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Phylogenies and Applications 

Basic	Biology:	
	How	did	life	evolve?	
		

ApplicaEons	of	phylogenies	to:	
	protein	structure	and	funcEon	
	populaEon	geneEcs	
	human	migraEons	
	metagenomics	
		

“Nothing	in	biology	makes	sense	except	in	the	light	of	evoluEon”		
							--	Dobhzansky	(1973)	





 Phylogenomics = Species trees from whole genomes







Phylogenomic	pipeline	

•  Select	taxon	set	and	markers	

•  Gather	and	screen	sequence	data,	possibly	idenEfy	orthologs	

•  For	each	gene:	

–  Compute	mulEple	sequence	alignment	

–  Construct	phylogeneEc	tree	
•  Compute	species	tree	or	network:	

–  Combine	the	esEmated	gene	trees,	OR	

–  EsEmate	a	tree	from	a	concatenaEon	of	the	mulEple	sequence	
alignments		

•  Use	species	tree	with	branch	support	and	dates	to	understand	biology	



But	everything	is	NP-hard!	

•  Select	taxon	set	and	markers	

•  Gather	and	screen	sequence	data,	possibly	idenEfy	orthologs	

•  For	each	gene:	

–  Compute	mulEple	sequence	alignment				

–  Construct	phylogeneEc	tree				
•  Compute	species	tree	or	network:		

–  Combine	the	esEmated	gene	trees,	OR			

–  EsEmate	a	tree	from	a	concatenaEon	of	the	mulEple	sequence	
alignments				

•  Use	species	tree	with	branch	support	and	dates	to	understand	biology	

	



Avian Phylogenomics Project 
Erich Jarvis, 
HHMI 

Guojie Zhang,  
BGI 

•  Approx. 50 species, whole genomes 
•  14,000 loci 
•  Multi-national team (100+ investigators) 
•  8 papers published in special issue of Science 2014 

Biggest computational challenges:  
 1. Multi-million site maximum likelihood analysis (~300 CPU years, 
  and 1Tb of distributed memory, at supercomputers around world) 
 2. Constructing “coalescent-based” species tree from 14,000  
  different gene trees 
  

MTP Gilbert, 
Copenhagen 

Siavash Mirarab,   Tandy Warnow, 
Texas                Texas and UIUC 
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Whole-genome analyses resolve
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of modern birds
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To better determine the history of modern birds, we performed a genome-scale phylogenetic
analysis of 48 species representing all orders of Neoaves using phylogenomic methods
created to handle genome-scale data. We recovered a highly resolved tree that confirms
previously controversial sister or close relationships. We identified the first divergence in
Neoaves, two groups we named Passerea and Columbea, representing independent lineages
of diverse and convergently evolved land and water bird species. Among Passerea, we infer
the common ancestor of core landbirds to have been an apex predator and confirm independent
gains of vocal learning. Among Columbea, we identify pigeons and flamingoes as belonging to
sister clades. Even with whole genomes, some of the earliest branches in Neoaves proved
challenging to resolve, which was best explained by massive protein-coding sequence
convergence and high levels of incomplete lineage sorting that occurred during a rapid
radiation after the Cretaceous-Paleogene mass extinction event about 66 million years ago.

T
he diversification of species is not always
gradual but can occur in rapid radiations,
especially aftermajor environmental changes
(1, 2). Paleobiological (3–7) and molecular (8)
evidence suggests that such “big bang” radia-

tions occurred for neoavian birds (e.g., songbirds,
parrots, pigeons, and others) and placental mam-
mals, representing 95% of extant avian and mam-
malian species, after the Cretaceous to Paleogene
(K-Pg)mass extinction event about 66million years
ago (Ma). However, other nuclear (9–12) and mito-
chondrial (13, 14) DNA studies propose an earlier,
more gradual diversification, beginning within
the Cretaceous 80 to 125 Ma. This debate is con-
founded by findings that different data sets (15–19)
and analytical methods (20, 21) often yield con-

trasting species trees. Resolving such timing and
phylogenetic relationships is important for com-
parative genomics,which can informabout human
traits and diseases (22).
Recent avian studies based on fragments of 5

[~5000 base pairs (bp) (8)] and 19 [31,000 bp (17)]
genes recovered some relationships inferred from
morphological data (15, 23) and DNA-DNA hy-
bridization (24), postulated new relationships,
and contradicted many others. Consistent with
most previous molecular and contemporary mor-
phological studies (15), they divided modern
birds (Neornithes) into Palaeognathae (tinamous
and flightless ratites), Galloanseres [Galliformes
(landfowl) and Anseriformes (waterfowl)], and
Neoaves (all other extant birds). Within Neoaves,
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Jarvis,$Mirarab,$et$al.,$examined$48$

bird$species$using$14,000$loci$from$

whole$genomes.$Two$trees$were$

presented.$

$

1.$A$single$dataset$maximum$

likelihood$concatena,on$analysis$

used$~300$CPU$years$and$1Tb$of$

distributed$memory,$using$TACC$and$

other$supercomputers$around$the$

world.$$

$

2.$However,$every%locus%had%a%
different%%tree$–$sugges,ve$of$
“incomplete$lineage$sor,ng”$–$and$

the$noisy$genomeHscale$data$required$

the$development$of$a$new$method,$

“sta,s,cal$binning”.$

$

$

$

$

Only	48	species,	but	tree	esEmaEon	took	~300	CPU	years	on	
mulEple	supercomputers	and	used	1Tb	of	memory	
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To better determine the history of modern birds, we performed a genome-scale phylogenetic
analysis of 48 species representing all orders of Neoaves using phylogenomic methods
created to handle genome-scale data. We recovered a highly resolved tree that confirms
previously controversial sister or close relationships. We identified the first divergence in
Neoaves, two groups we named Passerea and Columbea, representing independent lineages
of diverse and convergently evolved land and water bird species. Among Passerea, we infer
the common ancestor of core landbirds to have been an apex predator and confirm independent
gains of vocal learning. Among Columbea, we identify pigeons and flamingoes as belonging to
sister clades. Even with whole genomes, some of the earliest branches in Neoaves proved
challenging to resolve, which was best explained by massive protein-coding sequence
convergence and high levels of incomplete lineage sorting that occurred during a rapid
radiation after the Cretaceous-Paleogene mass extinction event about 66 million years ago.

T
he diversification of species is not always
gradual but can occur in rapid radiations,
especially aftermajor environmental changes
(1, 2). Paleobiological (3–7) and molecular (8)
evidence suggests that such “big bang” radia-

tions occurred for neoavian birds (e.g., songbirds,
parrots, pigeons, and others) and placental mam-
mals, representing 95% of extant avian and mam-
malian species, after the Cretaceous to Paleogene
(K-Pg)mass extinction event about 66million years
ago (Ma). However, other nuclear (9–12) and mito-
chondrial (13, 14) DNA studies propose an earlier,
more gradual diversification, beginning within
the Cretaceous 80 to 125 Ma. This debate is con-
founded by findings that different data sets (15–19)
and analytical methods (20, 21) often yield con-

trasting species trees. Resolving such timing and
phylogenetic relationships is important for com-
parative genomics,which can informabout human
traits and diseases (22).
Recent avian studies based on fragments of 5

[~5000 base pairs (bp) (8)] and 19 [31,000 bp (17)]
genes recovered some relationships inferred from
morphological data (15, 23) and DNA-DNA hy-
bridization (24), postulated new relationships,
and contradicted many others. Consistent with
most previous molecular and contemporary mor-
phological studies (15), they divided modern
birds (Neornithes) into Palaeognathae (tinamous
and flightless ratites), Galloanseres [Galliformes
(landfowl) and Anseriformes (waterfowl)], and
Neoaves (all other extant birds). Within Neoaves,
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The	second	tree	was	computed	by	combining	esEmated	
gene	trees,	and	used	only	5	CPU	years	(serial	Eme),	and		
was	embarrassingly	parallel.	
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INTRODUCTION: Reconstructing species 

trees for rapid radiations, as in the early 

diversification of birds, is complicated by 

biological processes such as incomplete 

lineage sorting (ILS) 

that can cause differ-

ent parts of the ge-

nome to have different 

evolutionary histories. 

Statistical methods, 

based on the multispe-

cies coalescent model and that combine 

gene trees, can be highly accurate even 

in the presence of massive ILS; however, 

these methods can produce species trees 

that are topologically far from the species 

tree when estimated gene trees have error. 

We have developed a statistical binning 

technique to address gene tree estimation 

error and have explored its use in genome-

scale species tree estimation with MP-EST, 

a popular coalescent-based species tree 

estimation method.

Statistical binning enables an 

accurate coalescent-based estimation 

of the avian tree

AVIAN GENOMICS

Siavash Mirarab, Md. Shamsuzzoha Bayzid, Bastien Boussau, Tandy Warnow*

RESEARCH ARTICLE SUMMARY

The statistical binning pipeline for estimating species trees from gene trees. Loci are grouped into bins based on a statistical test for 

combinabilty, before estimating gene trees.

Statistical binning technique

Statistical binning pipeline

Traditional pipeline (unbinned)

Sequence data

Incompatibility graph

Gene alignments

Binned supergene alignments

Estimated gene trees

Supergene trees

Species tree

Species tree

 RATIONALE: In statistical binning, phy-

logenetic trees on different genes are es-

timated and then placed into bins, so that 

the differences between trees in the same 

bin can be explained by estimation error 

(see the figure). A new tree is then esti-

mated for each bin by applying maximum 

likelihood to a concatenated alignment of 

the multiple sequence alignments of its 

genes, and a species tree is estimated us-

ing a coalescent-based species tree method 

from these supergene trees.

RESULTS: Under realistic conditions in 

our simulation study, statistical binning 

reduced the topological error of species 

trees estimated using MP-EST and enabled 

a coalescent-based analysis that was more 

accurate than concatenation even when 

gene tree estimation error was relatively 

high. Statistical binning also reduced the 

error in gene tree topology and species 

tree branch length estimation, especially 

when the phylogenetic signal in gene se-

quence alignments was low. Species trees 

estimated using MP-EST with statisti-

cal binning on four biological data sets 

showed increased concordance with the 

biological literature. When MP-EST was 

used to analyze 14,446 gene trees in the 

avian phylogenomics project, it produced 

a species tree that was discordant with the 

concatenation analysis and conflicted with 

prior literature. However, the statistical 

binning analysis produced a tree that was 

highly congruent with the concatenation 

analysis and was consistent with the prior 

scientific literature.

CONCLUSIONS: Statistical binning re-

duces the error in species tree topology 

and branch length estimation because 

it reduces gene tree estimation error. 

These improvements are greatest when 

gene trees have reduced bootstrap sup-

port, which was the case for the avian 

phylogenomics project. Because using 

unbinned gene trees can result in over-

estimation of ILS, statistical binning may 

be helpful in providing more accurate 

estimations of ILS levels in biological 

data sets. Thus, statistical binning enables 

highly accurate species tree estimations, 

even on genome-scale data sets. � 

The list of author affiliations is available in the full article online.
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We$used$100$CPU$$

years$(mostly$on$$

TACC)$to$develop$$

and$test$this$$

method.$



1kp:	Thousand	Transcriptome	Project	

l  First	study	(Wicke?,	Mirarab,	et	al.,	PNAS	2014)	had	~100	species	and	
~800	genes,	gene	trees	and	alignments	esEmated	using	SATé,	and	a	
coalescent-based	species	tree	esEmated	using	ASTRAL	

l  Second	study:	Plant	Tree	of	Life	based	on	transcriptomes	of	~1200	
species,	and	more	than	13,000	gene	families	(most	not	single	copy)	

Gene	Tree	Incongruence	

G. Ka-Shu Wong 
U Alberta 

N. Wickett 
Northwestern 

J. Leebens-Mack 
U Georgia 

N. Matasci 
iPlant 

T. Warnow,        S. Mirarab,                N. Nguyen,            
UIUC                  UT-Austin                 UT-Austin 

Challenges:  
 Species tree estimation from conflicting gene trees 
 Gene tree estimation of datasets with > 100,000 sequences  

Plus many many other people… 

 



Hard Computational Problems 

NP-hard	problems	
	
Large	datasets	

	100,000+	sequences	
	thousands	of	genes	

	
“Big	data”	complexity:	

	heterogeneity	
	model	misspecificaEon	
	fragmentary	sequences	
	errors	in	input	data	
	streaming	data	



Two	dimensions	

•  Number	of	genes	(or	total	number	of	sites)	
–  Thousands	of	genes	for	mulE-gene	analyses	
–  Thousands	of	sites	for	single	genes,	millions	for	mulE-
gene	analyses	

–  Some	types	of	analyses	can	be	parallelized	
•  Number	of	species	

– Many	datasets	have	thousands	of	species	
–  The	Tree	of	Life	will	have	millions	
– Number	of	trees	on	n	leaves	is	(2n-5)!!	
–  Parallelism	is	much	more	complicated	
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Divide-and-conquer	

•  Million-sequence	mulEple	sequence	alignments		
•  Genome-scale	phylogeny	esEmaEon	with	up	to	
1,000	species	and	1,000	genes		

•  DACTAL	(almost	alignment-free	tree	esEmaEon)	
•  DCM-NJ	(boosEng	distance-based	methods)	

Divide-and-conquer	key	to	the	improvements	in	
scalability	and	accuracy,	and	produces	
embarrassingly	parallel	algorithms.	
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embarrassingly	parallel	algorithms.	



Today’s	Talk	

•  Brief	overview	of	phylogenomic	pipeline.	
•  Parallel	algorithms	in	phylogeneEcs:	

– Ultra-large	MulEple	Sequence	Alignment	

•  Themes	
•  Outstanding	problems	



Phylogenomic	Pipeline	

•  Select	taxon	set	and	markers	

•  Gather	and	screen	sequence	data,	possibly	idenEfy	orthologs	

•  For	each	gene:	

–  Compute	mulEple	sequence	alignment				

–  Construct	phylogeneEc	tree				
•  Compute	species	tree	or	network:		

–  Combine	the	esEmated	gene	trees,	OR			

–  EsEmate	a	tree	from	a	concatenaEon	of	the	mulEple	sequence	
alignments				

•  Use	species	tree	with	branch	support	and	dates	to	understand	biology	



DNA Sequence Evolution 

AAGACTT 

TGGACTT AAGGCCT 

-3 mil yrs 

-2 mil yrs 

-1 mil yrs 

today 

AGGGCAT TAGCCCT AGCACTT 

AAGGCCT TGGACTT 

TAGCCCA TAGACTT AGCGCTT AGCACAA AGGGCAT 

AGGGCAT TAGCCCT AGCACTT 

AAGACTT 

TGGACTT AAGGCCT 

AGGGCAT TAGCCCT AGCACTT 

AAGGCCT TGGACTT 

AGCGCTT AGCACAA TAGACTT TAGCCCA AGGGCAT 



The Classical Phylogeny Problem  

TAGCCCA TAGACTT TGCACAA TGCGCTT AGGGCAT 

U V W X Y 

U 

V W 

X 

Y 



AGAT TAGACTT TGCA TGCGCTT AGGGCATGA 

U V W X Y 

U 

V W 

X 

Y 

However… 



…ACGGTGCAGTTACCA… 

Mutation Deletion 

…ACCAGTCACCA… 

Indels (insertions and deletions) 



…ACGGTGCAGTTACC-A… 

…AC----CAGTCACCTA… 

The	true	mul0ple	alignment		
–  Reflects historical substitution, insertion, and deletion 

events 
–  Defined using transitive closure of pairwise alignments 

computed on edges of the true tree 

…ACGGTGCAGTTACCA… 

Substitution 
Deletion 

…ACCAGTCACCTA… 

Insertion 



Input: unaligned sequences 

S1 = AGGCTATCACCTGACCTCCA 
S2 = TAGCTATCACGACCGC 
S3 = TAGCTGACCGC 
S4 = TCACGACCGACA 



Phase 1: Alignment 

S1 = -AGGCTATCACCTGACCTCCA 
S2 = TAG-CTATCAC--GACCGC-- 
S3 = TAG-CT-------GACCGC-- 
S4 = -------TCAC--GACCGACA 

S1 = AGGCTATCACCTGACCTCCA 
S2 = TAGCTATCACGACCGC 
S3 = TAGCTGACCGC 
S4 = TCACGACCGACA 



Phase 2: Construct tree 

S1 = -AGGCTATCACCTGACCTCCA 
S2 = TAG-CTATCAC--GACCGC-- 
S3 = TAG-CT-------GACCGC-- 
S4 = -------TCAC--GACCGACA 

S1 = AGGCTATCACCTGACCTCCA 
S2 = TAGCTATCACGACCGC 
S3 = TAGCTGACCGC 
S4 = TCACGACCGACA 

S1

S4

S2

S3



Phylogenomic	pipeline	

•  Select	taxon	set	and	markers	

•  Gather	and	screen	sequence	data,	possibly	idenEfy	orthologs	

•  For	each	gene:	

–  Compute	mulEple	sequence	alignment	

–  Construct	phylogeneEc	tree	
•  Compute	species	tree	or	network:	

–  Combine	the	esEmated	gene	trees,	OR	

–  EsEmate	a	tree	from	a	concatenaEon	of	the	mulEple	sequence	
alignments		

•  Use	species	tree	with	branch	support	and	dates	to	understand	biology	
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First Align, then Compute the Tree 

S1 = -AGGCTATCACCTGACCTCCA 
S2 = TAG-CTATCAC--GACCGC-- 
S3 = TAG-CT-------GACCGC-- 
S4 = -------TCAC--GACCGACA 

S1 = AGGCTATCACCTGACCTCCA 
S2 = TAGCTATCACGACCGC 
S3 = TAGCTGACCGC 
S4 = TCACGACCGACA 

S1

S4

S2

S3



Simulation Studies 

S1 S2 

S3 S4 

S1 = -AGGCTATCACCTGACCTCCA 
S2 = TAG-CTATCAC--GACCGC-- 
S3 = TAG-CT-------GACCGC-- 
S4 = -------TCAC--GACCGACA 

S1 = AGGCTATCACCTGACCTCCA 
S2 = TAGCTATCACGACCGC 
S3 = TAGCTGACCGC 
S4 = TCACGACCGACA 

S1 = -AGGCTATCACCTGACCTCCA 
S2 = TAG-CTATCAC--GACCGC-- 
S3 = TAG-C--T-----GACCGC-- 
S4 = T---C-A-CGACCGA----CA 

Compare


True tree and 
alignment


S1 S4 

S3 S2 

Estimated tree and 
alignment


Unaligned 
Sequences




Quantifying Error 

FN: false negative 
      (missing edge) 
FP: false positive 
      (incorrect edge) 
 
50% error rate 

FN 

FP 



Two-phase	esEmaEon	
Alignment	methods	
•  Clustal	
•  POY	(and	POY*)	
•  Probcons	(and	Probtree)	
•  Probalign	
•  MAFFT	
•  Muscle	
•  Di-align	
•  T-Coffee		
•  Prank	(PNAS	2005,	Science	2008)	
•  Opal	(ISMB	and	Bioinf.	2007)	
•  FSA	(PLoS	Comp.	Bio.	2009)	
•  Infernal	(Bioinf.	2009)	
•  Etc.	

Phylogeny	methods	
•  Bayesian	MCMC		
•  Maximum	parsimony		
•  Maximum	likelihood		
•  Neighbor	joining	
•  FastME	
•  UPGMA	
•  Quartet	puzzling	
•  Etc.	

RAxML:	heuris(c	for	large-scale	ML	op(miza(on	



1000-taxon	models,	ordered	by	difficulty	(Liu	et	al.,	2009)	



Large-scale Alignment Estimation 

•  Many	genes	are	considered	unalignable	due	
to	high	rates	of	evoluEon		

•  Only	a	few	methods	can	analyze	large	
datasets	

•  Alignment	error	increases	with	rate	of	
evoluEon,	and	results	in	tree	esEmaEon	
error	



Multiple Sequence Alignment (MSA):  
a scientific grand challenge1 

S1 = -AGGCTATCACCTGACCTCCA 
S2 = TAG-CTATCAC--GACCGC-- 
S3 = TAG-CT-------GACCGC-- 
… 
Sn = -------TCAC--GACCGACA 

S1 = AGGCTATCACCTGACCTCCA 
S2 = TAGCTATCACGACCGC 
S3 = TAGCTGACCGC 
  … 
Sn = TCACGACCGACA 

Novel techniques needed for scalability and accuracy 
        NP-hard problems and large datasets 
          Current methods do not provide good accuracy 
          Few methods can analyze even moderately large datasets  
  
Many important applications besides phylogenetic estimation  

1 Frontiers in Massive Data Analysis, National Academies Press, 2013 



Large-scale Alignment Estimation 

•  Many	genes	are	considered	unalignable	due	
to	high	rates	of	evoluEon		

•  Only	a	few	methods	can	analyze	large	
datasets	

•  Alignment	error	increases	with	rate	of	
evoluEon,	and	results	in	tree	esEmaEon	
error	



1000-taxon	models,	ordered	by	difficulty	(Liu	et	al.,	2009)	



Re-aligning on a tree 
A


B
 D


C


Merge 

sub-alignments


Estimate ML 
tree on merged 

alignment


Decompose 
dataset


A B

C D

Align subsets


A B

C D

ABCD



SATé	and	PASTA	Algorithms	

Estimate ML tree on new 
alignment

Tree

Obtain initial alignment and 
estimated ML tree

Use tree to compute 
new alignment

Alignment

Repeat	unEl	terminaEon	condiEon,	and	

return	the	alignment/tree	pair	with	the	best	ML	score	

SATé-1:	Liu	et	al.,	Science	2009;	SATé-2,	Liu	et	al.,	SystemaEc	Biology	2012;		
PASTA:	Mirarab	et	al.,			RECOMB	2014	and	J.	ComputaEonal	Biology	2014	



1000-taxon	models,	rate	of	evoluEon	generally	increases	from	ler	to	right	

SATé-1	is	based	on	MAFFT	to	align	subsets.	Results	shown	are	for	a	24-hour	analysis,	
on	desktop	machines.		

Similar	improvements	seen	for	biological	datasets.	

SATé-1	can	analyze	up	to	about	8,000	sequences.	

SATé-1	(Science	2009)	performance	



SATé-I decomposition (clades) 
A


B
 D


C


Merge 

sub-alignments


Estimate ML 
tree on merged 

alignment


Decompose 
dataset


A B

C D

Align subsets


A B

C D

ABCD



SATé-II:	centroid	edge	decomposiEon	

A

B

C

D

E

ABCDE	

ABC	

AB	

A	 B	

C	

DE	

D	 E	

SATé-II	makes	all	subsets	small	(user	parameter),	and	can	
analyze	50K	sequences.	

	
(Recall	that	the	SATé-I	decomposiEon	produced	clades	and	

had	bigger	subsets;		limited	to	8K	sequences.)		
	



1000-taxon	models	ranked	by	difficulty	

SATé-1	and	SATé-2	(Systema0c	Biology,	2012)	

SATé-1:	up	to	8K	
SATé-2:	up	to	~50K	
		



SATé-II running time profiling 
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SATé-II running time profiling 
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PASTA: SATé-II with a new 
merger technique 

A


B
 D


C


Merge 

sub-alignments


Estimate ML 
tree on merged 

alignment


Decompose 
dataset


A B

C D

Align subsets


A B

C D

ABCD



SATé:	merger	strategy	

A

B

C

D

E

ABCDE	

ABC	

AB	

A	 B	

C	

DE	

D	 E	

Both	SATé’s	use	the	same	hierarchical	merger	strategy.	
On	large	(50K)	datasets,	the	last	pairwise	merger	can	use	

more	than	70%	of	the	running	Eme	
	



A

B

C

D

E

PASTA	merging:	Step	1	

D	

C	

E	B	
A	

Compute	a	spanning	tree	connecEng	alignment	subsets	



A

B

C

D

E

PASTA	merging:	Step	2	

D	

C	

E	B	
A	

AB	

BD	

CD	

DE	

AB	
BD	

CD	

DE	

Use	Opal	(or	Muscle)	to	merge	adjacent	
subset	alignments	in	the	spanning	tree	



PASTA	merging:	Step	3	

D	

C	

E	B	
A	

Use	transiEvity	to	merge	all	pairwise-merged	alignments	
from	Step	2	into	final	an	alignment	on	enEre	dataset	

AB	+	BD	=	ABD					
ABD	+	CD	=	ABCD	
ABCD	+	DE	=	ABCDE	
	

AB	
BD	

CD	

DE	



SATé-II running time profiling 
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PASTA	vs.	SATé-II	profiling	and	scaling	
10 PASTA: ultra-large multiple sequence alignment
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Fig. 5. Running time comparison of PASTA and SATé. (a) Running time pro-
filing on one iteration for RNASim datasets with 10K and 50K sequences (the dotted
region indicates the last pairwise merge). (b) Running time for one iteration of PASTA
with 12 CPUs as a function of the number of sequences (the solid line is fitted to first
two points). (c) Scalability for PASTA and SATé with increased number of CPUs.

reason SATé uses so much time is that all mergers are done hierarchically using
either Opal (for small datasets) or Muscle (on larger datasets), and both are
computationally expensive with increased number of sequences. For example,
the last pairwise merge within SATé, shown by the dotted area in Figure 5a,
is entirely serial and takes up a large chunk of the total time. PASTA solves
this problem by using transitivity for all but the initial pairwise mergers, and
therefore scales well with increased dataset size, as shown in Figure 5b (the
sub-linear scaling is due to a better use of parallelism with increased number of
sequences). Finally, Figure 5c shows that PASTA is highly parallelizable, and
has a much better speed-up with increasing number of threads than SATé does.
While PASTA has a much improved parallelization, it does not quite scale up
linearly, because FastTree-2 does not scale up well with increased thread count.

Divide-and-Conquer strategy: impact of guide tree. We also investigated the
impact of the use of the guide tree for computing the subset decomposition,
and hence defining the Type 1 sub-alignments. We compared results obtained
using three di↵erent decompositions: the decomposition computed by PASTA
on the HMM-based starting tree, the decomposition computed by PASTA on
the true (model) tree, and a random decomposition into subsets of size 200,
all on the RNASim 10k dataset. PASTA alignments and trees had roughly the
same accuracy when the guide tree was either the true tree or the HMM-based
starting tree (Table 3). However, when based on a random decomposition, tree
error increased dramatically from 10.5% to 52.3%, and alignment scores also
dropped substantially. Thus, the guide-tree based dataset decomposition used
by PASTA provides substantial improvements over random decompositions, and
the default technique for getting the starting tree works quite well.
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PASTA Running Time and Scalability 

10 PASTA: ultra-large multiple sequence alignment
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Fig. 5. Running time comparison of PASTA and SATé. (a) Running time pro-
filing on one iteration for RNASim datasets with 10K and 50K sequences (the dotted
region indicates the last pairwise merge). (b) Running time for one iteration of PASTA
with 12 CPUs as a function of the number of sequences (the solid line is fitted to first
two points). (c) Scalability for PASTA and SATé with increased number of CPUs.

reason SATé uses so much time is that all mergers are done hierarchically using
either Opal (for small datasets) or Muscle (on larger datasets), and both are
computationally expensive with increased number of sequences. For example,
the last pairwise merge within SATé, shown by the dotted area in Figure 5a,
is entirely serial and takes up a large chunk of the total time. PASTA solves
this problem by using transitivity for all but the initial pairwise mergers, and
therefore scales well with increased dataset size, as shown in Figure 5b (the
sub-linear scaling is due to a better use of parallelism with increased number of
sequences). Finally, Figure 5c shows that PASTA is highly parallelizable, and
has a much better speed-up with increasing number of threads than SATé does.
While PASTA has a much improved parallelization, it does not quite scale up
linearly, because FastTree-2 does not scale up well with increased thread count.

Divide-and-Conquer strategy: impact of guide tree. We also investigated the
impact of the use of the guide tree for computing the subset decomposition,
and hence defining the Type 1 sub-alignments. We compared results obtained
using three di↵erent decompositions: the decomposition computed by PASTA
on the HMM-based starting tree, the decomposition computed by PASTA on
the true (model) tree, and a random decomposition into subsets of size 200,
all on the RNASim 10k dataset. PASTA alignments and trees had roughly the
same accuracy when the guide tree was either the true tree or the HMM-based
starting tree (Table 3). However, when based on a random decomposition, tree
error increased dramatically from 10.5% to 52.3%, and alignment scores also
dropped substantially. Thus, the guide-tree based dataset decomposition used
by PASTA provides substantial improvements over random decompositions, and
the default technique for getting the starting tree works quite well.

•  One iteration 

•  Using  
•  12 cpus 
•  1 node on Lonestar TACC 
•  Maximum 24 GB memory 

•  Showing wall clock running time  
•  ~ 1 hour for 10k taxa 
•  ~ 17 hours for 200k taxa 



Massive	Parallelism	in	PASTA	
•  Division	step:	very	fast	(not	worse	than	O(n2))	
•  So	1,000,000-sequence	dataset	becomes:	

–  ~5000	subsets	of	200	sequences	each	
–  Each	analyzed	independently	
–  Can	tailor	subset	analysis	to	features	of	the	data	

•  Merging	step:	very	fast	and	also	massively	parallel	
(independent	pairwise	mergers,	then	transiEvity)	

	
The	only	part	of	PASTA	that	isn’t	well	parallelized	is	the	tree	
esEmaEon	step	in	each	iteraEon!	
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PASTA:	Mirarab,	Nguyen,	and	Warnow,	J	Comp.	Biol.	2015	
–  Simulated	RNASim	datasets	from	10K	to	200K	taxa	
–  Limited	to	24	hours	using	12	CPUs	
–  Not	all	methods	could	run	(missing	bars	could	not	finish)	

	

PASTA:	even	be?er	than	SATé-2	



RNASim	Million	Sequences:	tree	error		

Using 12 TACC 
processors: 
 
•  UPP(Fast,NoDecomp) 

took 2.2 days, 

•  UPP(Fast) took 11.9 
days, and  

•  PASTA took 10.3 days 

 

UPP:		Nguyen	et	al.	RECOMB	2015	and	Genome	Biology	2015	(also	uses	divide-and-conquer	
and	is	highly	parallelizable.)	



PASTA	and	SATé-II:	MSA	“boosters”	

•  PASTA	and	SATé-II	are	techniques	for	
improving	the	scalability	of	MSA	methods	to	
large	datasets.		

•  We	showed	results	here	using	MAFFT-l-ins-i	to	
align	small	subsets	with	200	sequences.	



Gold	Standard:		
StaEsEcal	co-esEmaEon	

•  Improved	accuracy	can	be	obtained	through	co-
esEmaEon	of	alignments	and	trees.	

•  BAli-Phy	(Redelings	and	Suchard,	2005),	a	Bayesian	
method,	is	the	leading	co-esEmaEon	method.		

•  However,	BAli-Phy	is	limited	to	small	datasets	(at	most	
100	sequences),	and	even	these	analyses	can	take	
weeks	(due	to	convergence	issues).	

•  We	integrated	BAli-Phy	into	PASTA	(replacing	MAFFT),	
with	decomposiEons	to	at	most	100	sequences.	



DecomposiEon	to	100-sequence	subsets,	one	iteraEon	of	PASTA+BAli-Phy	

Comparing	default	PASTA	to	PASTA+BAli-Phy	
on	simulated	datasets	with	1000	sequences	
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SATé	and	PASTA	Algorithms	

Estimate ML tree on new 
alignment

Tree

Obtain initial alignment and 
estimated ML tree

Use tree to compute 
new alignment

Alignment

Repeat	unEl	terminaEon	condiEon,	and	

return	the	alignment/tree	pair	with	the	best	ML	score	



Major	Open	Problem	

•  Scalable	maximum	likelihood	tree	esEmaEon	
–  Input:	MulEple	sequence	alignment	(and	specified	
model)	

– Output:	Tree	and	numeric	parameters	to	
maximize	probability	of	the	sequences	under	the	
model	
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Maximum	Likelihood	HeurisEcs	

Maximum	Likelihood	(NP-hard):		
Input	is	a	mulEple	sequence	alignment,	
Output	is	a	tree	maximizing	the	probability	of	generaEng	the	input	sequences.		
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Lots	of	methods	
Parallelism	works	
(e.g.,	ExaML,	Stamatakis	et	al.)	
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Maximum	Likelihood	(NP-hard):		
Input	is	a	mulEple	sequence	alignment,	
Output	is	a	tree	maximizing	the	probability	of	generaEng	the	input	sequences.		
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Lots	of	methods	
Parallelism	works	
(e.g.,	ExaML,	Stamatakis	et	al.)	

Fast	heurisEcs	
(e.g.,	FastTree-2,	
Price	et	al.)	
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Maximum	Likelihood	(NP-hard):		
Input	is	a	mulEple	sequence	alignment,	
Output	is	a	tree	maximizing	the	probability	of	generaEng	the	input	sequences.		
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?	
Maximum	Likelihood	(NP-hard):		

Input	is	a	mulEple	sequence	alignment,	
Output	is	a	tree	maximizing	the	probability	of	generaEng	the	input	sequences.		



Major	Open	Problems	

•  Scalable	maximum	likelihood	tree	esEmaEon	
–  Input:	MulEple	sequence	alignment	(and	specified	
model)	

– Output:	Tree	and	numeric	parameters	to	
maximize	probability	of	the	sequences	under	the	
model	

– Comments:	RAxML	cannot	analyze	large	numbers	
of	sequences	efficiently;	FastTree	cannot	analyze	
long	alignments	(and	has	poor	parallelism)	



Second	Major	Open	Problem	
Supertree	esEmaEon	
•  Input:	Set	T	of	unrooted	trees	on	subsets	of	S	
•  Output:	Tree	T	that	minimizes	total	distance	to	trees	in	T
	
Comments:		
•  Basic	problem	in	phylogeneEcs.	
•  Key	algorithmic	step	in	divide-and-conquer	tree	esEmaEon	

methods.		
•  The	best	current	methods	rely	on	heurisEcs	for	NP-hard	

opEmizaEon	problems,	and	so	cannot	scale	to	large	
datasets	(for	either	dimension	of	large!).	



DACTAL		

Supertree 
Estimation


Compute trees on 
each subset


Decompose


BLAST-
based
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A tree for each 
subset


Unaligned 
Sequences


A tree for the 
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DACTAL	compared	to	SATé	and	standard	methods		

16S.T	dataset	
7350	sequences	
from	the	CRW		
(ComparaEve	Ribosomal	
Database)	



ObservaEons	
•  Highly	accurate	staEsEcal	methods	(especially	
maximum	likelihood	and	Bayesian	methods)	have	been	
developed	for	many	problems.		

•  However,	these	methods	were	typically	designed	for	
small	datasets,	and	either	do	not	run	on	large	datasets,	
take	too	long,	or	have	poor	accuracy.	

•  RelaEve	performance	of	methods	can	change	with	
dataset	size	and	heterogeneity!	

•  But	appropriate	divide-and-conquer	strategies	can	
make	them	scale	to	large	datasets,	and	be	massively	
parallel.	
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•  Highly	accurate	staEsEcal	methods	(especially	
maximum	likelihood	and	Bayesian	methods)	have	been	
developed	for	many	problems.		

•  However,	these	methods	were	typically	designed	for	
small	datasets,	and	either	do	not	run	on	large	datasets,	
take	too	long,	or	have	poor	accuracy.	

•  RelaEve	performance	of	methods	can	change	with	
dataset	size	and	heterogeneity!	

•  But	appropriate	divide-and-conquer	strategies	can	
make	them	scale	to	large	datasets,	and	be	massively	
parallel.	



Summary	

•  Divide-and-conquer	in	phylogeneEcs	and	mulEple	
sequence	alignment	is	very	powerful,	and	can	lead	to	
improved	accuracy	and	scalability.	

•  The	ingredients	of	these	strategies	are:	
–  ExisEng	tree-based	approaches	for	the	decomposiEon	step		
–  ExisEng	staEsEcal	methods	for	analyzing	subsets	(oren	
computaEonally	intensive)	

–  Combining	soluEons	from	subsets	is	where	the	research	is	
needed!		

•  Distributed	compuEng	is	necessary	for	some	datasets	



Scientific challenges: 
 
•  Ultra-large multiple-sequence alignment 
•  Gene tree estimation 
•  Metagenomic classification 
•  Alignment-free phylogeny estimation 
•  Supertree estimation 
•  Estimating species trees from many gene trees 
•  Genome rearrangement phylogeny 
•  Reticulate evolution 
•  Visualization of large trees and alignments 
•  Data mining techniques to explore multiple optima 
•  Theoretical guarantees under Markov models of evolution 

 
Techniques: applied probability theory, graph theory, supercomputing, and heuristics 
 
Testing: simulations and real data 

The Tree of Life: Multiple Challenges 



Acknowledgments	

PASTA:	Nam	Nguyen	(now	postdoc	at	UIUC)	and	Siavash	Mirarab	(now	faculty	at	UCSD),	undergrad:	
Keerthana	Kumar	(at	UT-AusEn)	
PASTA+BAli-Phy:	Mike	Nute	(PhD	student	at	UIUC)	
DACTAL:	Serita	Nelesen	(now	professor	at	Calvin	College)	
	
Current	NSF	grants:	ABI-1458652	(mulEple	sequence	alignment)	
Grainger	Founda0on	(at	UIUC),	and	UIUC	
TACC,	UTCS,	Blue	Waters,	and	UIUC	campus	cluster	
	
PASTA	is	available	on	github	at	h?ps://github.com/smirarab/pasta;	see	also		
PASTA+BAli-Phy	at	h?p://github.com/MGNute/pasta			
	
	
	


