
Hierarchical Phasers for Scalable
Synchronization and Reductions in

Dynamic Parallelism

IPDPS 2010

April 22nd, 2010

Jun Shirako and Vivek Sarkar

Rice University

Introduction

Major crossroads in computer industry
Processor clock speeds are no longer increasing

 ⇒ Chips with increasing # cores instead
Challenge for software enablement on future systems

~ 100 and more cores on a chip

Productivity and efficiency of parallel programming

Need for new programming model

Dynamic Task Parallelism
New programming model to overcome limitations of Bulk
Synchronous Parallelism (BSP) model

Chapel, Cilk, Fortress, Habanero-Java/C, Intel Threading Building
Blocks, Java Concurrency Utilities, Microsoft Task Parallel Library,
OpenMP 3.0 and X10

Set of lightweight tasks can grow and shrink dynamically
Ideal parallelism expressed by programmers

Useful parallelism on target platforms extracted by compiler/runtime

2

Introduction

Habanero-Java/C

http://habanero.rice.edu, http://habanero.rice.edu/hj

Task parallel language and execution model built on four
orthogonal constructs

● Lightweight dynamic task creation & termination

– Async-finish with Scalable Locality-Aware Work-stealing scheduler
(SLAW)

● Locality control with task and data distributions

– Hierarchical Place Tree

● Mutual exclusion and isolation

– Isolated

● Collective and point-to-point synchronization & accumulation

– Phasers

This paper focuses on enhancements and extensions to
phaser constructs

● Hierarchical barrier implementation for scalability

● Synchronization in the presence of dynamic parallelism

3

Introduction

Habanero-Java parallel constructs

Async, finish

Phasers

Hierarchical phasers

Programming interface

Runtime implementation

Experimental results

Conclusions

Outline

4

Based on IBM X10 v1.5

Async = Lightweight task creation

Finish = Task-set termination

Join operation

5

Async and Finish

finish {
 // T1
 async { STMT1; STMT4; STMT7; } //T2
 async { STMT2; STMT5; } //T3
 STMT3; STMT6; STMT8; //T1
}

STMT 3

async

STMT 1

End finish

STMT 2

STMT 6 STMT 4 STMT 5

STMT 8 STMT 7

 Dynamic parallelism

wait

T
3

T
2

T
1

Phasers
Designed to handle multiple communication patterns

Collective Barriers

Point-to-point synchronizations

Supporting dynamic parallelism

tasks can be varied dynamically

Deadlock freedom

Absence of explicit wait operations

Accumulation

Reductions (sum, prod, min, …)

combined with synchronizations

Streaming parallelism

As extensions of accumulation to support buffered streams

References
[ICS 2008] “Phasers: a Unified Deadlock-Free Construct for Collective and Point-to-point Synchronization”

[IPDPS 2009] “Phaser Accumulators: a New Reduction Construct for Dynamic Parallelism”
6

7

Phaser allocation

phaser ph = new phaser(mode)

● Phaser ph is allocated with registration mode

● Mode:

Task registration

async phased (ph1<mode1>, ph2<mode2>, …) {STMT}

Created task is registered with ph1 in mode1, ph2 in mode2, …

child activity’s capabilities must be subset of parent’s

Synchronization

next:

Advance each phaser that activity is registered on to its next phase

Semantics depend on registration mode

Deadlock-free execution semantics

Phasers

SINGLE

SIG_WAIT(default)

SIG WAIT

• Registration mode defines capability
• There is a lattice ordering of capabilities

Using Phasers as Barriers with
Dynamic Parallelism

finish {
 phaser ph = new phaser(SIG_WAIT); //T1
 async phased(ph<SIG_WAIT>){ STMT1; next; STMT4; next; STMT7; }//T2
 async phased(ph<SIG_WAIT>){ STMT2; next; STMT5; } //T3
 STMT3; next; STMT6; next; STMT8; //T1
}

STMT 3

async

STMT 1

End finish

STMT 2

next next next

STMT 6 STMT 4 STMT 5

next next

STMT 8 STMT 7

 Dynamic parallelism
 set of tasks registered
 on phaser can vary

T1 , T2 , T3 are registered
on phaser ph in SIG_WAIT

8wait

T
3

T
2

T
1

Phaser Accumulators for Reduction

phaser ph = new phaser(SIG_WAIT);
accumulator a = new accumulator(ph, accumulator.SUM, int.class);
accumulator b = new accumulator(ph, accumulator.MIN, double.class);

// foreach creates one task per iteration
foreach (point [i] : [0:n-1]) phased (ph<SIG_WAIT>) {
 int iv = 2*i + j;
 double dv = -1.5*i + j;
 a.send(iv);
 b.send(dv);
 // Do other work before next

 next;

 int sum = a.result().intValue();
 double min = b.result().doubleValue();
 …
}

send: Send a value to accumulator

next: Barrier operation; advance the phase

result: Get the result from previous phase (no race condition)

Allocation: Specify operator and type

9

Scalability Limitations of Single-level
Barrier + Reduction (EPCC Syncbench)

on Sun 128-thread Niagara T2

10

513 1479

Single-master / multiple-worker implementation

Bottleneck of scalability

Need support for tree-based barriers and reductions, in the presence of dynamic task
parallelism

0

50

100

150

200

250

300

350

400

450

500

threads

Time per barrier [micro secs]

Introduction

Habanero-Java parallel constructs

Async, finish

Phaser

Hierarchical phasers

Programming interface

Runtime implementation

Experimental results

Conclusions

Outline

11

Flat Barrier vs. Tree-Based Barriers

Barrier = gather + broadcast

Gather: single-master implementation is a scalability bottleneck

Tree-based implementation

Parallelization in gather operation

Well-suited to processor hierarchy 12

gather

broadcast
sub-masters in the same tier receive
signals in parallel

Master task
 receive signals
 sequentially

Flat Barrier Implementation

Gather by single master

13

class phaser {
 List <Sig> sigList;
 int mWaitPhase;
 ...
}
class Sig {
 volatile int sigPhase;
 ...
}

// Signal by each task
Sig mySig = getMySig();
mySig.sigPhase++;

// Master waits for all signals
// -> Major scalability bottleneck
for (.../*iterates over sigList*/) {
 Sig sig = getAtomically(sigList);
 while (sig.sigPhase <= mWaitPhase);
}
mWaitPhase++;

API for Tree-based Phasers

Allocation

phaser ph = new phaser(mode, nTiers, nDegree);

● nTiers: # tiers of tree

– “nTiers = 1” is equivalent to flat phasers

● nDegree: # children on a sub-master (node of tree)

Registration

Same as flat phaser

Synchronization

Same as flat phaser

14

(nTiers = 3, nDegree = 2)

Tier-2

Tier-1

Tier-0

Tree-based Barrier Implementation

Gather by hierarchical sub-masters

15

class phaser {
 ...
 // 2-D array [nTiers][nDegree]
 SubPhaser [][] subPh;
 ...
}

class SubPhaser {
 List <Sig> sigList;
 int mWaitPhase;
 volatile int sigPhase;
 ... }

nDegree = 2

Flat Accumulation Implementation

Single atomic object in phaser

16

class phaser {
 List <Sig>sigList;
 int mWaitPhase;
 List <accumulator>accums;
 ...
}

class accumulator {
 AtomicInteger ai;
 Operation op;
 Class dataType;
 ...
 void send(int val) {
 // Eager implementation
 if (op == Operation.SUM) {
 ...
 }else if(op == Operation.PROD){
 while (true) {
 int c = ai.get();
 int n = c * val;
 if (ai.compareAndSet(c,n))
 break;
 else
 delay();
 }
 } else if ...

a.send(v) a.send(v) a.send(v)

heavy contention
on an atomic object

…

Tree-Based Accumulation Implementation

Hierarchical structure of atomic objects

17

class phaser {
 int mWaitPhase;
 List <Sig>sigList;
 List <accumulator>accums;
 ...
}

class accumulator {
 AtomicInteger ai;
 SubAccumulator subAccums [][];
 ... }
class SubAccumulator {
 AtomicInteger ai;
 ... }

nDegree = 2, lighter contention

Introduction

Habanero-Java parallel constructs

Async, finish

Phaser

Hierarchical phasers

Programming interface

Runtime implementation

Experimental results

Conclusions

Outline

18

Experimental Setup

Platforms

Sun UltraSPARC T2 (Niagara 2)

● 1.2 GHz

● Dual-chip 128 threads (16-core x 8-threads/core)

● 32 GB main memory

IBM Power7

● 3.55 GHz

● Quad-chip 128 threads (32-core x 4-threads/core)

● 256 GB main memory

Benchmarks

EPCC syncbench microbenchmark

● Barrier and reduction performance

Java Grande Forum Benchmarks

● LUFact, SOR and MolDyn

Nas Parallel Benchmarks 3.0

● MG and CG

19

Experimental Setup

Experimental variants

JUC CyclicBarrier

● Java concurrent utility

OpenMP for

● Parallel loop with barrier

● Supports reduction

OpenMP barrier

● Barrier by fixed # threads

● No reduction support

Phasers normal

● Flat-level phasers

Phasers tree

● Tree-based phasers

20

omp_set_num_threads(num);
// OpenMP for
#pragma omp parallel
{
 for (r=0; r<repeat; r++) {
 #pragma omp for
 for (i=0; i < num; i++) {
 dummy();
 } /* Implicit barrier here */
 }
}

// OpenMP barrier
#pragma omp parallel
{
 for (r=0; r<repeat; r++) {
 dummy();
 #pragma omp barrier
 }
}

Barrier Performance with EPCC Syncbench
on Sun 128-thread Niagara T2

21

0

50

100

150

200

250

300

350

400

450

500

threads

Time per barrier [micro secs]

920 1931
4551

1289
1211

CyclicBarrier > OMP-for ≈ OMP-barrier > phaser

Tree-based phaser is faster than flat phaser when # threads ≥ 16

Barrier + Reduction with EPCC Syncbench
on Sun 128-thread Niagara T2

22

0

50

100

150

200

250

300

350

400

450

500

threads

Time per barrier [micro secs]

513 1479

OMP for-reduction(+) > phaser-flat > phaser-tree

CyclicBarrier and OMP barrier don’t support reduction

Barrier Performance with EPCC Syncbench
on IBM 128-thread Power7 (Preliminary

Results)

23

0

5

10

15

20

25

30

35

40

45

50

threads

Time per barrier [micro secs]

88.2 186.0 379.4 831.8

CyclicBarrier > phaser-flat > OMP-for > phaser-tree > OMP-barrier

Tree-based phaser is faster than flat phaser when # threads ≥ 16

Barrier + Reduction with EPCC Syncbench
on IBM 128-thread Power7

24

0

5

10

15

20

25

30

35

40

45

50

threads

Time per barrier [micro secs]

187.2

phaser-flat > OMP for + reduction > phaser-tree

Impact of (# Tiers, Degree) Phaser
Configuration on Sun 128-thread Niagara T2

25

0

50

100

150

200

250

300

350

Time per barrier [micro secs]

0

2

4

6

8

10

12

Time per barrier & reduction
[micro secs]

Barrier Reduction

(2 tiers, 16 degree) shows best performance for both barriers and
reductions

Impact of (# Tiers, Degree) Phaser
Configuration on IBM 128-thread Power7

26

Barrier Reduction

0

20

40

60

80

100

120

140

160

180

200

Time per barrier [micro secs]

0

2

4

6

8

10

12

Time per barrier & reduction
[micro secs]

(2 tiers, 32 degree) shows best performance for barrier

(2 tiers, 16 degree) shows best performance for reduction

Application Benchmark Performance
on Sun 128-thread Niagara T2

27

0

2

4

6

8

10

12

Speedup vs. serial

62.8 62.4

31.8 31.5

Preliminary Application Benchmark Performance
on IBM Power7 (SMT=1, 32-thread)

28

0

2

4

6

8

10

12

Speedup vs. serial

Preliminary Application Benchmark Performance
on IBM Power7 (SMT=2, 64-thread)

29

0

2

4

6

8

10

12

Speedup vs. serial

Preliminary Application Benchmark Performance
on IBM Power7 (SMT=4, 128-thread)

30

For CG.A and MG.A, the Java runtime terminates with an internal
error for 128 threads (under investigation)

0

5

10

15

20

25

30

35

40

Speedup vs. serial

Related Work

Our work was influenced by past work on hierarchical barriers, but none of
these past efforts considered hierarchical synchronization with dynamic
parallelism as in phasers

Tournament barrier

D. Hengsen, et. al., “Two algorithms for barrier synchronization”, International Journal of
Parallel Programming, vol. 17, no. 1, 1988

Adaptive combining tree

R. Gupta and C. R. Hill, “A scalable implementation of barrier synchronization using an
adaptive combining tree”, International Journal of Parallel Programming, vol. 18, no. 3, 1989

Extensions to combining tree

M. Scott and J. Mellor-Crummey, “Fast, Contention Free Combining Tree Barriers for Shared-
Memory Multiprocessors,” International Journal of Parallel Programming, vol. 22, no. 4, pp.
449–481, 1994

Analysis of MPI Collective and reducing operations

J. Pjesivac-Grbovic, et. al., “Performance analysis of mpi collective operations”, Cluster
computing, vol. 10, no. 2, 2007 31

Conclusion

Hierarchical Phaser implementations

Tree-based barrier and reduction for scalability

Dynamic task parallelism

Experimental results on two platforms

Sun UltraSPARC T2 128-thread SMP

● Barrier

– 94.9x faster than OpenMP for, 89.2x faster than OpenMP barrier,

– 3.9x faster than flat level phaser

● Reduction

– 77.2x faster than OpenMP for + reduction, 16.3x faster than flat
phaser

IBM Power7 128-thread SMP

● Barrier

– 1.4x faster than OpenMP for, 4.5x slower than OpenMP barrier,

– 2.1x faster than flat level phaser

● Reduction

– 1.6x faster than OpenMP for + reduction,7.7x faster than flat phaser

Future work

Auto tuned selection of # tiers and degree on target platforms

Adaptive selection between tree-based or single-level phasers

32

Backup Slides

33

java.util.concurrent.Phaser library in
Java 7

Implementation of subset of phaser functionality
by Doug Lea in Java Concurrency library

Tree Allocation

A task allocates phaser tree by “new phaser(…)”

The task is registered on a leaf sub-phaser

Only sub-phasers which the task accesses are active at the beginning

Inactive sub-phasers don’t attend barrier

35

Task Registration (Local)

Tasks creation & registration on tree

Newly spawned task is also registered to leaf sub-phasers

Registration to local leaf when # tasks on the leaf < nDegrees

36

Task Registration (Remote)

Task creation & registration on tree

Registration to remote leaf when # tasks on the leaf ≥ nDegree

The remote sub-phaser is activated if necessary

37

Task Registration (Remote)

38

Task creation & registration on tree

Registration to remote leaf when # tasks on the leaf ≥ nDegree

The remote sub-phaser is activated if necessary

Pipeline Parallelism with Phasers
finish {
 phaser [] ph = new phaser[m+1];
 // foreach creates one async per iteration
 foreach (point [i] : [1:m-1]) phased (ph[i]<SIGNAL>, ph[i-1]<WAIT>)
 for (int j = 1; j < n; j++) {
 a[i][j] = foo(a[i][j], a[i][j-1], a[i-1][j-1]);
 next;
 } // for
 } // foreach
} // finish

(i=1, j=1)

(i=1, j=2)

(i=1, j=3)

(i=1, j=4)

(i=2, j=1)

(i=2, j=2)

(i=2, j=3)

(i=3, j=1)

(i=3, j=2)

(i=4, j=1)

j

i

: Loop carried dependence

(1,1) (2,1) (3,1) (4,1)

(1,2)

(1,3)

(1,4)

(i=2, j=4)

(i=3, j=3)

(i=3, j=4)

(i=4, j=2)

(i=4, j=3)

(i=4, j=4)

ph[1]<SIG>
ph[0]<WAIT>

next next next next

next next next next

next next next next

next next next next
39

ph[1] ph[2] ph[3]

ph[2]<SIG>
ph[1]<WAIT>

ph[3]<SIG>
ph[2]<WAIT>

ph[4]<SIG>
ph[3]<WAIT>

ph[0] T
1

T
2

T
3

T
4

40

1. Wait for master in busy-wait loop
2. Call Object.wait() to suspend (release CPU)

doWait() {
 WaitSync myWait =
getCurrentActivity().waitTbl.get(this);

 if (isMaster(…)) { … } else { // Code for
workers

 boolean done = false;
 while (!done) {
 for (int i = 0; < WAIT_COUNT; i++) {
 if (masterSigPhase >
myWait.waitPhase) {

 done = true; break;
 } }

 if (!done) {
 int currVal = myWait.waitPhase;
 int newVal = myWait.waitPhase + 1;
 castID.compareAndSet(currVal,
newVal);

 synchronized (myWait) {
 if (masterSigPhase <=
myWait.waitPhase)

 myWait.wait(); // Java library
wait operation

 } } } }

Thread Suspensions for Workers

Programmer can specify

41

• Call Object.notify() to wake workers up if necessary
doWait() {
 WaitSync myWait =
getCurrentActivity().waitTbl.get(this);

 if (isMaster(…)) {// Code for master
 waitForWorkerSignals(); masterWaitPhase+
+;

 masterSigPhase++;
 int currVal = masterSigPhase-1;
 int newVal = masterSigPhase;
 if (!castID.compareAndSet(currVal,
newVal)) {

 for (int i = 0; i < waitList.size(); i+
+) {

 final WaitSync w = waitList.get(i);
 synchronized (w) {
 waitObj.notifyAll(); // Java
library notify ope

 }
 }
 }
 } else { … }
}

Wake suspended Workers

Accumulator API
§ Allocation (constructor)

§ accumulator(Phaser ph, accumulator.Operation op, Class type);
§ ph: Host phaser upon which the accumulator will rest
§ op: Reduction operation

§ sum, product, min, max, bitwise-or, bitwise-and and bitwise-exor
§ type: Data type

§ byte, short, int, long, float, double
§ Send a data to accumulator in current phase

§ void Accumulator.send(Number data);
§ Retrieve the reduction result from previous phase

§ Number Accumulator.result();
§ Result is from previous phase, so no race with send

42

Different implementations for the accumulator API

§ Eager
§ send: Update an atomic var in the accumulator
§ next: Store result from atomic var to read-only storage
§ Dynamic-lazy
§ send: Put a value in accumCell
§ next: Perform reduction over accumCells
§ Fixed-lazy
§ Same as dynamic-lazy (accumArray instead of accumCells)
§ Lightweight implementations due to primitive array access
§ For restricted case of bounded parallelism (up to array size)

43

* fixed size array

