3,1 3y
matrix :
transpose
\anl anz

The

iterations of

a cilk_for

- < _loop execute
- ~"dn parallel.

fMiTechnology

. dn1

anz

nn

/\T'

// indices run from 0, not 1
cilk_for (int i=1; i<n; ++1)
for (int j=0; j<i; ++j) {
int temp = A[i][]];

A[1][3] = A[JI[1i];
A[J][1] = temp;
}
}

{




o
L

1 =]

o]

fMiTechnology
Serial Semantics

Cilk source serialization
uint64_t fib(uint64_t n) { uint64_t fib(uint64_t n) {
if (n < 2) { if (n < 2) {
return n; return n;
} else { } else {
uinted4_t x, y; uintéed4_t x, y;
x = cilk_spawn fib(n-1); x = fib(n-1);
y = fib(n-2); y = fib(n-2);
cilk_sync;
return (x + y); return (x + y);
} }
} }

The serialization of a Cilk program is always a legal
interpretation of the program’s semantics.

Remember, Cilk keywords grant permission for parallel
execution. They do not command parallel execution.

#define cilk_for for

s .;aTo obtain the serialization: #tdefine cilk_spawn

G.
5 % &

#define cilk_syncz

O

e



, fMiTechnology
Features of Cilk

> A processor-oblivious programming model
with simple, effective, and composable
language constructs for expressing parallelism

> A provably and practically efficient work-
stealing scheduler

> A rich suite of productivity tools:
> Cilksan: Determinacy race detector

> Cilkscale: Scalability analyzer
> Cilkprof: Scalability profiler

b\\\ 1 o 82

P *‘*%‘5“0*



fMiTechnology

Scheduling in Cilk

uinted_t Fib(uinted_t n)
» The Cilk concurrency jﬁg:?ﬁs{
platform allows the e e b (n);
programmer to express AT U
logical parallelism in an . e ey -

application.

- The Cilk scheduler maps
the executing program
onto the processor cores
dynamically at runtime.

 Cilk’s work-stealing

> - scheduler is provably
f'?f"'-,.-",:Q.--*-?;é’ff_icient. ,

o]

¥

Memory 1/0

Network

s — &

b O
—as D



fMiTechnology
Cilk Performance Bound

Definition. Ty, — execution time on P processors
T, — work T.— span
T,/ T, — parallelism

Theorem [BL94]. A work-stealing scheduler can
achieve expected running time

Te=T,/P+0O(T,)
on P processors.

In Practice. Cilk's scheduler achieves execution time
Te=T,/P+T,

““+ ON.P progessors.

o o o 84



Linear Speedup

Corollary. Cilk scheduler achieves near-perfect linear
speedup whenever T,/T. > P.

Proof. Since T,/T. > P is equivalent to
T.. < T,/P, Cilk's performance bound gives us

Tp <T,/P+T,
= T,/P . (firstterm dominates)

Thus, the speedup is T,/T, =P . =

fMiTechnology

85



, fMiTechnology
Features of Cilk

> A processor-oblivious programming model
with simple, effective, and composable
language constructs for expressing parallelism

> A provably and practically efficient work-
stealing scheduler

> A rich suite of productivity tools:
> Cilksan: Determinacy race detector
> Cilkscale: Scalability analyzer
> Cilkprof: Scalability profiler

e

Lo

[ S %’&.’-ﬂ.

e e e = A \“\\\\ .
0.

6 ] k. i%_ — = |I f:.-’i = 86
by e
¥



: [MiTechnology
Determinacy Race

A determinacy race occurs when two logically parallel instructions

access the same memory location and at least one of the
instructions performs a write.

O

Example

int x = 9;

Qint x = 0; /\
cilk_for(int i=0, i<2, ++1i) {

@@} X++; @ Xt s Nt G
() assert(x == 2); \/
assert(x == 2);
_ D
S computation DAG

. 87
e



: [MiTechnology
Determinacy Race

A determinacy race occurs when two logically parallel instructions

access the same memory location and at least one of the
instructions performs a write.

@D x =0;

Example /\
P Ol rl = x; Q|r2 = x;

Qint x = 0; | |

cilk_for(int i=0, i<2, ++1i) {

@e Xt} 9 rl++; @ r2++;

) | }
() assert(x == 2); O x = r1; Q| x = r2;

X can be either 1 or 2. \/

@ | assert(x == 2);

computation DAG

+. [his race can be fixed by
ocLecIarmg X to be a cilk reducer.

88
‘:;:



[MiTechnology

Cilk Platform

uint64_t fib(uinte4_t n) {
if (n < 2) { return n; }
else {
uinté64_t x, y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return (x + y);

cilk code | 4

Binary J

!
SENGIONO

input

Parallel
Performance




Dev Flow: Serial Testing First

uint64_t fib(uint64_t n) { uint64_t fib(uinté64_t n) {
if (n < 2) { return n; } if (n < 2) { return n; }
else { else {
uint64_t x, y; # uint64_t x, y;
x = cilk_spawn fib(n-1); x = fib(n-1);
y = fib(n-2); y = fib(n-2);
cilk_sync; return (x + y);
return (x + y); } . . .
} ’ } serial elision
y cilk code *

C/C++ Compiler

v

Binary

¥

Serial -
regression @
tests

Reliable single-
threaded code

fMiTechnology

90



fMiTechnology
Alternative Serial Testing

uint64_t fib(uinté64_t n) {
if (n < 2) { return n; }
else {
uint64_t x, y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;

return (x + y);

y' cilkcode

The parallel program executing
on one core should behave
exactly the same as the

Binary J execution of the serial elision.
Serial ——
regression @
fo of tests
i\—.ﬁﬁzﬂ [ Reliable single-

% LANSP2.  threaded code 91



fMiTechnology
Parallel Testing

uint64_t fib(uinté64_t n) {
if (n < 2) { return n; }
else {
uinted_t x, y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return (x + y);

} cilk code y

Binary J

)

Reliable single-
threaded code 92

Parallel
regression




fMiTechnology

Scalability Analysis

uint64_t fib(uinté64_t n) {
if (n < 2) { return n; }
else {
uint64_t x, y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return (x + y);

} cilk code y

Binary J

)

Reliable single-

Parallel
regression

93

threaded code



Open Cilk

I-Ting Angelina Lee
Washington University in St. Louis

Emu Tutorial @ IPDPS
May 22, 2018

fMiTechnology

94



fMiTechnology

Sample Cilk Applications

» Artificial evolution

» Computer chess

» Connectomics

» Cryptographic hashing

» Data compression

» Dense and sparse linear algebra
4

Discrete hedging for quantitative
finance

DNA sequence alignment
Electromagnetism simulation

4

4

» Fast multipole method

» Friction-stir welding simulation
4

~ Graph computations

Dbﬂ [ ]
D.. n

.O_G

» Graphics rendering —
ray-tracing & radiosity

» Image analysis

» Lattice-Boltzmann methods

» Machine learning

» Model checking (Murphi)

» Sorting

» Symbolic computer algebra

» 3D solid modeling

» Video encoding/decoding

» Virus-shell assembly

» Wave and heat equations

> ...

95



fMiTechnology

Cilk Awards

1998 |ICFP Programming Contest — First Prize

2006 SC HPC Challenge Class 2 (Productivity) — First Prize
2008 PLDI Most Influential 1998 PLDI Paper Award

2009 SPAA Best Paper Award

2012 SPAA Best Paper Award

2013 ACM Paris Kanellakis Theory and Practice Award

2017 PPoPP Best Paper Award

The Ligra graph-processing library and other parallel software
described in Julian Shun’s Ph.D. thesis, which won the 2015
> ACM Doctoral Dissertation Award for best Ph.D. thesis in

“scomputer science, were all programmed in Cilk.
QS ‘g

o 'Dn 0 ? 96
5 1 & o
&8



, fMiTechnology
Impact of Cilk on Research

Google Scholar (2017-01-05)

* Cilk runtime system: 2094 citations
« Cilk language: 1326 citations

» Cilk scheduler: 1579 citations

Research papers that meaningfully rely on Cilk have
appeared in the following professional venues:

3PGCIC, ACM-SE, ACTAE, AIMS, ALENEX, ASPLOS,

BIG DATA, CC, CF, CGO, COMPSAC, CSS, DAC, DCC, DFM, DS-
RT, ESA, ESEM, HPCC, HPCS, HPCSA, HIiPC, [-SPAN, ICACT,
ICCSE, ICDE, ICESS, ICPADS, ICPP, ICS, ICTAI, ICWC, IPDPS,
ISCA, ISSAC, JACM, LLVM-HPC, MIPRO, OOPSLA/SPLASH,
PACT, PASCO, PDP, PLDI, POPL, PPoPP, RTSS, SC, SIGCSE,
PSIGMETRICS, SIGOPS, SODA, SPAA, SoftCOM, TOCS, TOPC,
TQFLAS VLDB VL/HCC, VPA, and WOSC.

'u._, N _ \ ra 97



] ] fMiTechnolo
Impact of Cilk on Education .

Cilk has been used in numerous educational courses
across the world, including at the following universities:

Alabama, ANU, Binghamton, CMU, Cornell, Duke, Fudan,
George Washington, Georgetown, Georgia Tech, Harvard,
Indiana, Johannes Kepler, Knox College, Lehigh, Maryland,
Michigan, MIT, NTU, NUS, Oregon, Otago, Oxford,
Princeton, Purdue, Rice, Rochester, Rutgers, Stanford,
Stony Brook, TU Wien, Tel Aviv, Texas, UC Berkeley, UCSB,
UNC, Washington, WUSTL, and Yale, and more.

A CMU study [CSMSA15] of teaching Cilk versus OpenMP
documented that students found Cilk easier to get

< programs correct and their Cilk programs ran faster.
c— % o,

LY \ | o
6 b" .ﬁ'_ = |1 ____--_’f?_ 98



fMiTechnology

A Brief History of Cilk

19942006 Cilk project formed at MIT LCS. Cilk offers simple C-
based multithreaded programming combined with
execution efficiency.

2006—-2009 Cilk Arts, Inc., spun out of MIT CSAIL. Cilk++ provides
support for C++, parallel loops, and reducer
hyperobijects.

2009-2014 Intel Corporation acquires Cilk Arts. Cilk Plus offers
Cilk++ and vector ops in ICC and GCC.

2014-2017 Due to attrition in Intel’s Cilk team, the development of
Cilk Plus at Intel stagnates.

2017 Intel announces it is dropping support for Cilk Plus, and
GCC follows suit.

" 2018 MIT forms Cilk Hub to support and develop a new
N ~. | Open Cilk platform.

0
w

o
-~ s



fMiTechnology

Intel Cilk Plus vs Open Cilk

Language Cilk++ & vector ops
Compiler ICC*, GCC, (LLVM)
Runtime Cilk Plus

Instrumentation | Custom compiler &
generic binary
iInstrumentation

Productivity tools Cilkscreen race
detector*, Cilkview
scalability analyzer*

° g
o

- #.*Clased-source software

Cilk++ = linguistic
enhancements

Based on Tapir/LLVM
Cilk Plus = new

Generic compiler
instrumentation based
on CSI

Cilksan race detector,
Cilkscale scalability
analyzer, Cilkprof
scalability profiler

100



fMiTechnology

Open Cilk R&D

» Compiler front ends and back ends: Generic parallelism
support, e.g., Emu, Julia, OpenMP.
Reducers: Simplified syntax, compiler optimized.

Random-number generation: Faster deterministic parallel
RNG based on pedigrees, n-way independence.

> Pipeline parallelism: Non-fork-join linguistic constructs,
enhancements to race detector, automatic throttling.

> Splitter hyperobjects: Cactus-stack-like semantics of shared
memory, e.g., for Boolean satisfiability.

Attached processors: linguistic integration, runtime.

> Processor affinity: Execution of loop iterations wherever
data is likely to be from prior iterations.

» Parallel 1/0: Append semantics, latency hiding.

.~ Tools: Faster and smarter, e.g., parallelism profiling,
o -+ compressed shadow spaces, better debugging info, etc.

o
ke
=" . o i]f -ﬂ.
<A
P i
o] 0.

vV VYV

Y

i "
] b ué.l' -_g o 101

=x* D



fMiTechnology

Open Cilk Architecture

Compatibility: Open Cilk will provide backward compatibility with Cilk
Plus minus vector ops (i.e., Cilk++).

Open source: The entire Open Cilk platform will be distributed under
liberal open-source licenses.

Componentization: The Open Cilk system will be divided into distinct
software components with well-defined interfaces.

Integration: As individual Open Cilk components are enhanced, they
will continue to interoperate with the entire platform.

Reliability: Open Cilk will feature an extensive suite of unit tests,
regression tests, and benchmarks to ensure that releases are stable,
perform well, and are free of serious bugs.

o, 9 2 102



fMiTechnology

Cilk Hub

Cilk Hub is a new community-driven organization
devoted to maintaining and enhancing Open Cilk.

Executive Director
» Prof. Charles E. Leiserson, MIT

Director, Chief Architect, and Chair of Compiler
Infrastructure

» Dr. Tao B. Schardl, MIT
Director and Chair of Runtime Support
» Prof. I-Ting Angelina Lee, WUSTL

Cilk Hub is operating under the auspices of MIT. We have
- -submitted a CRI proposal to NSF. We wish to explore
"3 ’ s,upport opportunities from other government agencies and
> from mdustrg/ 103



fMiTechnology

Cilk Hub Advisory Board

Umut Acar, CMU

Vikram Adve, UIUC

David Bader, Georgia Tech
Pavan Balaji, ANL

Guy E. Blelloch, CMU

Aydin Bulug, LBNL

David Bunde, Knox College
Andrew Chien, Chicago

Rezaul Chowdhury, Stony Brook
Martin Deneroff, Emu Technologies
Chen Ding, Rochester

Alan Edelman, MIT

Jeremy Fineman, Georgetown
John Gilbert, UCSB

Phillip Gibbons, CMU

Shahin Kamali, Manitoba

Marc Moreno Maza, Western Ontario
John Mellor-Crummey, Rice

David Padua, UIUC

Keshav Pingali, UT, Austin

Nikos Pitsianis, Duke

Jan Prins, UNC

Lawrence Rauchwerger, Texas A&M
Vivek Sarkar, Georgia Tech

Nir Shavit, MIT

Julian Shun, MIT

Guy L. Steele Jr., Oracle Labs
Xiaobai Sun, Duke

Michael Bedford Taylor, Washington
Charles Tolle, SDSMT

104



fMiTechnology

Cilk Hub Mission

website: cilkhub.org

105




: [MiTechnology
Features of Cilk

> A processor-oblivious programming model with
simple, effective, and composable language
constructs for expressing parallelism

> A provably and practically efficient work-
stealing scheduler

> A rich suite of productivity tools:
> Cilksan: Determinacy race detector
> Cilkscale: Scalability analyzer
» Cilkprof: Scalability profiler

] a

.';":gfhegk'é?gtppen Cilk @ Cilk Hub: cilkhub.org .



