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“Archaea Tree”

courtesy of EMSL @ PNNL



Phylogenies and Applications
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“Nothing in biology makes sense except in the light of evolution”
-- Dobhzansky (1973)



The NIH Human Microbiome Project

25,000 human genes,
1,000,000 bacterial genes

Gastro-
intestinal \
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Phylogenomics = Species trees from whole genomes
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Phylogenomic pipeline

Select taxon set and markers
Gather and screen sequence data, possibly identify orthologs
For each gene:
— Compute multiple sequence alignment
— Construct phylogenetic tree
Compute species tree or network:
— Combine the estimated gene trees, OR

— Estimate a tree from a concatenation of the multiple sequence
alignments

Use species tree with branch support and dates to understand biology




But everything is NP-hard!

Select taxon set and markers
Gather and screen sequence data, possibly identify orthologs
For each gene:
— Compute multiple sequence alignment
— Construct phylogenetic tree
Compute species tree or network:
— Combine the estimated gene trees, OR

— Estimate a tree from a concatenation of the multiple sequence
alignments

Use species tree with branch support and dates to understand biology
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Avian Phylogenomics Project 7

Erich Jarvis, MTP Gilbert, Guojie Zhang, Siavash Mirarab, Tandy Warnow,
HHMI Copenhagen BGI Texas Texas and UIUC

DL

* Approx. 50 species, whole genomes

» 14,000 loci

* Multi-national team (100+ investigators)

8 papers published in special issue of Science 2014



Only 48 species, but tree estimation took ~300 CPU years on
multiple supercomputers and used 1Tb of memory

Jarvis, Mirarab, et al., examined 48
bird species using 14,000 loci from
whole genomes. Two trees were
presented.

1. A single dataset maximum
likelihood concatenation analysis
used ~300 CPU years and 1Tb of
distributed memory, using TACC and
other supercomputers around the
world.

2. However, every locus had a
different tree — suggestive of
“incomplete lineage sorting” — and
the noisy genome-scale data required
the development of a new method,
“statistical binning”.
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Whole-genome analyses resolve
early branches in the tree of life
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To better determine the history of modern birds, we performed a genome-scale phylogenetic
analysis of 48 species representing all orders of Neoaves using phylogenomic methods
created to handle genome-scale data. We recovered a highly resolved tree that confirms



The second tree was computed by combining estimated
gene trees, and used only 5 CPU years (serial time), and

was embarrassingly parallel.

Jarvis, Mirarab, et al., examined 48
bird species using 14,000 loci from
whole genomes. Two trees were
presented.

1. A single dataset maximum
likelihood concatenation analysis
used ~300 CPU years and 1Tb of
distributed memory, using TACC and
other supercomputers around the
world.

2. However, every locus had a
different tree — suggestive of
“incomplete lineage sorting” — and
the noisy genome-scale data required
the development of a new method,
“statistical binning”.
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We used 100 CPU
years (mostly on
TACC) to develop
and test this
method.

RESEARCH A LE SUMM

AVIAN GENOMICS

Statistical binning enables an
accurate coalescent-based estimation

of the avian tree

Siavash Mirarab, Md. Shamsuzzoha Bayzid, Bastien Boussau, Tandy Warnow*

INTRODUCTION: Reconstructing species
trees for rapid radiations, as in the early
diversification of birds, is complicated by
biological processes such as incomplete

lineage sorting (ILS)
that can cause differ-
Read the full article €Nt parts of the ge-
at http://dx.doi nome to have different
org/10.1126/ evolutionary histories.
science 1250463 Statistical ~ methods,

based on the multispe-
cies coalescent model and that combine
gene trees, can be highly accurate even
in the presence of massive ILS; however,
these methods can produce species trees
that are topologically far from the species
tree when estimated gene trees have error.
We have developed a statistical binning
technique to address gene tree estimation
error and have explored its use in genome-
scale species tree estimation with MP-EST,
a popular coalescent-based species tree
estimation method.

Statistical binning technique

\j

Sequence data

RATIONALE: In statistical binning, phy-
logenetic trees on different genes are es-
timated and then placed into bins, so that
the differences between trees in the same
bin can be explained by estimation error
(see the figure). A new tree is then esti-
mated for each bin by applying maximum
likelihood to a concatenated alignment of
the multiple sequence alignments of its
genes, and a species tree is estimated us-
ing a coalescent-based species tree method
from these supergene trees.

RESULTS: Under realistic conditions in
our simulation study, statistical binning
reduced the topological error of species
trees estimated using MP-EST and enabled
a coalescent-based analysis that was more
accurate than concatenation even when
gene tree estimation error was relatively
high. Statistical binning also reduced the
error in gene tree topology and species
tree branch length estimation, especially

Traditional pipeline (unbinned)

Gene alignments

when the phylogenetic signal in gene se-
quence alignments was low. Species trees
estimated using MP-EST with statisti-
cal binning on four biological data sets
showed increased concordance with the
biological literature. When MP-EST was
used to analyze 14,446 gene trees in the
avian phylogenomics project, it produced
a species tree that was discordant with the
concatenation analysis and conflicted with
prior literature. However, the statistical
binning analysis produced a tree that was
highly congruent with the concatenation
analysis and was consistent with the prior
scientific literature.

CONCLUSIONS: Statistical binning re-
duces the error in species tree topology
and branch length estimation because
it reduces gene tree estimation error.
These improvements are greatest when
gene trees have reduced bootstrap sup-
port, which was the case for the avian
phylogenomics project. Because using
unbinned gene trees can result in over-
estimation of ILS, statistical binning may
be helpful in providing more accurate
estimations of ILS levels in biological
data sets. Thus, statistical binning enables
highly accurate species tree estimations,
even on genome-scale data sets. m

Thelist of author affiliations is available in the full article online.
or ing author. illinois.edu

Cite this article as S. Mirarab et al., Science 346,1250463

(2014).D0I:10.1126/science.1250463
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1kp: Thousand Transcriptome Project

T. Warnow, S. Mirarab, N. Nguyen,
uiuc UT-Austin UT-Austin

)

G. Ka-ShuWong J. Leebens-Mack  N. Wickett N. Matasci
U Alberta U Georgia Northwestern iPlant

=
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Plus many many other people...

o First study (Wickett, Mirarab, et al., PNAS 2014) had ~100 species and
~800 genes, gene trees and alignments estimated using SATé, and a

coalescent-based species tree estimated using ASTRAL

o Second study: Plant Tree of Life based on transcriptomes of ~1200
species, and more than 13,000 gene families (most not single copy)

Challenges:
Species tree estimation from conflicting gene trees

Gene tree estimation of datasets with > 100,000 sequences




Hard Computational Problems
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NP-hard problems

Large datasets
100,000+ sequences
thousands of genes

“Big data” complexity:
heterogeneity
model misspecification
fragmentary sequences
errors in input data
streaming data



Two dimensions

* Number of genes (or total number of sites)
— Thousands of genes for multi-gene analyses

— Thousands of sites for single genes, millions for multi-
gene analyses

— Some types of analyses can be parallelized

* Number of species
— Many datasets have thousands of species
— The Tree of Life will have millions
— Number of trees on n leaves is (2n-5)!!
— Parallelism is much more complicated



Two dimensions

 Number of genes (or total number of sites)
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— Thousands of sites for single genes, millions for multi-
gene analyses

— Some types of analyses can be parallelized

* Number of species
— Many datasets have thousands of species
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Divide-and-conquer

* Million-sequence multiple sequence alignments

 Genome-scale phylogeny estimation with up to
1,000 species and 1,000 genes

DACTAL (almost alignment-free tree estimation)
DCM-NJ (boosting distance-based methods)

Divide-and-conquer key to the improvements in
scalability and accuracy, and produces
embarrassingly parallel algorithms.



Divide-and-conquer

* Million-sequence multiple sequence alighnments

 Genome-scale phylogeny estimation with up to
1,000 species and 1,000 genes

DACTAL (almost alignment-free tree estimation)
DCM-NJ (boosting distance-based methods)

Divide-and-conquer key to the improvements in
scalability and accuracy, and produces
embarrassingly parallel algorithms.



Today’s Talk

Brief overview of phylogenomic pipeline.

Parallel algorithms in phylogenetics:
— Ultra-large Multiple Sequence Alignment

Themes
Outstanding problems



Phylogenomic Pipeline

Select taxon set and markers
Gather and screen sequence data, possibly identify orthologs
For each gene:
— Compute multiple sequence alignment
— Construct phylogenetic tree
Compute species tree or network:
— Combine the estimated gene trees, OR

— Estimate a tree from a concatenation of the multiple sequence
alignments

Use species tree with branch support and dates to understand biology




DNA Sequence Evolution

AAGACTT -3 mil yrs|

-2 mil yrs|

AAGGCCT TGGACTT

-1 mil yrs|

AGGGCAT TAGCCCT AGCACTT

AGGGCAT TAGCCCA  TAGACTT AGCACAA AGCGCTT today



The Classical Phylogeny Problem

U \4 \u4 X Y

@ @ @ @ @
AGGGCAT TAGCCCA TAGACTT TGCACAA TGCGCTT

: .v/‘x
/\\.Y



However...

U \4 \u4 X Y

@ @ @ @ @
AGGGCATGA  AGAT TAGACTT TGCA TGCGCTT

0 .v/‘x
/\\.Y



Indels (insertions and deletions)

Deletion Mutation
..ACGGTGCAGTTACCA...

\ /
\N !/
Ny

LACCAGTCACCAL.



D?Hlon Subititution

..ACGGTGCAGTTACCA...

/ '”29”‘0” ..ACGGTGCAGTTACC-A..
..ACCAGTCACCTA.. ..AC----CAGTCACCTA..

The true multiple alighment

— Reflects historical substitution, insertion, and deletion
events

— Defined using transitive closure of pairwise alignments
computed on edges of the true tree



S1
S2
S3
S4

Input: unaligned sequences

= AGGCTATCACCTGACCTCCA

TAGCTATCACGACCGC
TAGCTGACCGC

= TCACGACCGACA



Phase 1: Alignment

S1 = AGGCTATCACCTGACCTCCA S1 = -AGGCTATCACCTGACCTCCA
S2 = TAGCTATCACGACCGC S2 = TAG-CTATCAC--GACCGC--
S3 = TAGCTGACCGC S3 = TAG-CT-——-——-———-— GACCGC--

S4 = TCACGACCGACA S4 = ——————— TCAC--GACCGACA



Phase 2: Construct tree

S1 = AGGCTATCACCTGACCTCCA S1 = -AGGCTATCACCTGACCTCCA

S2 = TAGCTATCACGACCGC S2 = TAG-CTATCAC--GACCGC--

S3 = TAGCTGACCGC S3 = TAG-CT-——-——-———-— GACCGC--

S4 = TCACGACCGACA S4 = ——————— TCAC--GACCGACA
S1 S2

N

S4 S3




Phylogenomic pipeline

Select taxon set and markers
Gather and screen sequence data, possibly identify orthologs
For each gene:
— Compute multiple sequence alignment
— Construct phylogenetic tree
Compute species tree or network:
— Combine the estimated gene trees, OR

— Estimate a tree from a concatenation of the multiple sequence
alignments

Use species tree with branch support and dates to understand biology




Phylogenomic pipeline

Select taxon set and markers
Gather and screen sequence data, possibly identify orthologs
For each gene:
— Compute multiple sequence alignment
— Construct phylogenetic tree
Compute species tree or network:
— Combine the estimated gene trees, OR

— Estimate a tree from a concatenation of the multiple sequence
alignments

Use species tree with branch support and dates to understand biology




First Align, then Compute the Tree

S1 = AGGCTATCACCTGACCTCCA S1 = -AGGCTATCACCTGACCTCCA

S2 = TAGCTATCACGACCGC S2 = TAG-CTATCAC--GACCGC--

S3 = TAGCTGACCGC S3 = TAG-CT-——-———-— GACCGC--

S4 = TCACGACCGACA S4 = ——————— TCAC--GACCGACA
S1 S2

S4 S3



Simulation Studies

S1 = AGGCTATCACCTGACCTCCA
S2 = TAGCTATCACGACCGC
S3 = TAGCTGACCGC
S4 = TCACGACCGACA
Unaligned
Sequences
S1 = -AGGCTATCACCTGACCTCCA
S2 = TAG-CTATCAC--GACCGC-H
S3 = TAG-CT-----—-- GACCGC—-
S4 = ————--- TCAC--GACCGACAH
s1, 52 < >

>{ Compare

S4 S3

True tree and
alignment

S1 = -AGGCTATCACCTGACCTCCH
S2 = TAG-CTATCAC--GACCGC--
S3 = TAG-C--T-----GACCGC--
S4 = T---C-A-CGACCGA----CH
sy, S4
s52 53

Estimated tree and
alignment
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Two-phase estimation

Alignment methods Phylogeny methods

e Clustal ]

. POY (and POY*)  Bayesian MCMC

* Probcons (and Probtree) e Maximum parsimony
* Probalign . . .

. MAFFT  Maximum likelihood
* Muscle * Neighbor joining

e Di-align

. T-Coffee * FastME

* Prank (PNAS 2005, Science 2008) e UPGMA

e Opal (ISMB and Bioinf. 2007) ]

«  FSA (PLoS Comp. Bio. 2009) * Quartet puzzling

* Infernal (Bioinf. 2009) e Etc.

 Etc.

RAXML: heuristic for large-scale ML optimization
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Large-scale Alignment Estimation

* Many genes are considered unalignable due
to high rates of evolution

* Only a few methods can analyze large
datasets

e Alignment error increases with rate of
evolution, and results in tree estimation
error



Multiple Sequence Alignment (MSA):
a scientific grand challenge’

S1 = AGGCTATCACCTGACCTCCA S1 = -AGGCTATCACCTGACCTCCA

S2 = TAGCTATCACGACCGC S2 = TAG-CTATCAC--GACCGC--
S3 = TAGCTGACCGC S3 = TAG-CT------- GACCGC--
Sn = TCACGACCGACA Sn = —-—-—-—-—-—-- TCAC--GACCGACA

Novel techniques needed for scalability and accuracy

NP-hard problems and large datasets
Current methods do not provide good accuracy
Few methods can analyze even moderately large datasets

Many important applications besides phylogenetic estimation

" Frontiers in Massive Data Analysis, National Academies Press, 2013



Large-scale Alignment Estimation

* Many genes are considered unalignable due
to high rates of evolution

* Only a few methods can analyze large
datasets

e Alignment error increases with rate of
evolution, and results in tree estimation
error
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1000-taxon models, ordered by difficulty (Liu et al., 2009)



Re-aligning on a tree
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SATé and PASTA Algorithms

Obtain initial alignment and

estimated ML tree
Use tree to compute
Estimate ML tree on new new alignment
alignment

Repeat until termination condition, and

return the alignment/tree pair with the best ML score

SATé-1: Liu et al., Science 2009; SATé-2, Liu et al., Systematic Biology 2012;
PASTA: Mirarab et al., RECOMB 2014 and J. Computational Biology 2014



Missing Branch Rate (%)
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1000-taxon models, rate of evolution generally increases from left to right

SATé-1 is based on MAFFT to align subsets. Results shown are for a 24-hour analysis,
on desktop machines.

Similar improvements seen for biological datasets.

SATé-1 can analyze up to about 8,000 sequences.



SATe-| decomposition (clades)
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SATé-Il: centroid edge decomposition
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SATé-Il makes all subsets small (user parameter), and can
analyze 50K sequences.

(Recall that the SATé-1 decomposition produced clades and
had bigger subsets; limited to 8K sequences.)
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SATé-1: up to 8K
SATé-2: up to ~50K



SATe-Il running time profiling
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SATe-Il running time profiling
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PASTA: SATe-ll with a new
merger technique
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SATé: merger strategy
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Both SATé’s use the same hierarchical merger strategy.
On large (50K) datasets, the last pairwise merger can use
more than 70% of the running time




PASTA merging: Step 1

Compute a spanning tree connecting alighnment subsets



PASTA merging: Step 2

Use Opal (or Muscle) to merge adjacent
subset alighments in the spanning tree



PASTA merging: Step 3

AB + BD = ABD
ABD + CD = ABCD
ABCD + DE = ABCDE

Use transitivity to merge all pairwise-merged alignments
from Step 2 into final an alignment on entire dataset
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PASTA vs. SATé-Il profiling and scaling
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PASTA Running Time and Scalability
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Massive Parallelism in PASTA

 Division step: very fast (not worse than O(n?))
* So 1,000,000-sequence dataset becomes:
— ~5000 subsets of 200 sequences each
— Each analyzed independently
— Can tailor subset analysis to features of the data

 Merging step: very fast and also massively parallel
(independent pairwise mergers, then transitivity)

The only part of PASTA that isn’t well parallelized is the tree
estimation step in each iteration!



PASTA: even better than SATe-2

RNASIim
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PASTA: Mirarab, Nguyen, and Warnow, J Comp. Biol. 2015
— Simulated RNASim datasets from 10K to 200K taxa
— Limited to 24 hours using 12 CPUs
— Not all methods could run (missing bars could not finish)



RNASim Million Sequences: tree error

0.25- Using 12 TACC

0.2 Processors.
g™ « UPP(Fast,NoDecomp)
= 0,101 took 2.2 days,

0.05- o UPP(FaSt) took 11.9

. days, and

 PASTA took 10.3 days
Method [Z]PASTAZJUPP (Fast,No Decomp)[ZJUPP(Fast)

UPP: Nguyen et al. RECOMB 2015 and Genome Biology 2015 (also uses divide-and-conquer
and is highly parallelizable.)



PASTA and SATeé-lI: MSA “boosters”

 PASTA and SATé-Il are techniques for
improving the scalability of MSA methods to

large datasets.

 We showed results here using MAFFT-l-ins-i to
align small subsets with 200 sequences.



Gold Standard:
Statistical co-estimation

Improved accuracy can be obtained through co-
estimation of alignments and trees.

BAli-Phy (Redelings and Suchard, 2005), a Bayesian
method, is the leading co-estimation method.

However, BAli-Phy is limited to small datasets (at most
100 sequences), and even these analyses can take
weeks (due to convergence issues).

We integrated BAli-Phy into PASTA (replacing MAFFT),
with decompositions to at most 100 sequences.



Comparing default PASTA to PASTA+BAli-Phy
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Decomposition to 100-sequence subsets, one iteration of PASTA+BAIli-Phy




SATé and PASTA Algorithms

Obtain initial alignment and

estimated ML tree
Use tree to compute
Estimate ML tree on new new alignment
alignment

Repeat until termination condition, and

return the alignment/tree pair with the best ML score



Major Open Problem

e Scalable maximum likelihood tree estimation

— Input: Multiple sequence alignment (and specified
model)

— Output: Tree and numeric parameters to
maximize probability of the sequences under the
model



Maximum Likelihood Heuristics

Number of species

Number of sites (sequence length)

Maximum Likelihood (NP-hard):
Input is a multiple sequence alignment,
Output is a tree maximizing the probability of generating the input sequences.
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Maximum Likelihood Heuristics

Number of species

Parallelism works
Lots of methods (e.g., ExaML, Stamatakis et al.)

Number of sites (sequence length)

Maximum Likelihood (NP-hard):
Input is a multiple sequence alignment,
Output is a tree maximizing the probability of generating the input sequences.



Maximum Likelihood Heuristics

Fast heuristics
(e.g., FastTree-2,
Price et al.)
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Maximum Likelihood (NP-hard):
Input is a multiple sequence alignment,
Output is a tree maximizing the probability of generating the input sequences.



Maximum Likelihood Heuristics

Fast heuristics
(e.g., FastTree-2,
Price et al.)

Number of species

Parallelism works
Lots of methods (e.g., ExaML, Stamatakis et al.)

Number of sites (sequence length)

Maximum Likelihood (NP-hard):
Input is a multiple sequence alignment,
Output is a tree maximizing the probability of generating the input sequences.



Major Open Problems

e Scalable maximum likelihood tree estimation

— Input: Multiple sequence alignment (and specified
model)

— Output: Tree and numeric parameters to
maximize probability of the sequences under the
model

— Comments: RAXML cannot analyze large numbers
of sequences efficiently; FastTree cannot analyze
long alignments (and has poor parallelism)



Second Major Open Problem

Supertree estimation

Input: Set ‘T of unrooted trees on subsets of S
Output: Tree T that minimizes total distance to trees in ‘T

Comments:

Basic problem in phylogenetics.

Key algorithmic step in divide-and-conquer tree estimation
methods.

The best current methods rely on heuristics for NP-hard
optimization problems, and so cannot scale to large
datasets (for either dimension of large!).
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DACTAL compared to SATé and standard methods
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Observations

* Highly accurate statistical methods (especially
maximum likelihood and Bayesian methods) have been
developed for many problems.
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Observations

Highly accurate statistical methods (especially
maximum likelihood and Bayesian methods) have been
developed for many problems.

However, these methods were typically designed for
small datasets, and either do not run on large datasets,
take too long, or have poor accuracy.

Relative performance of methods can change with
dataset size and heterogeneity!

But appropriate divide-and-conquer strategies can
make them scale to large datasets, and be massively
parallel.



Summary

* Divide-and-conquer in phylogenetics and multiple
sequence alignment is very powerful, and can lead to
improved accuracy and scalability.

 The ingredients of these strategies are:
— Existing tree-based approaches for the decomposition step

— Existing statistical methods for analyzing subsets (often
computationally intensive)
— Combining solutions from subsets is where the research is
needed!
e Distributed computing is necessary for some datasets



The Tree of Life: Multiple Challenges
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* Reticulate evolution
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* Theoretical guarantees under Markov models of evolution

Nature Reviews | Genetics

Techniques: applied probability theory, graph theory, supercomputing, and heuristics

Testing: simulations and real data
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