Scalability-Centric System Design for Large Scale Computing

Prof. Yutong Lu
School of computer science, NUDT &
State Key Laboratory of High Performance Computing
ythu@nudt.edu.cn
Overview

National university of defense technology

~2,000 Teachers
~15,000 Students
... Others
Overview

Supercomputers in NUDT, Changsha, China

- YH-1 1st Chinese Supercomputer (1983)
- YH-2 1st Chinese GFlos System (1992)
- YH-X 1st Chinese TFlos System
- TH-1 1st Chinese PFlos System
- TH-1A 2.6PF Top1
- TH-2 33.86PF Top1

NSCC-Tianjin, 2010
NSCC-Changsha, 2012
NSCC-Guangzhou, 2013
Outline

- Trend of HPC Architecture
- Scalable System Software Design
- Applications
Challenges

PSPR
- Performance
- Scalability
- Power consumption
- Reliability
Trend of Architecture

- Tree carriages of Performance
 - Frequency
 - ILP
 - Parallelism

- Performance = Parallelism
 - ...
 - Year 2010: TH-1A, 4.7Pflops, 7168Nodes, 186,368 Cores
 - Year 2013: TH-2, 54.9Pflops, 16000Nodes, 3,120,000 Cores
 - ...

- Exploit parallelism
 - Longitude (100,000nodes)
 - Latitude (multi/many cores, SIMD, ILP)
Trend of Architecture

- Heterogeneous architecture
 - Some of top-level supercomputers
 - Tiahhe-1A
 - NVIDIA M2050 GPU
 - Tianhe-2
 - Intel Xeon Phi
 - Titan
 - NVIDIA K20X GPU
 - Heterogeneous systems on latest Top500 list
 - #53 /Top500, #24 /Top100, #4 /Top10

- Compute Efficiency
 - More computations per joule
 - More computations per transistor
Many core processor

- Intel MIC
 - >60 cores, >200 threads
 - 1.15 GHz
 - > 1 TFlops performance
 - 512b SIMD

- GPU, NVIDIA Kapler
 - 2688 cores
 - 732 MHz
 - 1.31 TFlops
Trend of Architecture

Tianhe supercomputers

TH-1A
- GPU vs
- Data Parallel
- Simple instruction
 - Limited scheduling
- GPU Direct available
 - ~40% ↑ MPI communication on Tianhe-1A
 - 5% ↑ Linpack
- Steep learning curve
- Supporting
 - Cuda
 - Open CL
 - ...
- 2CPU + 2GPU Linpack ~71%
- Whole system Linpack 56.5%

TH-2
- MIC
- Multi threads & SIMD
- Flexible modes
 - Native, Offload, Symmetric, Shared
- SIMD available
 - ~ 4.5 times speedup on Tianhe-2
- Relatively easy to get started
- Intel Supporting
- 2CPU + 3MIC Linpack ~76.5%
- Whole system Linpack 61.6%
Trend of Architecture

GPU
- Computational Chemistry and Biology
- Numerical Analytics
- Physics
- Manufacturing: CAD and CAE
- Oil and Gas
- Defense and Intelligence
- Computational Finance
- Media and Entertainment

MIC
- Computational Chemistry and Biology
- Electronic Structure
- Physics
- Computational Fluid Dynamic
- Astrophysics
- Environment
- Oil and Gas
- Computational Finance
Trend of Architecture

Memory Hierarchy

- Performance of CPU ↑59%, Perf of MEM ↑26%

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Register</td>
<td>1 circle</td>
</tr>
<tr>
<td>L1 Cache</td>
<td>3 circle</td>
</tr>
<tr>
<td>L2 Cache</td>
<td>10 circle</td>
</tr>
<tr>
<td>L3 Cache</td>
<td>30 circle</td>
</tr>
<tr>
<td>Local Mem</td>
<td>150 circle</td>
</tr>
<tr>
<td>Non-local MEM</td>
<td>>1500 circle</td>
</tr>
</tbody>
</table>

- Exploit Data Locality, reduce communication and memory accessing
Trend of Architecture

- Memory architecture will be benefited from multiple technologies
 - Deeper memory hierarchy
 - Advanced package technology
 - 3D stack, MCM
 - Optical connection btw chips
Trend of Architecture

Power Consumption

- PW for data moving / 48X PW for data computing
 - MLA inside core: 100PJ
 - Read inside CPU: 4800PJ
 - Data moving btw cores: 7500PJ
 - Data moving btw nodes: 9000PJ

- DTF, reduce 20% power consumption, with 5% performance losing

- Power control applications, power aware, minimum data moving
Trend of Architecture

Interconnection network

- NIC
 - High Bandwidth
 - Multiple Lanes

- Router
 - High radix Vs. Low radix

- Topology
 - N-D Torus Vs. Fat Tree
 - N Dimension Tree

- Optical
 - High BW, Low Latency, EMC

- Cost

- Topo-aware software
Trend of Architecture

- Communication
- Reliability
- Power
- Programmability

Heavy the burden of Software
Software issues

- Scalability
 - How to use the exist systems better
 - How to explore the next generation systems

- Resilience
 - Reduce the CR overhead
 - Lightweight resilience method

- Power Control

- Programmability

- HPC vs Big data
 - Data management and filesystem
Highlights of Tianhe-2

<table>
<thead>
<tr>
<th>Perf</th>
<th>54.9PFlops / 33.86PFlops</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nodes</td>
<td>16000</td>
</tr>
<tr>
<td>Mem</td>
<td>1.4PB</td>
</tr>
<tr>
<td>Racks</td>
<td>125+8+13+24=170 (720m²)</td>
</tr>
<tr>
<td>Power</td>
<td>17.8 MW (1.9GFlops/W)</td>
</tr>
<tr>
<td>Cool</td>
<td>Close-coupled chilled water cooling</td>
</tr>
</tbody>
</table>

Components
- **Phi** #48000
- **IVB** #32000
- **FT-1500** #4096
- **APM**
- **CPM**
- **ION**

System Architecture
- **TH-2** (125 x Rack)
- **TH-Net**
- **Frame** (8 x board)
- **Compute board**
- **Hybrid Hierarchy shared storage System 12.4PB**
Highlights of Tianhe-2

Software Stack

- HPC Application Service Platform
- Scientific Data Visualization System
- Cloud Computing Platform

Multi-Domain Framework

- MPI
- GA
- OpenMC
- Tools & Library

- C/C++/Fortran
- OpenMP
- Intel Offload

Hybrid Runtime System

- Resource Management System
- H²FS Parallel File System
- Kylin Operating System

Intelligent Monitor & System Management

PAE

PDE

PSE
Programming model

- Trend of programming model
 - Whole system
 - MPI
 - New Data-driven model
 - Intra node
 - Various
 - OpenMP, Cuda/OpenCL, OpenACC
 - Others
 - PGAS (Global Array)

- Portability
- Performance
- Simplicity and Symmetry
- Modularity
- Compatibility
- Completeness
- Distributed memory
Scalable MPI

- **Performance**
 - P2P: Bandwidth/Latency
 - Collective communication
 - Communicator/Group operations
 - MPI-Init

- **Resource consumption**
 - Memory
 - Network connection

- **Measurement**?
Scalable MPI

- Mem consumption for MPI implementation

 \(p: \) System Scale (#rank)

 \(M \sim O(p^2) \) -- conventional implementation based table

 \(P=10^3, \quad M=4B\times10^6=4MB \)

 \(*P=10^6, \quad M=4B\times10^{12}=4TB \)

 \(P=10^8, \quad M=4B\times10^{16}=40PB \)

 \(*P=10^9, \quad M=4B\times10^{18}=4ZB \)

- Data structures should be redesigned

 - Communicator, RMA window, protocol buffer…
Scalable MPI

- TH-Express2 & TH-Express2⁺
 - Network Interface Chip: NIC
 - 10Gbps × 8lane
 - 14Gbps × 8lane (plus)
 - Network Router Chip: NRC
 - 16 ports, more (plus)
 - Optic and electronic hybrid network
 - Topology: Fat tree → N Dimension Tree
 - Design for extension to 100PFlops
Scalable MPI

Message Passing services over TH-Express

- Galaxy Express (GLEX)
 - Basic message passing infrastructure on network interface
 - User level communication technology
 - User and kernel API

- MPICH-GLEX Design Consideration
 - Protocol: different communication mechanisms exhibit different performance and resource usage
 - Application characteristic: communication mode, such as nearest-neighbor communication
 - Scalability: balance between performance and resource usage
Scalable MPI

- Message passing protocols
- Various protocols in low level with TH-Net
 - **Eager Protocol**
 - Exclusive RDMA Channel
 - Performance oriented
 - Shared RDMA Channel
 - Scalability oriented
 - Hybrid channels
 - Combine application model
 - **Rendezvous protocol**
 - Zero-copy data transfer based on RDMA Get
 - Performance benefit from the neighborhood communication in a number of applications
Scalable MPI

- **P2P Performance**
 - **TH-Express2**
 - MPI P2P Bandwidth: 6.3GB/s
 - Latency: ~2us
 - **TH-Express2+**
 - MPI P2P Bandwidth: 12GB/s
 - Latency: ~1us
Scalable MPI

Collective communication

- MPI interface level
 - NonBlock collective
 - Alltoallv/AllGetherV
 - Group-split

- Implementation level
 - Scalable algorithm
 - Topology aware
 - Hardware offload

Collective offload

- Construct topology-aware algorithm tree dynamically
- Message pass automatically based on the trigger of NIC
- Bypass effect of OS noise
Scalable MPI

- Collective Optimization for Scalability
 - Two-level Collective Operations
 - Intra-node: shared-memory
 - Inter-node: network
 - Adaptive tree structure
 - K-nominal
 - K-ary
 - K is a variable value
 - Optimization based on topology
 - Mapping processes to nodes
Scalable MPI

- Non-stop and fault Resilient MPI (NR-MPI)
 - Application continue execution without being relaunched
 - Failure detection and MPI state recovery done by runtime
 - Data-backup by application-level diskless C/R
 - Reconstruct of MPI communicator and channel
Domain Framework

- Hides parallel programming complexity and the hierarchy of parallel computers
- Integrates the efficient implementations of parallel fast algorithms
- Provides efficient data structures and solver libraries
- Supports software engineering for code extensibility
Dynamic Software

- Application Complexity: Multidisciplinary, Multi-physics, Multi-scale, Multi-method
- Legacy applications: Long term for developing, Expensive, Difficult
- Autotuning the performance
- Dynamic resources requirement and providing
- Topo-aware and Latency hiding
- Resource sharing & Hybrid runtime
- Fault tolerant and Resilience
- Rethink & Redesign the software
Scientific Discovery

- Creative Computing Technology
 - Hardware, system software, algorithm, applications

- Creative Data Processing Technology
 - Data management, Analysis, Visualization

- Big Data come from
 - Experiment
 - Observation
 - Sensor network
 - Simulation

- Challenge of computing/throughput
HPC Vs Big Data

☐ Increasing I/O requirements
 ➢ Large scale Pre/Post data sets
 ➢ Visualization and Analysis
 ➢ Big science with Big data
 ➢ Expected data volume per simulation from ~GB to ~PB, typically ~100 TB

☐ I/O Bottleneck
 ➢ Scalability, Efficiency, Performance, Economic and durability

☐ What’s needed for Parallel IO interface
 ➢ More hints could be expressed
 ➢ More patterns could be supported
 ➢ Interface to application IO library
Scalable IO Structure

IO Architecture on Tianhe-2

- Multiple Layers & Hybrid Storages
 - Local Disk
 - PCI-E SSD
 - Disk Array
- 6400 local Disks
 - Bus attached
- 256 IO nodes
 - Burst: above 1TB/s
 - TH-Express and IB QDR port
- 64 Storage Servers
 - Sustained: about 100GB/s
Scalable IO Structure

- **H²FS: Hybrid Hierarchy File System**
 - DPU, A fundamental unit for data processing, tightly couples a compute node with its local storage
 - HVN, Hybrid, Unified and Isolated dynamic namespace maintained by centralized servers
 - Layered and enriched metadata, I/O hints as high level metadata

- **I/O API**
 - POSIX
 - MPI-IO
 - Extended API, layout and policy guide
 - HDF5 over POSIX and extended API
 - Object API (todo)
Scalable IO Structure

- Multi Modes supported in Customized HVN
 - **Forward Mode**
 - local storage bypassed, forward & aggregate requests
 - **Burst Buffer Mode**
 - Local storage attached as independent buffer for draining burst I/O, transparent data movement
 - **Local Cooperation Mode**
 - Local storage unified with individualize layout, DHT for unique-file, partitioned layout for shared-file, with minimum global storage involved
 - **Fusion Mode**
 - Local Cooperation + Global, single unification namespace of H²IO storage, customized data moving policy
Scalable IO Structure

Contributions of components in H²FS

<table>
<thead>
<tr>
<th>Component</th>
<th>Performance</th>
<th>Scalability</th>
<th>Ease-to-Use</th>
<th>Reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>User-level Client</td>
<td></td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I/O Path Management</td>
<td></td>
<td></td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>RDMA Communication</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Request Scheduling</td>
<td></td>
<td></td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>Storage Management</td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>Unified Namespace</td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>Forward Mode</td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>Asynchronous Mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Scalable IO Structure

- Scalable I/O operation
 - Aggregate burst Bw > 500GB/s, IOR benchmark
 - Aggregate metadata throughput > 100,000 op/s, mdtest

Local cooperation HVN
Scalable IO Structure

- Evaluation on typical HPC application
 - Geoeast, seismic data processing software
 - MEASTRO, MADBench2, S3D

<table>
<thead>
<tr>
<th>Node Number</th>
<th>Non-HVN (GB/s)</th>
<th>HVN (GB/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MEASTRO (Unique file)</td>
<td>7.28</td>
</tr>
<tr>
<td></td>
<td>MADBench2 (Unique file)</td>
<td>30.43</td>
</tr>
<tr>
<td></td>
<td>S3D (shared file)</td>
<td>5.33</td>
</tr>
</tbody>
</table>

HVN is flexible, more work todo
Scalable IO Structure

- **HPC benefits**
 - Scalable burst BW for typical HPC application
 - Isolated HVN makes data intensive application individualize their optimization
 - Reduced requirements for costly shared storage
 - Scalability, Efficiency, Economic and Ease of use

- **Data processing benefits**
 - Maximum locality, DPU provides opportunity to schedule tasks close to data
 - Single namespace make post-processing easy
 - Reduction of data movement, better support for in-situ data analysis and data in-transit analysis
Different Levels of Performance

- **Peak performance**
- **LINPACK performance**
 - Avg. 80%
- **Gordon Bell Prize performance**
 - ~30%
- **Application sustained performance**
 - <5%~10%
- **HPCG Benchmark**
 - ~1%
Scalable Applications

HCFD: High-Order SimulaTor of Aerodynamics

- WCNS- Weighted Compact Nonlinear Scheme
- Explicit Runge-Kutta

Grid Block Groups

Node Mapping

MPI: Grid Block groups
Offload: In a grid block group (CPU+MIC)
OpenMP: In one grid block
SIMD: slice of one block
Scalable Applications

HCFD: High-Order SimulaTor of Aerodynamics

- Balanced partition between CPU/MIC inside each node
 - MIC: CPU 0.6~0.8
- Hierarchical data partition & communication
- Overlap the communication and computation using pipeline
- Memory & cache optimization
- Offload mem reuse
- Exploit SIMD
Scalable Applications

HCFD: High-Order SimulaTor of Aerodynamics

- CPU+MIC
 - 7168 nodes with 3 mics/node, 1.376 million cores
 - Grid 682.4 Billion

Graph showing time vs. number of nodes for different simulations.
Applications

The University of Hong Kong
Applications

NSCC-GZ

Material

Physics & Chemistry

Manufac
ture

Industry

Energy

Society

Mathematics

Tianhe-2

Environment

Medicine

Biology

Healthy
Applications

- High Energy Density Physics
- Weather & Climate
- CFD
- Seismic data processing
- Bio-information
- E-Gov & Service
Applications

- **Climate**
 - Global shallow water model, #8664, ~1.7 million cores, 77%

- **Physics**
 - Gyrokinetic Toroidal Code GTC, #2048, ~160,000 cores

- **Business Opinion Analysis**
 - 600TB structured/non structured data with micMR (Hadoop over MIC), #1024, 100 Million Rec/day
Applications

- Cardiac subcellular level nanoscale calcium-spread mechanical simulation
 - Explore the pathogenesis of heart disease
 - 4096 nodes with mic, 1.27PF

- Virtual drug screening - molecular docking calculations
 - DOCK6.5
 - 303,826 compounds conformation(specs)
 - 1,100 drug target (pdtd)
 - Over 334 million docking calculation
Applications

- Combustion flow in the turbulent
 - Stability and flame propagation mechanism, combustion oscillation mechanism

- Fast simulation of complex electromagnetic environment
 - FDTD
 - MOM
 - PO
Applications

- The Catalytic Mechanism of Human Oxidosqualene Cyclase
 - QM/MM MD simulation (Qchem-Tinker)

- Study the pathogenesis of Flavobacterium
 - Research and product development of the key technology in freshwater fish immune disease prevention and control

- Regional Marine digitizing system
 - Pearl River Estuary South China Sea
Applications

- Neutrino Mass Measurement
 - Simulate 13.7-billion-years cosmic evolution

- High-speed rail tunnel aerodynamic effects

- Shock Wave/Turbulent Boundary Layer Interaction
 - Structural safety of the high-speed aircraft
Applications

- Real-time financial market risk quantification computing

- Sources of air pollution in city
 - Pollutant concentration distribution and temporal trace
Applications

Multi-Scale numerical simulation framework

- Immersed Boundary Method
- Two-fluid Model
- Microscopic kinetic models + LBM.
- Lagrangian-Eulerian-stochastic Method

- Two-fluid Model (SCFT+Reptation)
- Stochastic Entanglement Dynamics
- Lattice Boltzmann Methods (LBM)
- Smooth Particle Hydrodynamics (SPH)

Theoretical approach: SCFT

Kinetics of signalling and metabolic pathways
Coarse-grained Monte Carlo (MC) and Molecular Dynamics (MD) and Non-equilibrium MD
Car-Parrinello MD, Quantum MC
Applications

KylinCloud Cloud Platform

- **Architecture**

- **Features**
 - Customized according to the need of various applications and the arch. of TH-2
 - Provide IaaS and PaaS services to applications with efficient resource management and scheduling mechanisms
 - Provide multiple-level user management and quota management to tenants
 - Provide friendly self-service portal and the statistics, reporting and displaying of the usage of resource
Applications

- E-Gov
- RenderCloud
- micMR
- Video Processing
- Electromagnetic Spectrum Management
Applications

- Need custom hybrid algorithms
 - Performance-oriented programming
 - Communication reduction
 - Architecture aware algorithm
 - Dynamic management of resources at all levels
 - Fault Resilient and Oblivious
 - Rethinking heterogeneous new algorithms at the physics model to maximize the performance

- Application Code
 - Scalability, Maintainable
 - Portable, Productivity
Co-design for Scalable System
Summary

- Use the existing systems better
- Many-core will be the main trend for next generation system
- Interconnection communication is critical
- Hybrid hierarchy IO structure
- System designers and application designers should share the burden of Scalability
- Domain-specific application framework may be helpful
- International collaboration is important
Thanks