

Scalability-Centric System Design for Large Scale Computing

Prof. Yutong Lu

School of computer science, NUDT &
State Key Laboratory of High Performance Computing

ytlu@nudt.edu.cn

Overview

National university of defense technology

~2,000 Teachers ~15,000 Students

Overview

National University of Defense Technology

Supercomputers in NUDT, Changsha, China 100PF System 黑龙江 新疆维吾尔自治区 YH-1 1st Chinese H-2 33.86 F Top1 1st Chinese 1st Chinese 1st Chinese 西藏自治区 Supercomputer **GFlos** NSCC-Tianjin,2010 NSCC-Guangzhou,2013 **2010** 2015 1992 2013 **2000** 1983 国防科学技术大学

NSCC-Changsha,2012

Outline

- **□Trend of HPC Architecture**
- **□**Scalable System Software Design
- **□**Applications

Challenges

PSPR

- **□** Performance
- **□** Scalability
- **□** Power consumption
- **□** Reliability

National University of Defense Technology

☐ Tree carriages of Performance

- > Frequency
- > ILP
- > Parallelism

□ Performance = Parallelism

- **>**
- > Year 2010: TH-1A, 4.7Pflops, 7168Nodes, 186,368 Cores
- > Year 2013: TH-2, 54.9Pflops, 16000Nodes, 3,120,000 Cores
- **>**

■ Exploit parallelism

- **Longitude** (100,000 nodes)
- > Latitude (multi/many cores, SIMD, ILP)

☐ Heterogeneous architecture

- > Some of top-level supercomputers
 - ♦ Tiahhe-1A
 - NVIDA M2050 GPU
 - **♦** Tianhe-2
 - Intel Xeon Phi
 - ♦ Titan
 - NVIDIA K20X GPU
- > Heterogeneous systems on latest Top500 list
 - ◆ #53 /Top500, #24 /Top100, #4 /Top10

□ Compute Efficiency

- > More computations per joule
- > More computations per transistor

■Many core processor

- >Intel MIC
 - ♦>60cores, >200threads
 - **◆1.15GHz**
 - **♦>** 1TFlops performance
 - **♦512b SIMD**
- >GPU, NVIDIA Kapler
 - **♦**2688 cores
 - **◆732MHz**
 - **◆1.31TFlops**

□Tianhe supercomputers

TH-1A GPU vs

- Data Parallel
- ☐ Simple instruction
 - > Limited scheduling
- **□ GPU Direct** available
 - > ~40% ↑ MPI communication on Tianhe-1A
 - **> 5%** ↑ Linpack
- **☐** Steep learning curve
- **□** Supporting
 - > Cuda
 - > Open CL
 - **>**
- □ 2CPU + 2GPU Linpack ~71%
- □ Whole system Linpack 56.5%

TH-2

MIC

- **Multi threads & SIMD**
- **☐** Flexible modes
 - > Native, Offload, Symmetric, Shared
- **□** SIMD available
 - > ~ 4.5 times speedup on Tianhe-2
- **□** Relatively easy to get started
- **■** Intel Supporting
- **□ 2CPU + 3MIC Linpak ~76.5%**
- **□** Whole system Linpack 61.6%

GPU

- Computational Chemistry and Biology
- **■** Numerical Analytics
- **□** Physics
- **Manufacturing: CAD and CAE**
- □ Oil and Gas
- **□** Defense and Intelligence
- **□** Computational Finance
- **Media and Entertainment**

MIC

- Computational Chemistry and Biology
- **□** Electronic Structure
- Physics
- Computational Fluid Dynamic
- **□** Astrophysics
- **□** Environment
- Oil and Gas
- **□** Computational Finance

Memory Hierarchy

□Performance of CPU ↑59%, Perf of MEM ↑ 26%

	Register	1 circle	
	L1 Cache	3 circle	
	L2 Cache	10 circle	
	L3 Cache	30 circle	
Local Mem		150 circle	
Non-local MEM		>1500 circle	

■Exploit Data Locality, reduce communication and memory accessing

■ Memory architecture will be benefited from multiple technologies

- > Deeper memory hierarchy
- >Advanced package technology
 - ◆3D stack、MCM

National University of Defense Technology

> Optical connection btw chips

Multi-package Usage Multi-chip Package Usage Direct Attach Usage

Memory

Memory

Memory

Gala shell

Forward

Power Consumption

PW for data moving / 48X PW for data computing

> MLA inside core: 100PJ

> Read inside CPU: 4800PJ

> Data moving btw cores: 7500PJ

> Data moving btw nodes: 9000PJ

□DTF, reduce 20% power consumption, with 5% performance losing

□Power control applications, power aware, minimum data moving

Interconnection network

- - > High Bandwidth
 - > Multiple Lanes
- **□** Router
 - > High radix Vs. Low radix
- **□** Topology
 - > N-D Torus Vs. Fat Tree
 - > N Dimension Tree
- Optical
 - > High BW, Low Latency, EMC
- □ Cost
- **□** Topo-aware software

Heavy the burden of Software

Software issues

□Scalability

- > How to use the exist systems better
- > How to explore the next generation systems

□Resilience

- > Reduce the CR overhead
- > Lightweight resilience method
- **□**Power Control
- **□**Programmability
- **□HPC** vs Big data
 - > Data management and filesystem

Highlights of Tianhe-2

Hybrid Hierarchy shared storage System 12.4PB

Highlights of Tianhe-2

□Software Stack

Scientific Data **HPC** Application **Cloud Computing** Visualization Intelligent Monitor & System Management Service Platform **Platform** PAE System Multi-Domain Framework GA MPI OpenMC Tools & Library **PDE** C/C++/Fortr OpenMP Intel Offload an Hybrid Runtime System Resource Management System H²FS Parallel File System **PSE Kylin Operating System**

Programming model

□Trend of programming model

- > Whole system
 - **♦**MPI
 - **♦**New Data-driven model
- >Intra node
 - **♦** Various
 - OpenMP, Cuda/OpenCL, OpenACC
- >Others
 - **♦PGAS** (Global Array)

Portability
Performance
Simplicity and Sym

Simplicity and Symmetry

Modularity

Compatibility

Completeness Distributed memory

□Performance

- > P2P: Bandwidth/Latency
- > Collective communication
- > Communicator/Group operations
- >MPI-Init

□Resource consumption

- > Memory
- > Network connection
- **■Measurement?**

■Mem consumption for MPI implementation

p: System Scale(#rank)

 $\mathbf{M} \propto \mathbf{O}(\mathbf{p}^2)$ --conventional implementation based table

$$P=10^3$$
, $M=4B*10^6=4MB$

*
$$P=10^6$$
, $M=4B*10^{12}=4TB$

$$P=10^8$$
, $M=4B*10^{16}=40PB$

$$^{*}P=10^{9}, M=4B*10^{18}=4ZB$$

□Data structures should be redesigned

> Communicator, RMA window, protocol buffer...

□TH-Express2 & TH-Express2+

- > Network Interface Chip: NIC
 - **♦10Gbps X 8lane**
 - ♦14Gbps X 8lane(plus)
- > Network Router Chip: NRC
 - ♦16 ports, more(plus)
- >Optic and electronic hybrid network
- **≻Topology:** Fat tree → N Dimension Tree
- > Design for extension to 100PFlops

Message Passing services over TH-Express

- **□** Galaxy Express (GLEX)
 - > Basic message passing infrastructure on network interface
 - > User level communication technology
 - > User and kernel API

■ MPICH-GLEX Design Consideration

- > Protocol: different communication mechanisms exhibit different performance and resource usage
- > Application characteristic: communication mode, such as nearest-neighbor communication
- > Scalability: balance between performance and resource usage

- **Message passing protocols**
- □ Various protocols in low level with TH-Net
 - > Eager Protocol
 - **Exclusive RDMA Channel**
 - Performance oriented
 - **♦**Shared RDMA Channel
 - Scalability oriented
 - **♦**Hybrid channels
 - Combine application model
 - > Rendezvous protocol
 - **♦**Zero-copy data transfer based on RDMA Get
- □ Performance benefit from the neighborhood communication in a number of applications

□ P2P Performance

TH-Express2

- > MPI P2P Bandwidth 6.3GB/s
- ➤ Latency ~2us

Data Length (Bytes)

TH-Express2⁺

- > MPI P2P Bandwidth 12GB/s
- > Latency ~1us

□Collective communication

- >MPI interface level
 - **♦**NonBlock collective
 - **♦** Alltoallv/AllGetherV
 - **♦**Group-split
- >Implementation level
 - **♦**Scalable algorithm
 - **◆**Topology aware
 - **♦**Hardware offload

□Collective offload

- > Construct topology-aware algorithm tree dynamically
- > Message pass automatically based on the trigger of NIC
- > Bypass effect of OS noise

□ Collective Optimization for Scalability

- > Two-level Collective Operations
 - **♦ Intra-node: shared-memory**
 - **♦** Inter-node: network
- > Adaptive tree structure
 - ♦ K-nominal
 - ♦ K-ary
 - **♦** K is a variable value
- > Optimization based on topology
 - **♦** Mapping processes to nodes

□ Non-stop and fault Resilient MPI (NR-MPI)

- > Application continue execution without being relaunched
- > Failure detection and MPI state recovery done by runtime
- > Data-backup by application-level diskless C/R
- > Reconstruct of MPI communicator and channel

Domain Framework

- ☐ Hides parallel programming complexity and the hierarchy of parallel computers
- □ Integrates the efficient implementations of parallel fast algorithms
- **Provides efficient data structures and solver libraries**

■ Supports software engineering for code extensibility

Dynamic Software

- □ Application Complexity: Multidisciplinary, Multiphysics, Multi-scale, Multi-method
- ☐ Legacy applications: Long term for developing, Expensive, Difficult
- **□** Autotuning the performance
- □ Dynamic resources requirement and providing
- **□** Topo-aware and Latency hiding
- □ Resource sharing & Hybrid runtime
- **□** Fault tolerant and Resilience
- □ Rethink & Redesign the software

Scientific Discovery

□Creative Computing Technology

- > Hardware, system software, algorithm, applications
- **□**Creative Data Processing Technology
 - > Data management, Analysis, Visualization
- **□Big Data come from**
 - > Experiment
 - > Observation
 - > Sensor network
 - > Simulation

□Challenge of computing/throughput

HPC Vs Big Data

☐ Increasing I/O requirements

- > Large scale Pre/Post data sets
- > Visualization and Analysis
- > Big science with Big data
- > Expected data volume per simulation from ~GB to ~PB, typically ~100 TB

□ I/O Bottleneck

> Scalability, Efficiency, Performance, Economic and durability

■ What's needed for Parallel IO interface

- > More hints could be expressed
- > More patterns could be supported
- > Interface to application IO library

□IO Architecture on Tianhe-2

- > Multiple Layers & Hybrid Storages
 - **♦**Local Disk
 - **♦PCI-E SSD**
 - **♦**Disk Array
- >6400 local Disks
 - **♦**Bus attached
- >256 IO nodes
 - **♦**Burst: above 1TB/s
 - **♦TH-Express and IB QDR port**
- >64 Storage Servers
 - **♦**Sustained: about 100GB/s

□H²FS: Hybrid Hierarchy File System

- > DPU, A fundamental unit for data processing, tightly couples a compute node with its local storage
- > HVN, Hybrid, Unified and Isolated dynamic namespace maintained by centralized servers

> Layered and enriched metadata, I/O hints as high level

metadata

□ I/O API

- > POSIX
- > MPI-IO
- > Extended API, layout and policy guide
- > HDF5 over POSIX and extended API
- > Object API(todo)

图防科学技术大学

National University of Defense Technology

■ Multi Modes supported in Customized HVN

- >Forward Mode
 - **♦**local storage bypassed, forward & aggregate requests
- > Burst Buffer Mode
 - **◆**Local storage attached as independent buffer for draining burst I/O, transparent data movement
- >Local Cooperation Mode
 - **◆Local storage unified with individualize layout, DHT** for unique-file, partitioned layout for shared-file, with minimum global storage involved
- > Fusion Mode
 - **◆Local Cooperation + Global, single unification** namespace of H²IO storage, customized data moving policy

□ Contributions of components in H²FS

	Performance	Scalability	Ease-to-Use	Reliability
User-level Client		√	√	
I/O Path Management				√
RDMA Communication	√	√		
Request Scheduling	√	√		
Storage Management			√	√
Unified Namespace		√	√	
Forward mode		4	√	
Asynchronous mode	√	√		

Scalable IO Structure

□Scalable I/O operation

- > Aggregate burst Bw>500GB/s, IOR benchmark
- > Aggregate metadata throughput > 100,000 op/s, mdtest

Local cooperation HVN

Scalable IO Structure

■Evaluation on typical HPC application

- > Geoeast, seismic data processing software
- >MEASTRO, MADBench2, S3D

	Non-HVN (GB/s)	HVN (GB/s)	
MEASTRO (Unique file)	7.28	37.06	☆ 5X
MADBench2 (Unique file)	30.43	94.92	3.1X
S3D (shared file)	5.33	14.82	2.78X

HVN is flexible, more work todo

Scalable IO Structure

□HPC benefits

- > Scalable burst BW for typical HPC application
- > Isolated HVN makes data intensive application individualize their optimization
- > Reduced requirements for costly shared storage
- > Scalability, Efficiency, Economic and Ease of use

□ Data processing benefits

- > Maximum locality, DPU provides opportunity to schedule tasks close to data
- > Single namespace make post-processing easy
- > Reduction of data movement, better support for in-situ data analysis and data in-transit analysis

Different Levels of Performance

- **□**Peak performance
- **□LINPACK** performance
 - >Avg. 80%
- **□Gordon Bell Prize performance**
 - > ~30%
- **■**Application sustained performance
 - > <5%~10%
- **□HPCG Benchmark**
 - > ~1%

Scalable Applications

HCFD: High-Order SimulaTor of Aerodynamics

- > WCNS- Weighted Compact Nonlinear Scheme
- > Explicit Runge-Kutta

Scalable Applications

HCFD: High-Order SimulaTor of Aerodynamics

- > Balanced partition between CPU/MIC inside each node
 - **♦ MIC: CPU 0.6~0.8**
- > Hierarchical data partition & communication
- > Overlap the communication and computation using pipeline
- > Memory & cache optimization
- > Offload mem reuse
- > Exploit SIMD

Scalable Applications

HCFD: High-Order SimulaTor of Aerodynamics

> CPU+MIC

◆ 7168nodes with 3mics/node, 1.376million cores

♦ Gird 682.4 Billion

- **☐** High Energy Density **Physics**
- **☐** Weather & Climate
- **CFD**
- □ Seismic data processing
- **□** Bio-information
- □ E-Gov & Service

□Climate

➤ Global shallow water model, #8664, ~1.7million cores, 77%

□Physics

>Gyrokinetic Toroidal Code GTC, #2048, ~160,000 cores

Business Opinion Analysis

► 600TB structured/non structured data with micMR (Hadoop over MIC), #1024,

100Million Rec/day

- □ Cardiac subcellular level nanoscale calcium-spread
 - mechanical simulation
 - > Explore the pathogenesis of heart disease
 - > 4096nodes with mic, 1.27PF

- □ Virtual drug screening molecular docking calculations
 - **DOCK6.5**
 - > 303,826 compounds conformation(specs)
 - > 1,100 drug target (pdtd)
 - > Over 334 million docking calculation

□ Combustion flow in the turbulent

> Stability and flame propagation mechanism, combustion oscillation mechanism

- > FDTD
- > MOM
- > **PO**

National University of Defense Technology

- ☐ The Catalytic Mechanism of Human Oxidosqualene Cyclase
 - > QM/MM MD simulation (Qchem-Tinker)

> Research and product development of the key technology in freshwater fish immune disease prevention and control

> Pearl River Estuary South China Sea

■ Neutrino Mass Measurement

- > Simulate 13.7-billion-years cosmic evolution
- High-speed rail tunnel aerodynamic effects

- Shock Wave/TurbulentBoundary Layer Interaction
 - > Structural safety of the high-speed aircraft

□ Real-time financial market risk quantification computing

- **□** Sources of air pollution in city
 - > Pollutant concentration distribution and temporal trace

E 10-3

Length

Multi-Scale numerical simulation framework

Immersed Boundary Method

Two-fluid Model

Microscopic kinetic models + LBM.

Lagrangian-Eulerian-stochastic Method

Two-fluid Model (SCFT+Reptation) Stochastic Entanglement Dynamics Lattice Boltzmann Methods (LBM) Smooth Particle Hydrodynamics (SPH)

Theoretical approach: SCFT Kinetics of signalling and metabolic pathways Coarse-grained Monte Carlo (MC) and Molecular Dynamics (MD) and Non-equilibrium MD Car-Parrinello MD, Quantum MC

sec

Time

10³ sec

KylinCloud Cloud Platform

☐ Architecture **☐** Features

Kylin Server Operating System

Customized according to the need of various applications and the arch. of TH-2

Provide IaaS and PaaS services to applications with efficient resource management and scheduling mechanisms

Provide multiple-level user management and quota management to tenants

Provide friendly self-service portal and the statistics, reporting and displaying of the usage

Education

of resource

E-Gov

SmartCity

Energy

国防科学技术大学

National University of Defense Technology

- >E-Gov
- > Render Cloud
- >micMR
- > Video Processing
- > Electromagnetic Spectrum Management

■Need custom hybrid algorithms

- > Performance-oriented programming
- > Communication reduction
- >Architecture aware algorithm
- > Dynamic management of resources at all levels
- > Fault Resilient and Oblivious
- > Rethinking heterogeneous new algorithms at the physics model to maximize the performance

■Application Code

- >Scalability, Maintainable
- > Portable, Productivity

Co-design for Scalable System

Summary

- □ Use the existing systems better
- Many-core will be the main trend for next generation system
- **■** Interconnection communication is critical
- ☐ Hybrid hierarchy IO structure
- □ System designers and application designers should share the burden of Scalability
- □ Domain-specific application framework may be helpful
- **International collaboration is important**

Thanks

