Hierarchical Phasers for Scalable
Synchronization and Reductions in
Dynamic Parallelism

IPDPS 2010
April 22nd, 2010
Jun Shirako and Vivek Sarkar

Rice University

Introduction

Major crossroads in computer industry
Processor clock speeds are no longer increasing
= Chips with increasing # cores instead
Challenge for software enablement on future systems
~ 100 and more cores on a chip
Productivity and efficiency of parallel programming

Need for new programming model

Dynamic Task Parallelism
New programming model to overcome limitations of Bulk

Synchronous Parallelism (BSP) model
Chapel, Cilk, Fortress, Habanero-Java/C, Intel Threading Building
Blocks, Java Concurrency Ultilities, Microsoft Task Parallel Library,
OpenMP 3.0 and X10

Set of lightweight tasks can grow and shrink dynamically

Idaal narallaliem avnracced hyy nroadrammeaere<e

Introduction

Habanero-Java/C
http://habanero.rice.edu, http://habanero.rice.edu/h;

Task parallel language and execution model built on four
orthogonal constructs

Lightweight dynamic task creation & termination

- Async-finish with Scalable Locality-Aware Work-stealing scheduler
(SLAW)

Locality control with task and data distributions

— Hierarchical Place Tree

Mutual exclusion and isolation

- Isolated
Collective and point-to-point synchronization & accumulation

- Phasers

Outline

Habanero-Java parallel constructs
Async, finish

Phasers

Hierarchical phasers

Programming interface

Runtime implementation
Experimental results

Conclusions

Async and Finish
Based on IBM X10 v1.5
Async = Lightweight task creation

Finish = Task-set termination

. . finish {
Join operation)
T T T async { STMT1l; STMT4; STMT7; } //T2
p 2 3 async { STMT2; STMT5; } //T3
S STMT3; STMT6; STMT8; //T1
async)

STMT 3 STIbIT 1 STI*IT 2

Dynamic parallelism
STMT 6 STMT 4 STMT 5

STMT 8 STMT 7

A e End finish :

Phasers

Designed to handle multiple communication patterns

Collective Barriers

TI
Point-to-point synchronizations —— : Task creation
. . . 2 ———— : Barrier

Supporting dynamic parallelism {TI,T2}
tasks can be varied dynamically
Deadlock freedom I

{T1,T2,T3}
Absence of explicit wait operations 2
Accumulation Terhinate 2 T4
Reductions (sum, prod, min, ...) {T1,T3,T4}

combined with synchronizations

Streaming parallelism

As extensions of accumulation to support buffered streams

References

[ICS 2008] “Phasers: a Unified Deadlock-Free Construct for Collective and Point-to-point Synchronization”

[IPDPS 2009] “Phaser Accumulators: a New Reduction Construct for Dynamic Parallelism”

Phasers
Phaser allocation

phaser ph = new phaser(mode)

* Phaser ph is allocated with registration mode

e Mode: SINGLE
' | - Registration mode defines capability
SIG_WAIT(default) - There is a lattice ordering of capabilities
/ \
SIG WAIT

Task registration

async phased (ph1<mode1>, ph2<mode2>, ...) {STMT}
Created task is registered with ph1 in mode1, ph2 in mode2, ...
child activity’s capabilities must be subset of parent’s

Synchronization

next:

Advance each phaser that activity is registered on to its next phase
Semantics depend on registration mode
Deadlock-free execution semantics 7

Using Phasers as Barriers with
Dynamic Parallelism

finish {

phaser ph = new phaser (SIG WAIT); //T1

async phased (ph<SIG WAIT>) { STMT1l; next; STMT4; next; STMT7; }//T2

async phased (ph<SIG WAIT>) { STMT2; next; STMT5; } //T3
STMT3; next; STMT6; next; STMT8; //T1

}

T T T
i 2 3 T1,T2, T3 are registered
async > on phaser ph in SIG_WAIT
STMT 3 STMT 1 STI*IIT 2
next next next . .
Dynamic parallelism
STMT 6 STMT 4 STMT 5 set of tasks registered
next next on phaser can vary
STMT 8 STMT 7
wait< 8

End finish

Phaser Accumulators for Reduction

phaser ph = new phaser (SIG_WAIT) ;
accumulator a = new accumulator (ph, accumulator.SUM, int.class);
accumulator b = new accumulator (ph, accumulator.MIN, double.class);

Allocation: Specify operator and type

// foreach creates one task per iteration

foreach (point [i] : [0:n-1]) phased (ph<SIG WAIT>) ({
int iv = 2*i + j;
double dv = -1.5*1 + j;
a.send(iv) ;
b.send (dv) ;
// Do other work before next

send: Send a value to accumulator

next; next: Barrier operation; advance the phase

int sum = a.result().intValue() ;
double min = b.result() .doubleValue() ;

y result: Get the result from previous phase (no race condition)
9

Scalability Limitations of Single-level

Barrier + Reduction (EPCC Syncbench)
on Si1in 128-thread Nianara &9 1479

500
450
400
350
300
Time per barrier [micro secs] 250
200
150
100
50
0

threads

Single-master / multiple-worker implementation
Bottleneck of scalability

Need support for tree-based barriers and reductions, in the presence of dynamic task 10
narallalicm

Outline

Hierarchical phasers
Programming interface

Runtime implementation

11

Flat Barrier vs. Tree-Based Barriers

TI T2 T3 TI T2 T3 T4 T5 T6 T7 T8

N ¢ ¢ e e sub-masters in the same tier receive
broadcast signals in parallel

Barrier = gather + broadcast
Gather: single-master implementation is a scalability bottleneck
Tree-based implementation

Parallelization in gather operation

Well-suited to processor hierarchy 12

Flat Barrier Implementation

Gather by single master

cl ass phaser {
Li st <Si g> siglList;
I nt MM t Phase;

} C.
class Sig {

vol atile int sigPhase;

Phaser

/] Signal by each task

Sig nySig = get WSi g();
nySi g. si gPhase++;

/1 Master waits for all signals

/[l -> Major scalability bottl eneck

for (.../*iterates over sigList*/) {
Sig sig = get Atom cal | y(sigList);
whi l e (sig.sigPhase <= nWit Phase);

}
MM t Phase++;

-------- » : Hash table access by each task
— : List access by master task

13

API for Tree-based Phasers

Allocation

phaser ph = new phaser(mode, nTiers, nDegree);

* nTiers: # tiers of tree
- “nTiers = 17 is equivalent to flat phasers

* nDegree: # children on a sub-masterén_lq_de of t{),ee)D 2)
nTiers = 3, nDegree =

Registration

Tier-2
Same as flat phaser

Tier-1
Synchronization |

Tier-0

Same as flat phaser

14

Tree-based Barrier Implementation

Gather by hierarchical sub-masters

cl ass phaser { cl ass SubPhaser {
Li st <Si g> siglList;
[l 2-D array [nTiers][nDegree] I nt mMAMi t Phase;
SubPhaser [][] subPh; vol atile int sigPhase;
C. .}

} Tier 0 Phaser

oa) @D

TI T2 T3 T4
< —)
nDegree = 2

Flat Accumulation Implementation

Single atomic object in phaser

cl ass phaser { cl ass accunul at or {
Li st <Si g>sigLi st; At om cl nt eger ai;
I nt mMAMi t Phase; Operati on op;
Li st <accunul at or >accuns; Cl ass dat aType;

} voi d send(int val) {

/| Eager inplenentation
I f (op == Qperation. SUM {

Phaser o
‘Q::“Haﬁhﬁﬁhhi lel se if(op == Operation. PROD) {
while (true) {
accuml accum?2

heavy contentio int ¢ = ai.get();

on an atomic Obj int n=c¢* val;
i f (ai.conpareAndSet(c,n))

br eak:
el se
del ay();
}

} elseif ... 16

a. send v) a. send(v) a. send(v)

Tree-Based Accumulation Implementation

Hierarchical structure of atomic objects

cl ass phaser { cl ass accunul at or {
I nt mMAMi t Phase; At om cl nt eger ai;
Li st <Si g>sigLi st; SubAccunul at or subAccuns [][];
Li st <accunul at or >accuns; .
- cl ass SubAccunul at or {
} At om cl nt eger ai;
Phaserl }

N --> :Array access
— : List access
- . Accuml ACCUTZ > : Hash table access
? 9 @
”’ T T2 T3 T4 T T2 T3 T4

™ T3 T4 nDegree 2 lighter contention 17

‘ +
A
I

A

-u..
b
~
by

Outline

Introduction

Habanero-Java parallel constructs
Async, finish

Phaser

Hierarchical phasers

Programming interface

Runtime implementation
Experimental results

Conclusions

18

Experimental Setup

Platforms

Sun UltraSPARC T2 (Niagara 2)

e 1.2GHz
* Dual-chip 128 threads (16-core x 8-threads/core)

* 32 GB main memory

IBM Power7

* 3.55 GHz
* Quad-chip 128 threads (32-core x 4-threads/core)

* 256 GB main memory
Benchmarks

EPCC syncbench microbenchmark

™ == g™

19

Experimental Setup

Experimental variants
JUC CyclicBarrier

e Java concurrent utility

OpenMP for

* Parallel loop with barrier

* Supports reduction
OpenMP barrier
* Barrier by fixed # threads

* No reduction support
Phasers normal

* Flat-level phasers

onp_set _num_t hr eads(num ;
/'l OpenMP for
#pragma onp parall el

{

}

for (r=0;

}

#pragna

r <repeat;
onp for

for (i=0; I < num

dumy () ;
} /* Inplicit barrier here */

[l OpenMP barrier
#pragma onp parall el

{

}

f

}

or (r=0;
dumy() ;

#pragna

r <r epeat ;

onp barrier

r++) {

| ++) {

r++) {

20

Barrier Performance with EPCC Syncbench

on Sun 128-thread Niagara T2

4551

020 1931 1289

Time per barrier [micro secs]

~

Tree-based phaser is faster than flat phaser when # threads = 16

500
450
400
350
300
250
200
150
100
50
0

very 1211 |

threads

21

Barrier + Reduction with EPCC Syncbench
on Sun 128-thread Niagara T

541 1470
J <19

'y

500
450
400
350
300

Time per barrier [micro secs] 250
200
150
100

CyclicBarrier and OMP barrier don’t support reduction .

Barrier Performance with EPCC Syncbench
on IBM 128-thread Power7 (Preliminary

WM@H?QA—%A%—‘

45

40

35

30

Time per barrier [micro secs] 25
20

15

10

5

threads

CyclicBarrier > phaser-flat > OMP-for > phaser-tree > OMP-barrier

Tree-based phaser is faster than flat phaser when # threads = 16 .

Barrier + Reduction with EPCC Syncbench
on IBM 128-thread Power7

50

45
40

35

30

Time per barrier [micro secs] 25

Impact of (# Tiers, Degree) Phaser
Configuration on Sun 128-thread Niagara T2

350 12
Barrier Reduction
300 10
250
8
200 Ti barrier & reducti
Time per barrier [micro secs] ime per barrier & reduction 6

[micro secs]

150
4

100
50 2
0 . 0

(2 tiers, 16 degree) shows best performance for both barriers and
reductions

Impact of (# Tiers, Degree) Phaser
Configuration on IBM 128-thread Power?7

200 12
180
160 10
140 3
120

Time per barrier & reduction

Time per barrier [micro secs] 100 . 6
[micro secs]
80
60 4
40 5
20
0 . 0

(2 tiers, 32 degree) shows best performance for barrier

(2 tiers, 16 degree) shows best performance for reduction 2

Application Benchmark Performance

on Sun 128-thread Niagara T2

Speedup vs. serial

12

10

8

6

62.8 62.4

31.8 31.5

27

Preliminary Application Benchmark Performance
on IBM Power7 (SMT=1, 32-thread)

12

10

8

Speedup vs. serial 6

Preliminary Application Benchmark Performance
on IBM Power7 (SMT=2, 64-thread)

12

10

8

Speedup vs. serial 6

Preliminary Application Benchmark Performance
on IBM Power7 (SMT=4, 128-thread)

40

35

30

25

Speedup vs. serial 20

15

10

5

0

For CG.A and MG.A, the Java runtime terminates with an internal
error for 128 threads (under investigation) 30

Related Work

Our work was influenced by past work on hierarchical barriers, but none of
these past efforts considered hierarchical synchronization with dynamic
parallelism as in phasers

Tournament barrier

D. Hengsen, et. al., “Iwo algorithms for barrier synchronization”, International Journal of
Parallel Programming, vol. 17, no. 1, 1988

Adaptive combining tree

R. Gupta and C. R. Hill, “A scalable implementation of barrier synchronization using an
adaptive combining tree”, International Journal of Parallel Programming, vol. 18, no. 3, 1989

Extensions to combining tree

M. Scott and J. Mellor-Crummey, “Fast, Contention Free Combining Tree Barriers for Shared-
Memory Multiprocessors,” International Journal of Parallel Programming, vol. 22, no. 4, pp.
449-481, 1994

Analysis of MPI Collective and reducing operations

J. Pjesivac-Grbovic, et. al., “Performance analysis of mpi collective operations”, Cluster
computing, vol. 10, no. 2, 2007

Conclusion

Hierarchical Phaser implementations
Tree-based barrier and reduction for scalability

Dynamic task parallelism

Experimental results on two platforms
Sun UltraSPARC T2 128-thread SMP

* Barrier
- 94 9x faster than OpenMP for, 89.2x faster than OpenMP barrier,
- 3.9x faster than flat level phaser

* Reduction

- 77.2x faster than OpenMP for + reduction, 16.3x faster than flat
phaser

IBM Power7 128-thread SMP

 Barrier

32

Backup Slides

java.util.concurrent.Phaser library in

Java 7
Implementation of subset of phaser functionality

by Doug Lea in Java Concurrency library

Date: Mon, 07 Jul 2008 13:19:01 -0400
From: Doug Lea
Subject: [concurrency-interest] Phasers (were: TaskBarriers)

To: concurrency-interest@cs.oswego.edu

The flexible barrier functionality that was previously restricted to ForkJoinTasks (in class
forkjoin.TaskBarrier) is being redone as class Phaser (targeted for j.u.c, not j.u.c.forkjoin), that

can be applied in all kinds of tasks. For a snapshot of API, see
http://gee.cs.oswego.edu/dl/jsr166/dist/jsr166ydocs/jsr166y/Phaser.html

Comments and suggestions are very welcome as always. The API is likely to change a bit as we scope out

further uses, and also, hopefully, stumble upon some better method names.

Among its capabilities is allowing the number of parties in a barrier to vary dynamically, which CyclicBarrier
doesn't and can't support, but people regularly ask for.

The nice new class name is due to Vivek Sarkar. For a preview of some likely follow-ons (mainly, new kinds
of FJ tasks that can register in various modes for Phasers, partially in support of analogous X10
functionality), see the paper by Vivek and others:
http://www.cs.rice.edu/~vsarkar/PDF/SPSS08-phasers.pdf

-Doug

Tree Allocation

A task allocates phaser tree by “new phaser(...)”
The task is registered on a leaf sub-phaser
Only sub-phasers which the task accesses are active at the beginning

Inactixg gub-phasers don't attend barrier
(global) Phaser

inactive

Tier |

active jnactive inactive

inactive

Tier 2
(leaf)

35

Task Registration (Local)

Tasks creation & registration on tree
Newly spawned task is also registered to leaf sub-phasers

Registration to local leaf when # tasks on the leaf < nDegrees

Tier O
(global) Phaser
inactive
Tier |
active [pactive inactive inactive
Tier 2
(leaf)
Tl T2
S~ N

spawn & register to tree 36

Task Registration (Remote)

Task creation & registration on tree
Registration to remote leaf when # tasks on the leaf =2 nDegree

The remote sub-phaser is activated if necessary

Tier 0

(global) Phaser
inactive
Tier |
active active inactive inactive
Tier 2
(leaf)

T T2 T3

_}
spawn & register to tree

37

Task Registration (Remote)

Task creation & registration on tree
Registration to remote leaf when # tasks on the leaf =2 nDegree

The remote sub-phaser is activated if necessary

Tier 0

(global) Phaser
Tier |
active active active inactive
Tier 2
(leaf)

spawn & register to tree

38

Pipeline Parallelism with Phasers

finish {
phaser [] ph = new phaser[m+l];
// foreach creates one async per iteration
foreach (point [i] : [1:m-1]) phased (ph[i]<SIGNAL>, ph[i-1]<WAIT>)
for (int j =1; jJ < n; j++) {

a[il[j] = foo(alillj]l, alillj-1]1, al[i-1]1[3j-11);
next;
} // é for . ph[1]<SIG> ph[2]<SIG> ph[3]<SIG> ph[4]<SIG>
} // toreac i Ph[0]<WAIT> ph[1]<WAIT> ph[2]<WAIT> ph[3]<WAIT>
hjoy T hi11 T hier T hig] T
1) 0D Gl @l p[]_ﬁ_ p[].?_ p[]-:?- p[].A
: : * * (i=7, j=1) (i=Z; j=1) (i=3, j=1) (=47 j=1)
\\\\ next > next > next > next —
(1,2) ° . ° °
\ \ \ \ (i=1, j=2) (i=2,j=2) (i=3, j=2) (i=4, j=2)
13) ! y v v next > next > next > next —
\ \ \ \ (i=1, j=3) (i=2, j=3) (i=3, j=3) (i=4, j=3)
(14) . . . next > next > next > next —
v \ \ \ \ (i=1, j=4) (i=2, j=4) (i=3, j=4) (i=4, j=4)
. _ next > next > next > next —
J —— :Loop carried dependence 39

1.

2.

Thread Suspensions for Workers

Wait for master in busy-wait loop
Call Object.wait() to suspend (release CPU)
dowait () {
Wai t Sync nyWait =
getCurrent Activity().walitTbl.get(this);

if (isMaster(.)) { Rrpgramner/can spedidy f or
wor ker s ///}/

bool ean done = fal se;
while (!done) {
for (int 1 =0; < WAIT COUNT; 1++) {
| f (nmasterSi gPhase >
nyWai t . wai t Phase) {
done = true; break;
bl

1 f (!done) {
| nt currVal = nyWait.wait Phase

g § o~ o~ a N 7~ 1 — o~ s VAL T snes s 4+ DDA A A~ ~ 1 .

40

Wake suspended Workers

Call Object.notify() to wake workers up if necessary
doWait () {

VWAi t Sync nyWait =
getCurrent Activity().waitTbl.get(this);
I f (isMaster(.)) {// Code for naster
wal t For Wor ker Si gnal s(); nast er Wai t Phase+

+;
mast er SI gPhase++;
I nt currVal = masterSi gPhase- 1;
I nt newal = nmasterSi gPhase;

| f (!castlD. conpareAndSet (currVal,
newal)) {
for (int i =0; i < waitList.size(); i+
+) A
final WaitSync w = waitList.get(i);
synchroni zed (W) { 41

T Y < . a "= 4 \ 75 1 -

Accumulator API

s Allocation (constructor)
s accumulator(Phaser ph, accumulator.Operation op, Class type);
s ph: Host phaser upon which the accumulator will rest
s op: Reduction operation
s sum, product, min, max, bitwise-or, bitwise-and and bitwise-exor

s type: Data type
s byte, short, int, long, float, double
s Send a data to accumulator in current phase
s void Accumulator.send(Number data);
s Retrieve the reduction result from previous phase

s Number Accumulator.result();
s Result is from previous phase, so no race with send

42

UliTicrernt impicimeniauorns 10r e accuimuialor Ari

s Eager

s send: Update an atomic var in the accumulator

s next: Store result from atomic var to read-only storage

s Dynamic-lazy

s send: Put a value in accumCell

s next: Perform reduction over accumCells

s Fixed-lazy

s Same as dynamic-lazy (accumArray instead of accumCells)

s Lightweight implementations due to primitive array access

s For restricted case of bounded parallelism (up to array size)

Activities al\ 72 /a3 a, a, aj a, a, aj
cLd€ LD

L = cache line size

* fixed size array
Accumulators

atomic var accumCells accumArray

43
Eager Dynamic Lazy Fixed Lazy

