Toward Understanding Heterogeneity in Computing

Arnold L. Rosenberg Ron C. Chiang Electrical & Computer Engineering Colorado State University Fort Collins, CO, 80523, USA

One encounters *HETEROGENEITY* in virtually all modern computing systems

One encounters heterogeneity in virtually all modern computing systems

• Computers in clusters/grids differ in power (*NODE-HETEROGENEITY*).

One encounters heterogeneity in virtually all modern computing systems

- Computers in clusters/grids differ in power (*node-heterogeneity*).
- Computers intercommunicate across varied networks (*LINK-HETEROGENEITY*).

One encounters heterogeneity in virtually all modern computing systems

- Computers in clusters/grids differ in power (*node-heterogeneity*).
- Computers intercommunicate across varied networks (*link-heterogeneity*).

WE FOCUS ON NODE-HETEROGENEITY.

Heterogeneity complicates the efficient use of multicomputer platforms

Heterogeneity complicates the efficient use of multicomputer platforms

- BUT CAN IT ENHANCE THEIR PERFORMANCE?

Heterogeneity complicates the efficient use of multicomputer platforms

- but can it enhance their performance?

HOW DOES ONE STUDY THIS QUESTION RIGOROUSLY?

Detailed Questions about Heterogeneity

• WHAT MAKES ONE CLUSTER MORE POWERFUL THAN ANOTHER?

Detailed Questions about Heterogeneity

- What makes one cluster more powerful than another?
- ARE YOU BETTER OFF

— WITH ONE SUPER-FAST COMPUTER AND MANY "AVERAGE" ONES?

Detailed Questions about Heterogeneity

- What makes one cluster more powerful than another?
- ARE YOU BETTER OFF

— WITH ONE SUPER-FAST COMPUTER AND MANY "AVERAGE" ONES?

- WITH ALL COMPUTERS "MODERATELY" FAST?

- What makes one cluster more powerful than another?
- Are you better off with
 - one super-fast computer and many "average" ones
 - or with all computers "moderately" fast?
- IF YOU COULD "SPEED UP" JUST ONE COMPUTER ... WHICH ONE WOULD YOU CHOOSE?

- What makes one cluster more powerful than another?
- Are you better off with
 - one super-fast computer and many "average" ones
 - or with all computers "moderately" fast?
- IF YOU COULD "SPEED UP" JUST ONE COMPUTER ... WHICH ONE WOULD YOU CHOOSE?
 - THE FASTEST ONE?

- What makes one cluster more powerful than another?
- Are you better off with
 - one super-fast computer and many "average" ones
 - or with all computers "moderately" fast?
- IF YOU COULD "SPEED UP" JUST ONE COMPUTER ... WHICH ONE WOULD YOU CHOOSE?
 - THE FASTEST ONE?
 - THE SLOWEST ONE?

Cluster ${\mathcal C}$ has computers C_1, C_2, \ldots, C_n

Cluster \mathcal{C} has computers C_1, C_2, \ldots, C_n

 C_i completes one unit of work in ρ_i time units.

Cluster \mathcal{C} has computers C_1, C_2, \ldots, C_n

 C_i completes one unit of work in ρ_i time units.

 $\mathcal{C}\xspace{\space{2}}\xspace{2}\x$

$$\mathsf{P}_{c} = \langle \rho_{1}, \rho_{2}, \dots, \rho_{n} \rangle$$

Cluster C has computers C_1, C_2, \ldots, C_n

 C_i completes one unit of work in ρ_i time units.

C's heterogeneity profile: $\mathsf{P}_{c} = \langle \rho_{1}, \rho_{2}, \dots, \rho_{n} \rangle$

One finds in

M. Adler, Y. Gong, A.L. Rosenberg (2008): On "exploiting" node-heterogeneous clusters optimally. *Theory of Computing Systems* 42, 465–487

a solution to the CLUSTER-EXPLOITATION PROBLEM

— a search for a schedule that maximizes C's rate of completing work

Cluster C has computers C_1, C_2, \ldots, C_n

 C_i completes one unit of work in ρ_i time units.

C's heterogeneity profile: $\mathsf{P}_{c} = \langle \rho_{1}, \rho_{2}, \dots, \rho_{n} \rangle$

One finds in

M. Adler, Y. Gong, A.L. Rosenberg (2008): On "exploiting" node-heterogeneous clusters optimally. *Theory of Computing Systems* 42, 465–487

a solution to the CLUSTER-EXPLOITATION PROBLEM

THE OPTIMAL SCHEDULE FOR C DEPENDS ONLY ON P_c

Cluster C has computers C_1, C_2, \ldots, C_n

 C_i completes one unit of work in ρ_i time units.

C's heterogeneity profile: $\mathsf{P}_c = \langle \rho_1, \rho_2, \dots, \rho_n \rangle$

One finds in

M. Adler, Y. Gong, A.L. Rosenberg (2008): On "exploiting" node-heterogeneous clusters optimally. *Theory of Computing Systems* 42, 465–487

a solution the CLUSTER-EXPLOITATION PROBLEM

The optimal schedule for C depends only on P_c

THE WORK COMPLETED UNDER THIS SCHEDULE IS OUR MEASURE OF <u>C's "POWER"</u>

Cluster C has computers C_1, C_2, \ldots, C_n

 C_i completes one unit of work in ρ_i time units.

C's heterogeneity profile: $\mathsf{P}_{c} = \langle \rho_{1}, \rho_{2}, \dots, \rho_{n} \rangle$

C's *"power":* the work completed by the optimal solution to the CLUSTER-EXPLOITATION PROBLEM

The expression for this work is complicated

— so we also measure C's *"power"* by its

HECR: Homogeneous Equivalent Computing Rate

Cluster C has computers C_1, C_2, \ldots, C_n

 C_i completes one unit of work in ρ_i time units.

C's heterogeneity profile: $\mathsf{P}_c = \langle \rho_1, \rho_2, \dots, \rho_n \rangle$

C's <u>HECR</u> (Homogeneous Equivalent Computing Rate) ... the computing rate $\rho^{(c)}$ such that

the *HOMOgeneous* cluster with profile $\langle \rho^{(c)}, \rho^{(c)}, \dots, \rho^{(c)} \rangle$

completes work at the same rate as \mathcal{C} .

ON TO OUR QUESTIONS!

Which ONE Computer Should You Speed UP?

Speeding up computer C_i additively by the amount φ ...

replaces profile

$$\mathsf{P}_{\mathcal{C}} = \langle \rho_1, \ldots, \rho_{i-1}, \overline{\rho_i}, \rho_{i+1}, \ldots, \rho_n \rangle$$

by profile

$$\mathsf{P}_{c} = \langle \rho_{1}, \ldots, \rho_{i-1}, \overline{\rho_{i} - \varphi}, \rho_{i+1}, \ldots, \rho_{n} \rangle$$

Say that $0 < \varphi < \min_i \{\rho_i\}$, so every C_i can be sped up.

Speeding up computer C_i additively by the amount φ :

$$\langle \rho_1, \ldots, \rho_{i-1}, \overline{\rho_i}, \rho_{i+1}, \ldots, \rho_n \rangle \longrightarrow \langle \rho_1, \ldots, \rho_{i-1}, \overline{\rho_i - \varphi}, \rho_{i+1}, \ldots, \rho_n \rangle$$

<u>Theorem</u>.

Under the additive-speedup scenario, the most advantageous single computer to speed up is C's fastest computer.

Speeding up computer C_i additively by the amount φ :

$$\langle \rho_1, \ldots, \rho_{i-1}, \overline{\rho_i}, \rho_{i+1}, \ldots, \rho_n \rangle \longrightarrow \langle \rho_1, \ldots, \rho_{i-1}, \overline{\rho_i - \varphi}, \rho_{i+1}, \ldots, \rho_n \rangle$$

Theorem.

Under the additive-speedup scenario, the most advantageous single computer to speed up is C's <u>fastest</u> computer.

Initial profile: (1, 1/2, 1/3, 1/4)

Speedup amount: $\varphi = 1/16$

	Speed up	Work ratio				
i	computer C_i	OLD \div NEW				
1	$\langle 15/16, 1/2, 1/3, 1/4 \rangle$	1.008				
2	$\langle 1, 7/16, 1/3, 1/4 \rangle$	1.014				
3	$\langle 1, 1/2, 13/48, 1/4 \rangle$	1.034				
4	$\langle 1, 1/2, 1/3, 3/16 \rangle$	1.159				

Speeding up computer C_i additively by the amount φ :

$$\langle \rho_1, \ldots, \rho_{i-1}, \overline{\rho_i}, \rho_{i+1}, \ldots, \rho_n \rangle \longrightarrow \langle \rho_1, \ldots, \rho_{i-1}, \overline{\rho_i - \varphi}, \rho_{i+1}, \ldots, \rho_n \rangle$$

<u>Theorem</u>.

Under the additive-speedup scenario, the most advantageous single computer to speed up is C's fastest computer.

	Speed up	Work ratio				
i	computer C_i	$OLD \div NEW$				
1	$\langle 15/16, 1/2, 1/3, 1/4 \rangle$	1.008				
2	$\langle 1, 7/16, 1/3, 1/4 \rangle$	1.014				
3	$\langle 1, 1/2, 13/48, 1/4 \rangle$	1.034				
4	$\langle 1, 1/2, 1/3, 3/16 \rangle$	1.159				

INTUITION: MORE BANG FOR THE BUCK

Speeding up computer C_i multiplicatively by factor ψ . . .

replaces profile

$$\mathsf{P}_{\mathcal{C}} = \langle \rho_1, \ldots, \rho_{i-1}, \overline{\rho_i}, \rho_{i+1}, \ldots, \rho_n \rangle$$

by profile

$$\mathsf{P}_{c} = \langle \rho_{1}, \ldots, \rho_{i-1}, \overline{\psi \rho_{i}}, \rho_{i+1}, \ldots, \rho_{n} \rangle$$

Say that $0 < \psi < 1$, so every C_i can be sped up.

Speeding up computer C_i multiplicatively by factor ψ :

$$\langle \rho_1, \ldots, \rho_{i-1}, \overline{\rho_i}, \rho_{i+1}, \ldots, \rho_n \rangle \longrightarrow \langle \rho_1, \ldots, \rho_{i-1}, \overline{\psi \rho_i}, \rho_{i+1}, \ldots, \rho_n \rangle$$

Say that $0 < \psi < 1$, so every C_i can be sped up finitely.

"<u>Theorem</u>."

Under the multiplicative-speedup scenario:

The most advantageous single computer to speed up is C's fastest computer ...

Speeding up computer C_i multiplicatively by factor ψ :

$$\langle \rho_1, \ldots, \rho_{i-1}, \overline{\rho_i}, \rho_{i+1}, \ldots, \rho_n \rangle \longrightarrow \langle \rho_1, \ldots, \rho_{i-1}, \overline{\psi \rho_i}, \rho_{i+1}, \ldots, \rho_n \rangle$$

Say that $0 < \psi < 1$, so every C_i can be sped up finitely.

"<u>Theorem</u>."

Under the multiplicative-speedup scenario:

The most advantageous single computer to speed up is C's fastest computer ...

- UNLESS

Speeding up computer C_i multiplicatively by factor ψ :

$$\langle \rho_1, \ldots, \rho_{i-1}, \overline{\rho_i}, \rho_{i+1}, \ldots, \rho_n \rangle \longrightarrow \langle \rho_1, \ldots, \rho_{i-1}, \overline{\psi \rho_i}, \rho_{i+1}, \ldots, \rho_n \rangle$$

Say that $0 < \psi < 1$, so every C_i can be sped up finitely.

"<u>Theorem</u>."

Under the multiplicative-speedup scenario:

The most advantageous single computer to speed up is C's fastest computer ...

- UNLESS <u>either</u> this computer is already "very fast" <u>or</u> the speedup factor ψ is "very small."

At least one computer is not "very fast":

_				

- A 4-computer cluster
 - HOMOgeneous (before any speedups)
- Bar height is ρ -value . . .
 - a lower bar is a faster computer

At least one computer is not "very fast":

- A 4-computer cluster
 - HOMOgeneous (before any speedups)
- Bar height is ρ -value ...

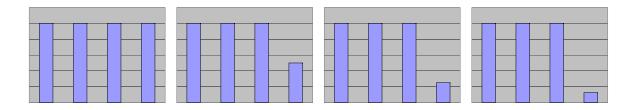
— a lower bar is a faster computer

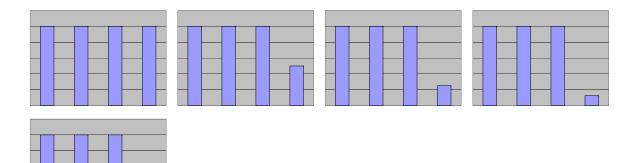
START SPEEDING UP ONE COMPUTER OPTIMALLY

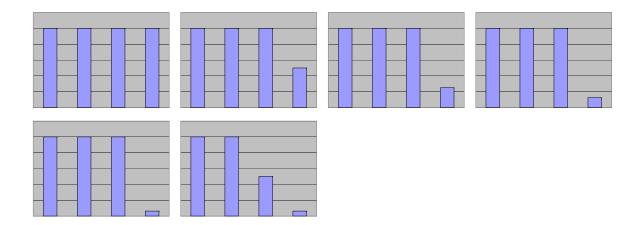
- BY THE FACTOR $\psi = 1/2$

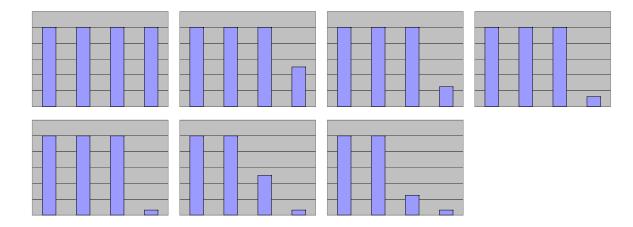
At least one computer is not "very fast":

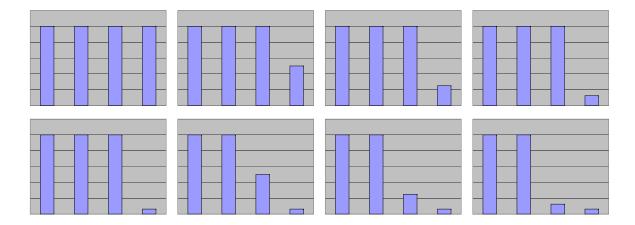
At least one computer is not "very fast":

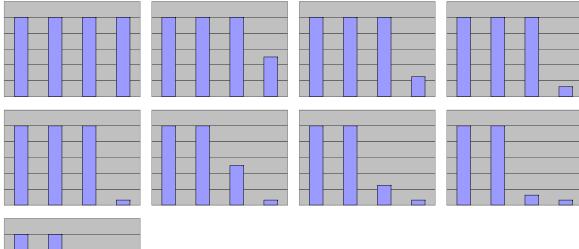


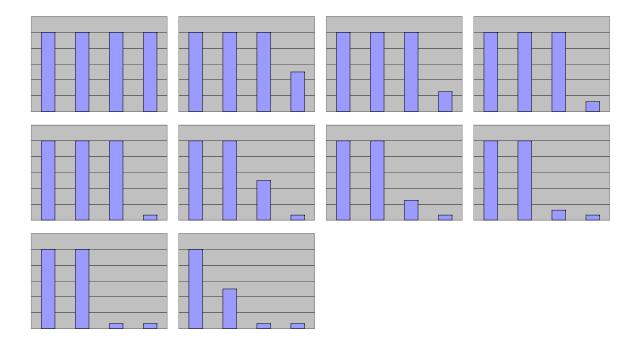


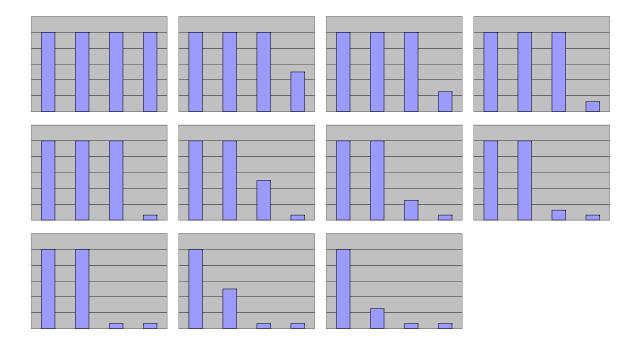


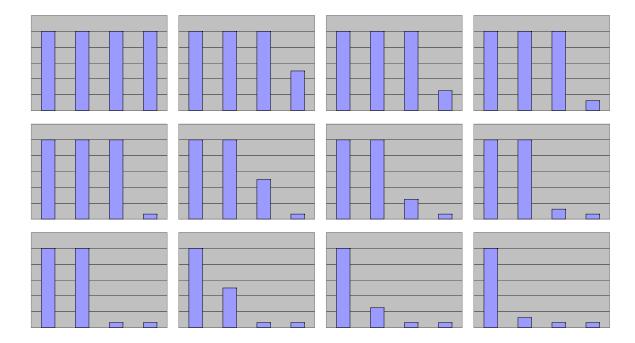


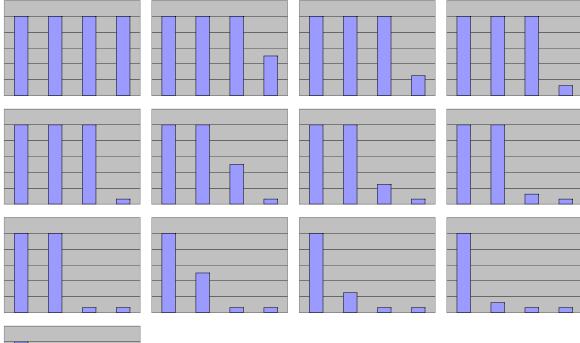


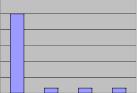


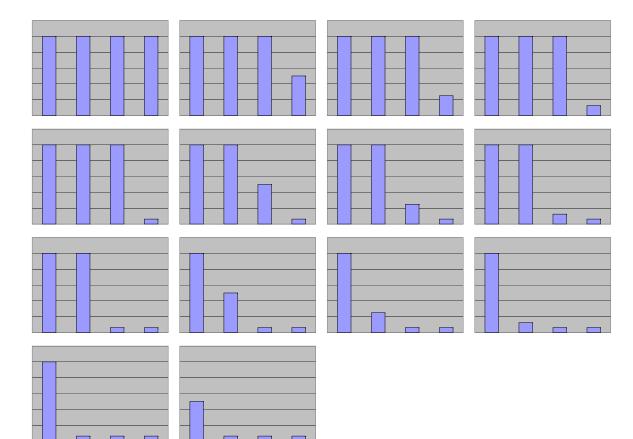


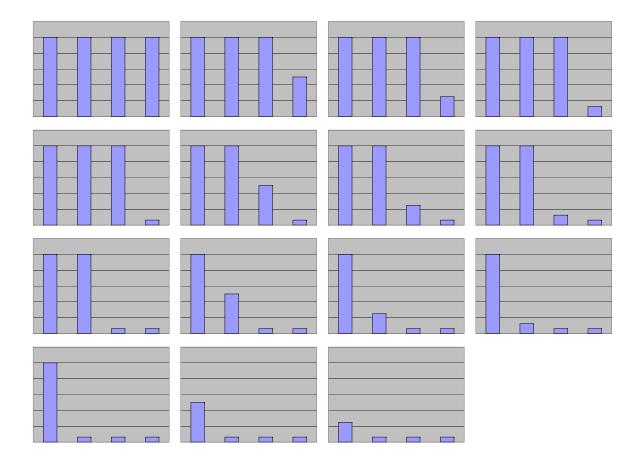


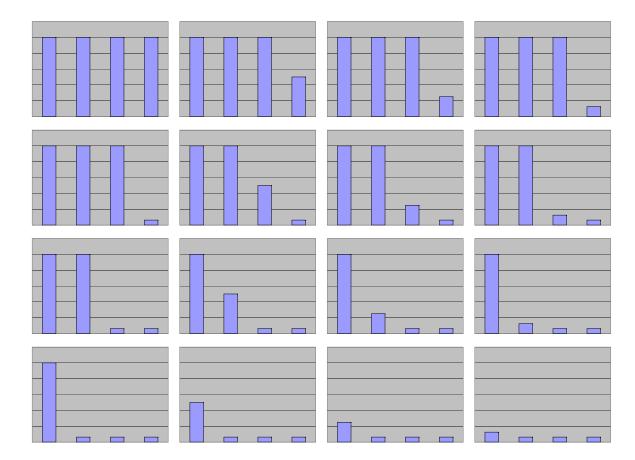




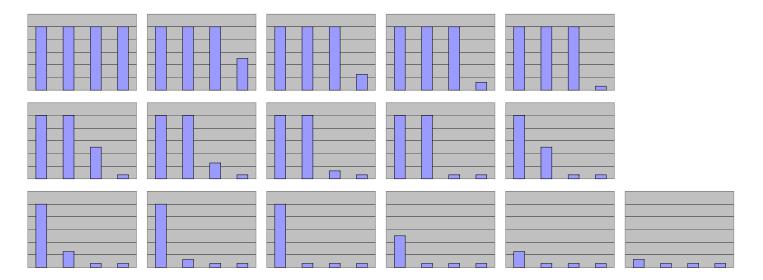






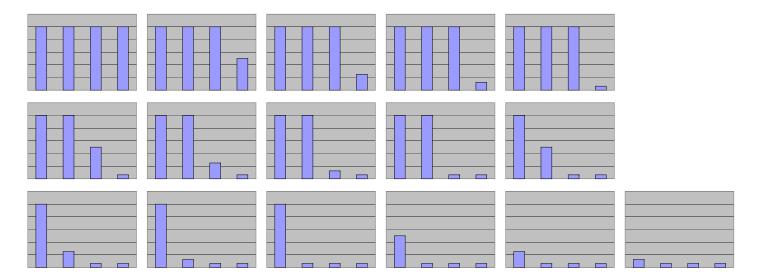


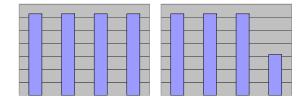
At least one computer is not "very fast":



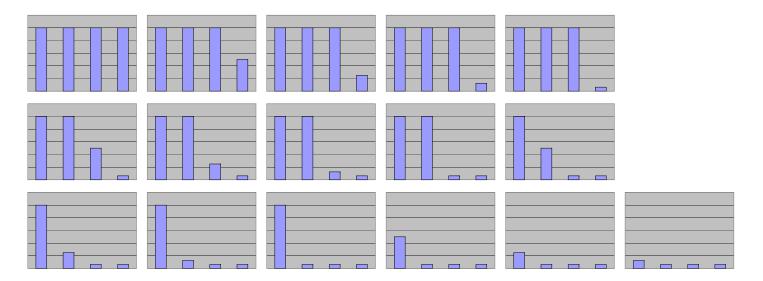
_								
_								
_								

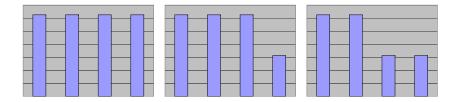
At least one computer is not "very fast":



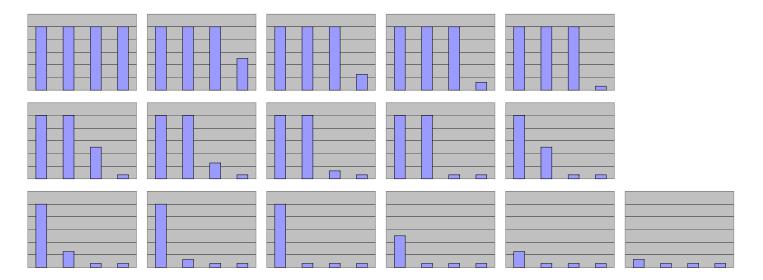


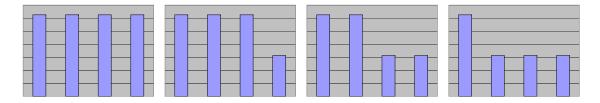
At least one computer is not "very fast":



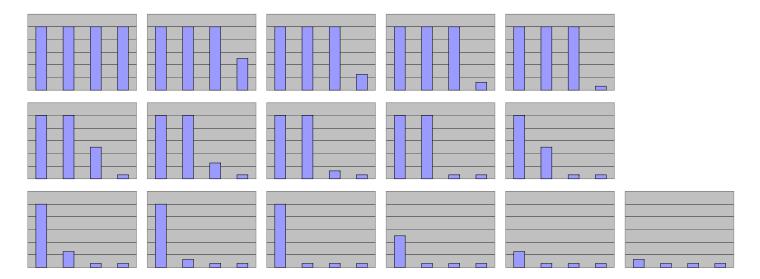


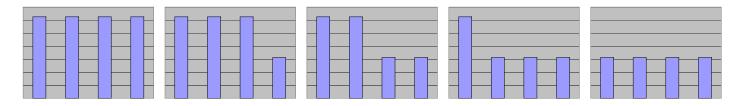
At least one computer is not "very fast":





At least one computer is not "very fast":





What Makes Clusters Powerful?

Absolute and Relative Answers

Say that cluster C_1 , with profile P_1 , and cluster C_2 , with profile P_2 , share the same mean speed.

<u>Theorem</u>.

Say that C_1 and C_2 each has 2 computers.

Then

 \mathcal{C}_1 outperforms \mathcal{C}_2

if and only if

 $VAR(\mathsf{P}_1) > VAR(\mathsf{P}_2).$

Say that cluster C_1 , with profile P₁, and cluster C_2 , with profile P₂, share the same mean speed.

Say that C_1 and C_2 each has 2 computers. Then C_1 outperforms C_2 if and only if $VAR(\mathsf{P}_1) > VAR(\mathsf{P}_2)$.

Corollary.

HETEROGENEITY CAN ACTUALLY LEND POWER TO A CLUSTER

- if 2-computer clusters C_1 and C_2 share the same mean speed
- and C_1 is heterogeneous, while C_2 is homogeneous

then C_1 outperforms C_2 .

Say that cluster C_1 , with profile P_1 , and cluster C_2 , with profile P_2 , share the same mean speed.

Say that C_1 and C_2 each has 2 computers. Then C_1 outperforms C_2 if and only if $VAR(\mathsf{P}_1) > VAR(\mathsf{P}_2)$.

Unfortunately:

THIS RESULT DOES NOT EXTEND TO 3-COMPUTER CLUSTERS

Say that cluster C_1 , with profile P_1 , and cluster C_2 , with profile P_2 , share the same mean speed.

Say that C_1 and C_2 each has 2 computers. Then C_1 outperforms C_2 if and only if $VAR(\mathsf{P}_1) > VAR(\mathsf{P}_2)$.

Unfortunately:

This result does not extend to 3-computer clusters

BUT . . .

Say that cluster C_1 , with profile P_1 , and cluster C_2 , with profile P_2 , share the same mean speed.

<u>Theorem</u>.

Say that C_1 and C_2 each has 3 computers. There exists a threshold $\theta > 0$ such that:

if $VAR(\mathsf{P}_1) \ge VAR(\mathsf{P}_2) + \theta$ then \mathcal{C}_1 outperforms \mathcal{C}_2 .

Say that cluster C_1 , with profile P_1 , and cluster C_2 , with profile P_2 , share the same mean speed.

<u>Theorem</u>.

Say that C_1 and C_2 each has 3 computers. There exists a threshold $\theta > 0$ such that:

if $VAR(\mathsf{P}_1) \ge VAR(\mathsf{P}_2) + \theta$ then \mathcal{C}_1 outperforms \mathcal{C}_2 .

This result seems (based on simulations) to extend to big clusters.