N
e
ul
e
J|om]]
i
KK
il
n |||

Using the Middle Tier to Understand Cross-
Tier Delay in a Multi-tier Application

Haichuan Wang®, Qiming Teng),
Xiao ZhongW, Peter F. Sweneey@)

(1) IBM Research — China, {wanghaic,tenggim,zhongx}@cn.ibm.com
(2) IBM Watson Research Center, pfs@cn.ibm.com

© 2010 IBM Corporation

)
'H!l:'g Using the Middle Tier to Understand Cross-Tier Delay in a Multi-tier Application

Motivation

= Enterprise applications have multi-tier architectures

= A performance bottleneck on any tier may cause the whole system to
under perform

L !
e Lse |

Observed:
Low throughput Which tier causes
Low CPU utilization o the bottleneck?

2 © 2009 IBM Corporation

IS

Using the Middle Tier to Understand Cross-Tier Delay in a Multi-tier Application

NTR

: : = : Applicati Dat
1. Collect system metrics on all tiers L] | <> [APRIsalon| —> | Balobese
— Statistics on each machine | ym i U
: 1 — LDAP
2. Aggregate resource consumption T Server
Client

— Interaction between machines
3. Build a whole system interaction model

= Some Limitations

—Hard to collect system metrics on all tiers in some production
systems
* e.g. Thousands of clients; out-bound servers

— Complex
— Identify performance bottlenecks based on a large number of metrics

3 © 2009 IBM Corporation

alnllﬁ Using the Middle Tier to Understand Cross-Tier Delay in a Multi-tier Application

Proposed Approach — Focus on the Middle-tier

» Focus on the middle-tier
— Application server (Java based)

Client

= Track cross-tier method invocations in Java level

—ldentify method invocations that handle cross-tier
interactions

— Extract “contextual information” associated with
these method invocations
= |dentify the blocking in native level
—Trace thread interruptible (blocking) state
—Map back to the cross-tier method invocations

» Refer to the blocking source tier
—Based on the contextual information

Example
SocketRead(...)

v

Call Stack: LDAP Connector
IP Address: xxx = LDAP Server

v

Thread Blocking State:
SocketRead(...): Blocked

v

Tier of Blocking Source:
LDAP server (xxx)

© 2009 IBM Corporation

IFIFS =

ATLANTA

Using the Middle Tier to Understand Cross-Tier Delay in a Multi-tier Application E S=ETE

Solution Architecture Overview

= Constructing Cross-Tier Delay data from the following data
—Method invocation by dynamically byte code instrumentation
—Context information by dynamically instrumentation
—Thread States by JVMTI agent and a kernel module

Classes for cross tier Byte Code Cross Tier
communications Instrumentation Delay Data
; Clients
--------- _ >
® Method Invocations — > DB
< Server
5\ RS
. (2
@ Context Information m "LDAP
= Server
® Thread States —> (%
D

5 © 2009 IBM Corporation

IS

ATLANTA

Using the Middle Tier to Understand Cross-Tier Delay in a Multi-tier Application

» Tracing rules driven Java byte code instrumentation

» Method Signature

» Parameters Masks

* Return Value Indicator
* Field List

[Tracing Rules]

Class —’_‘
|
|

 Class Loading

A

Method Instrumenter

Running Y
Runtime Class
Recorder |<«—

[Trace }

Example Tracing Rules

Met hod:
java.io.InputStream java.net.Plai
nSocketlmpl.getinputStream();

Par amet er s Mask:

Record Return: False

Fi el ds:
java.net.InetAddress address;
java.io.FileDescriptor fd;

Met hod:

i nt java.net.SocketlnputStream.so
cketReadO(java.io.FileDescriptor
par a0, byte[] paral, int para2,

int para3, int parad);

Par amet ers Mask: 10000

Record Return: True

Fi el ds:

* Method Invocation Time & Duration
* Method Invocation Stack

¢ Value of Parameters

» Value of the Return
» Value of the Fields

© 2009 IBM Corporation

IS

ATLANTA

Using the Middle Tier to Understand Cross-Tier Delay in a Multi-tier Application

» Three different approaches for dynamically instrumenting methods

— Create proxy methods

Before
Instrumentation

After

Instrumentation

Caller

Caller
call Foo(i)

call

\ 4
Foo(int i)

T modify |
method name

]
| |2: create
1 |aproxy

Call Foo(i)

call l

N

Foo(int i) {
Record info before

}

— call prefix_Foo(i)
Record info after

)

gl

Runtime Recorder

.| methodEntry(...)

methodEXxit(...)
recordPara(...)

> recordField(...)

recordReturn(...)

prefix_Foo(int i)

—Directly instrument the prolog and epilog of an identified method
* In case we cannot insert the proxy
—Instrument all call-sites of an identified method
 For tracing “JNI” methods in the JVM without the JNI prefix mechanism

© 2009 IBM Corporation

IS

Using the Middle Tier to Understand Cross-Tier Delay in a Multi-tier Application

Trace Thread Blocking

= Kernel Module
—Based on Kprobe (Linux)
—Inserted into OS scheduler

—Only collect thread interruptible
native states (blocked)

= JVMTI Agent

—Assist to map native threads to
corresponding Java threads

Application Java Process

Capture Java threads to
Native threads mapping

Write

/ Trace /
filell?sryosc'éem Relay FS
Config Trace

Capture Thread
Switch and State

OS Kernel Space

© 2009 IBM Corporation

2010
ATLANTA

IS

Using the Middle Tier to Understand Cross-Tier Delay in a Multi-tier Application

Merge the Data — Analysis Engine

Process Method
Invocation Data

fd = fd@343f343f
Address =9.186.62.68

Thread = WebContainerl
Start =10 ms

End = 20ms

fd = fd@343f343f

Callstack = Socket Read ...

Merge Java And
Native Level

Method Invocation Trace

Thread Blocking Trace

Analysis Result

Thread = WebContainerl
SocketRead on 9.186.62.68
Start = 10ms; End = 20ms

Aggregate by
Contexts (Tiers)

Thread = WebContainerl
Blocked on 9.186.62.68
Duration =8 ms

—

Thread = Web Container 1
Blocking start =11 ms
Blocking end =19 ms

Thread = WebContainer2
Blocked on 9.186.62.68
Duration =6 ms

Thread = WebContainerl
Blocked on 9.186.62.100
Duration =20 ms

Thread = WebContainer2
Blocked on 9.186.62.100
Duration =12 ms

Blocked on 9.186.62.68
Duration =14 ms

Blocked on 9.186.62.100
Duration =32 ms

© 2009 IBM Corporation

)
'H!l:'g Using the Middle Tier to Understand Cross-Tier Delay in a Multi-tier Application

Case Study

= DayTrader
—Multi-tier architecture

—J2EE application Ek

—Simulate Stock Trading \k

» Deployment Details in the Study

Client Elements

DayTrader
Version: 2.0 -
Application Server —
Client ” IBM WAS Version 6.1.0 Datab
_ JVM atabase
Simulator IBM Java 5.0 IBM DB2 8.0
(O) -
RHEL Kernel 2.6.18
Intel Dual-Core Intel P4 Xeon, 2.4GHz
Xeon LV 1.66GHz, Intel Xeon 5345, 2.33GHz 1 Processor, HT Enabled
2 Processors, 4G Memory 2 Processors, 4G Memory 2G Memory

10 © 2009 IBM Corporation

5y

ATLANTA

Using the Middle Tier to Understand Cross-Tier Delay in a Multi-tier Application E S=ETE

Low Clients Loads - High Clients Loads

Config Low Clients Load High Clients Load
Load Limit client requests to 650/s Increase client requests to 2900/s
Utilization WAS CPU % = 6.5% WAS CPU % = 30.9%
DB Server De|ay/WAS Delay WAS Delay Clients Delay
33.83s 0.69s 29.62 s 50.92 s
(21.71% 0.44%) (6.25% 10.75%)
Cross Tier
Wait Time
Analysis
from
Middle Tier’'s 191 26
Perspective .20 S
P (77.85%) 393.10 s

Clients Delay

Clients cause the most
cross tier waiting time

DB Server Delay (83.00%)

DB server causes the most
cross tier waiting time

11

© 2009 IBM Corporation

IS

Using the Middle Tier to Understand Cross-Tier Delay in a Multi-tier Application

= Cross tier delay on DB server is in SocketRead invocations
—Action : Study the socket read time in two loads

0.25 ‘ ‘ ‘ 0.25
2 02| Avg = 0.746 1 02 ¢ Avg = 1.857
i Std = 2.347 Std = 7.013
5 0.5 | 1015t
(0]
N
g 0.1+ 1 01}
o
< 005 | 0.05 |
0 I N L
0 0.5 1 1.5 2 0 0.5 1 1.5 2
] Socket Read Time(ms) - Low Load Socket Read Time(ms) - High Load
= Conclusion

—DB server’s slow response causes the low 30% utilization in WAS

= Action
—Upgrade DB server to 2 Xeon 5345 Processors, total 8 way.
—Result: Client Request Rate > 4,600/s. WAS CPU utilization = 51%

12 © 2009 IBM Corporation

e

Using the Middle Tier to Understand Cross-Tier Delay in a Multi-tier Application E S=ETE

High Clients Loads - Upgrade DB Server

Config High Clients Load Upgrade DB Server
Load Increase client requests to 2900/s Reach to over 4,600/s
Utilization WAS CPU % = 30.9% WAS CPU % =51%
WAS Delay Clients Delay WAS Delay Clients Delay
29062 s 50.92 s 45.81 s 53.52 s
(6.25%) 0.75%) (9.94%) 11.61%)
Cross Tier
Wait Time
Analysis
from
Middle Tigr’s 361.69 s
Perspective 393.10 s (78.46%)

DB Server Delay (83.00%)

DB server causes the most
cross tier waiting time

DB Server Delay

Blocking time on DB
server reduced.

13

© 2009 IBM Corporation

IS

Using the Middle Tier to Understand Cross-Tier Delay in a Multi-tier Application

ANTRA

» Approaches Used to Reduce Overhead
—Kernel Module
 Only filter block threads
—Byte Code Instrumentation
* Only instrument selected method invocations
» Aggressively use final and private keywords
e Cache trace events in an array based in-memory buffer
» Resulting Overhead
—Config: DB server uses the upgraded hardware configuration (8 way)

Tracing Rule Request Rate Slow Down
Base 4,699/s 0.0%
With the tool 4,169/s 11.3%

14 © 2009 IBM Corporation

Using the Middle Tier to Understand Cross-Tier Delay in a Multi-tier Application

15

Thank you!

Q&A

© 2009 IBM Corporation

