Executing Task Graphs
Using Work-Stealing

Jim Sukha
MIT CSAIL
IPDPS, 4/21/2010

Kunal Agrawal (Washington University in St. Louis)
Charles E. Leiserson (MIT)

Task Graphs

A task graph is a directed acyclic graph (dag) where
Every node A is a task requiring computation,

Every edge (A, B) means that the computation of B
depends on the result of A’s computation.

)

T

Example: Counting Paths

Counting the number of paths through a dag can be
expressed as a task graph.

The value of a node X is the
sum of the values of X’s
immediate predecessors.

Source starts
with value 1.

Fork-Join Languages

Some task graphs can be executed in parallel using
a fork-join language such as Cilk++.

void £1() { fl

Ic::i(.l)l.];{_spawn B(); | . .
CO); s t

cilk sync;
OG-0

}
7 |int main() {
void £2() { :;tTTSPawn £1();
E(O); F(O, GO 'lk, .
} cilk_sync;
s |} i

Graphs with Arbitrary Dependencies

Unfortunately, one can not directly express task

graphs with arbitrary dependencies using only
spawn and sync.

1
Counting 1
paths in a
non-series- 1
parallel dag.
1 2 2

Question: Can we efficiently execute arbitrary task
graphs in parallel in a fork-join language such as Cilk++?

Our Contributions: Nabbit

We are developing Nabbit, a Cilk++ library for
executing task graphs with arbitrary dependencies.

Nabbit is built on top of Cilk++. It utilizes Cilk++’s
provably-efficient work-stealing scheduler without
any modification to the Cilk++ runtime.

Using Nabbit, the computation of an individual task
graph node can itself be parallel.

Provable Bounds for Nabbit

We are developing Nabbit, a Cilk++ library for
executing task graphs with arbitrary dependencies.

Nabbit offers provable bounds on the time
required for parallel execution of (static and
dynamic) task graphs.

The time bounds for Nabbit are asymptotically
optimal for task graphs whose nodes have
constant in-degree and out-degree.

Outline

Static Task Graphs using Nabbit

Nabbit Implementation

Completion Time Bound

Dynamic Task Graphs and Other Extensions

Dynamic-Programming Example

Generic dynamic programs can often be
expressed as a task graph.

gi(M(i-1, j-1) MM e
M(i'j):max—< E(I:J) -) _J _J U)

(L) |(1,3)

—

EGi, §) = g2(M(L,), M2, §).... M(i-1,) 23

Uy

Static Task Graphs

For this example, we can use a static task graph,
i.e., a task graph where the structure of the dag is
known before the execution begins.

g,(M(i-1, j-1)) V) (o
M(, j) = max— E(i, j) — e

(1,2)| |(1,3)

—

EGi, §) = g2(M(L,), M2, §).... M(i-1,) 23

Uy

Create a node for every cell M(i, j).

Static Task Graphs

For this example, we can use a static task graph,
i.e., a task graph where the structure of the dag is
*
known before the execution begins.
91(M(i-1, j-1)) K R (o 3;
M(i' j) - max_< E(l.' j) - J g J . J \. J

Y
) () (

(1,2)={(1,3)

J \.

—

- . N e S
EG, J) = g2 M(L, j), M(2,))..... Mi-1, §))| .0) =l 1) _E;)]
CHOHH

Create a node for every cell M(i, j). Then add dependency edges.

* In Nabbit, static task graphs still require
We assume the compute time for each node may be unknown.

Interface for Static Nabbit

For static task graphs, each task graph node is
derived from Nabbit's DAGNode class, and

overrides the node’s Compute () method.

class Mnode:
Mnode (1nt key,
void Compute () ;

il

e 1%Ec

{
MBle g, (Cl alg Jow

Typically, each node

—— needs to know its
identity, and global
parameters for task
graph.

class MDag {
UTRE. N T V]
Mnode* g;
MDIEG e N
I

g

Programmer

T

builds their own
task graph.

Constructing a Static Task Graph

Programmers use Nabbit’s AddDep method to
specify dependencies between task graph nodes.

class MDag {
eriils F INGEFbTERS fa T ViRCESRE GF;
VIt e T, SR Al S SN, (I
g = new Mnode[N*N],;

T dag(amirTiaie =0 - SESCERN - Wt i
@ (S = A EE - s N e
b Tats Sl (=S -
glk].key = k; glk].dag = this;
if (i > 0) glk] .AddDep (&Mnode [k—-N]);
if (j > 0) glk] .AddDep (&Mnode[k-1]);

s I

Implementing Task Nodes

Task graph nodes inherit from a DAGNode class,
and override the node’s Compute () method.

class Mnode: public {
PeE Ll One can call

void Compute () { Other(]Hf .
int z = INFINITY; functions inside

int Eij = ecaleE(dag->M, i, 7) _the Compute ()

Ragegigulinl . STy Bl oillele. ORISR w8 1) method, including

if ((1 > 0) && (3 > 0)) methods that
&S S spawn and

dag—M. Mcev/ [#= Smb’ Dz SEak iyl Fa S,
} sync.

I

Outline

Static Task Graphs using Nabbit

Nabbit Implementation

Completion Time Bound

Dynamic Task Graphs and Other Extensions

Static Nabbit Implementation

Nabbit uses a simple algorithm to execute static

task graphs in parallel. Each node

|. Maintains a count of the # of its immediate predecessors that are
still incomplete. (Each node keeps a join counter.)

3. Recursively computes any successors which become ready.

void ComputeAndNotify () {

&1k S=>IC@netste: ()F; Start .
execution by
calling
ComputeAnd

DAGNode* Y = successors[q]; Notify from
int val = AtomicDecAndFetch(Y¥.join); h
if (val == 0) Y.ComputeAndNotify(); | tne source
(root) node.
}
} 4

Work-Stealing in Nabbit

Nabbit is able to rely on Cilk++’s work-stealing
scheduler to load-balance the computation.

When a processor runs
out of work, it tries to
steal work from other
processors.

Nabbit spawns task
nodes in a way that
makes the Cilk++
runtime likely to steal
nodes along the critical
path of the task graph.

Sample Dynamic-Program
Execution with P=4

Smith-Waterman Dynamic Program

As a benchmark, we consider a dynamic program
modeling the Smith-VVaterman algorithm with a
generic penalty gap:

M(i—ll J—l) + S(ll J) > > :((0’ 3;

M(i, j) = max= E(, J) i S SR S
> " (1 2)=(1, 3)

- \ l J \ l J \ J

E(i,j)=ke?1qc;f.i—1}M(k,J)+Y(i'k) I B I B] _E;)]
A HOH

In this example, s(i, j) and Y(k) are constant arrays.

Comparison with Divide-and-Conquer

For the dynamic program, we compare the task graph
evaluation using Nabbit with alternative algorithms.

K-way divide-and-conquer Wavefront (Synchronous)

Y N\ N)

| = 2 = 3 —| 4

- J - J . J

v
r N
—/ \ J
a— r—Lw rJ’—\ a—
\ J/

v

K=2 For all algorithms, base case is blocks of size B by B.
Grid is arranged in a cache-oblivious layout.

Speedup

18

14

12

10

16-core AMD Barcelona

Comparing implementations of the dynamic program

M = 1000, B=16, Speedup vs. P

T T
B Nabbit (Static) —+—
Divide and Conguer, K=5 ---=
Wavefront - -
Divide and Conguer, K=2 —a-

Nabbit

Serial Running Time = 4.4 s

c=4.4e-9if Tq ~= cI\®

N = 5000, B=16, Speedup vs. P .
- | I Nabbit
B Nabbit (Static) —+— .
Divide and Cﬂnﬁuer,fI{:E * ; K— 5
= avefront -~ " FWavefront
14 Divide and Conguer, K=2 -—a- .f'f-:' avetron
..-"_*-"
12 | -
10 L g K=2
.m
a
0
L7y
6 i
4+ -
2F i
0

0 2 4 = a 10 12 14 16

Serial Running Time = 664 s
c=5.3e-9if Tg ~= cI\®

Opteron Processor 8354: 2.2 Ghz

Nabbit Wavefront

=5 =9

Outline

» Static Task Graphs using Nabbit

» Nabbit Implementation

» Completion Time Bound

» Dynamic Task Graphs and Other Extensions

Definitions

Let D=(V, E) be a task graph to execute.
Consider the execution dag associated with the
Compute () method of a task node A€V.

W(A) : the work of A W(A) = 11 & ~
(# of nodes in execution dag) S(A) = 6

S(A) :the span of A
(length of longest path in dag) F\ 1,

Work and Span of a Task Graph

I”

We can define a “total” work and span for the
task graph execution. Define T, and T as:

T,= X W(A) + O(E)
AeV ;

— ma
Too — all path)sfp< Agp(S(A) T 0(1)) >

through D { .

Any execution of the task
graph on P processors
requires time at least:

max{ T,/P, T }.

Completion Time for Static Nabbit

O

where

: Nabbit executes a static task graph
D = (V,E) on P processors in expected time

;
T

.

C(D)=0

r

T +Mlg A+ C(
.

\

min{A4, P}

D)
N

J

T,/P+ T, : Bound for ordinary Cilk-like work-stealing
M lg A : span of notifying task node successors

C(D): worst-case contention for atomic decrements.
(min{4, P}: time a decrement can wait)

Theorem is asymptotically optimal when 4= 0(1).

\

: # of nodes
on longest
path through
task graph D.

© maximum
degree of any
task node

Outline

» Static Task Graphs using Nabbit

» Nabbit Implementation

» Completion Time Bound

» Dynamic Task Graphs and Other Extensions

Dynamic Nabbit

Nabbit also supports dynamic task graphs. Roughly, a
dynamic task graph can be thought of as performing a
parallel traversal of a two-phase dag, where the first
Init () phase creates new nodes.

Init () section Compute () section
— — = =» Creation edge — Dependency edge
(Initialize node (Compute node

on first visit) on last visit)

Complications for Dynamic Nabbit

Dynamic task graphs are more complicated because
Init () and Compute () happen concurrently.

Init () section Compute () section
— — = =» Creation edge — Dependency edge
(Initialize node (Compute node

on first visit) on last visit)

Completion Time for Dynamic Nabbit

: Nabbit executes a dynamic task graph
D = (V,E) on P processors in expected time

(T A
O|-L+T_+MA+C(D)
\- J
r, < D
where C(D) =0 _E__|_ M min{A’ p}
OP g Y

T, and T are modified to account for Init () for each node.
MA : weaker bound because all edges in the graph are not

known ahead of time.

Topics for Future Investigation

We are interested in possibly extending Nabbit in
several directions:

Strongly Dynamic Task Graphs

Compute () of a task node can generate a new task.
Reusing Nodes and Garbage Collection
Hierarchical Task Graphs
Runtime/Compiler Support for Nabbit

Applications for Nabbit?

We are interested in possibly extending Nabbit in
several directions:

Strongly Dynamic Task Graphs

Compute () of a task node can generate a new task.
Reusing Nodes and Garbage Collection
Hierarchical Task Graphs
Runtime/Compiler Support for Nabbit

Applications!

The value of these possible extensions to Nabbit depends
on programs that use static or dynamic task graphs.

We value any feedback regarding potential applications!

Questions?

