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Task Graphs

A task graph is a directed acyclic graph (dag) where

� Every node A is a task requiring computation,

� Every edge (A, B) means that the computation of B 
depends on the result of A’s computation.
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Example: Counting Paths

Counting the number of paths through a dag can be 
expressed as a task graph.

Source starts 
with value 1.

The value of a node X is the 
sum of the values of X’s 
immediate predecessors.
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Fork-Join Languages

Some task graphs can be executed in parallel using 
a fork-join language such as Cilk++.
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void f1() {

A();

cilk_spawn B();

C();

void f1() {

A();

cilk_spawn B();

C();

f1
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C();

cilk_sync;

D();

}

C();

cilk_sync;

D();

}

int main() {

cilk_spawn f1();

f2();

cilk_sync;

}

int main() {

cilk_spawn f1();

f2();

cilk_sync;

}

f2

void f2() {

E(); F(); G();

}

void f2() {

E(); F(); G();

}



Graphs with Arbitrary Dependencies

Unfortunately,  one can not directly express task 
graphs with arbitrary dependencies using only 
spawn and sync.
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paths in a 
non-series-
parallel dag.

Question: Can we efficiently execute arbitrary task 
graphs in parallel in a fork-join language such as Cilk++?



Our Contributions: Nabbit

We are developing Nabbit,  a Cilk++ library for 
executing task graphs with arbitrary dependencies.
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� Nabbit is built on top of Cilk++.  It utilizes Cilk++’s  
provably-efficient work-stealing scheduler without 
any modification to the Cilk++ runtime.

� Using Nabbit, the computation of an individual task 
graph node can itself be parallel.
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Provable Bounds for Nabbit

� Nabbit offers provable bounds on the time 
required for parallel execution of (static and 
dynamic) task graphs.

We are developing Nabbit,  a Cilk++ library for 
executing task graphs with arbitrary dependencies.

dynamic) task graphs.

� The time bounds for Nabbit are asymptotically 
optimal for task graphs whose nodes have 
constant in-degree and out-degree.
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� Nabbit Implementation

� Completion Time Bound
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Dynamic-Programming Example

Generic dynamic programs can often be 
expressed as a task graph. 

(0, 3)

M(i, j) = max 

g1(M(i-1, j-1))

E(i, j)
(1, 2) (1, 3)

(2,0) (2,1) (2, 2) (2, 3)

M(i, j) = max E(i, j)

F(i, j)

F(i, j) = g3( M(i, 1),  M(i, 2),…, M(i, j-1) )

E(i, j) = g2( M(1, j),  M(2, j),…, M(i-1, j) )



Static Task Graphs

(0, 3)

For this example, we can use a static task graph, 
i.e., a task graph where the structure of the dag is 
known before the execution begins.

M(i, j) = max 

g1(M(i-1, j-1))

E(i, j)
(1, 2) (1, 3)

(2,0) (2,1) (2, 2) (2, 3)

Create a node for every cell M(i, j).

M(i, j) = max E(i, j)

F(i, j)

F(i, j) = g3( M(i, 1),  M(i, 2),…, M(i, j-1) )

E(i, j) = g2( M(1, j),  M(2, j),…, M(i-1, j) )



Static Task Graphs

M(i, j) = max 

g1(M(i-1, j-1))

E(i, j)
(0, 3)

For this example, we can use a static task graph, 
i.e., a task graph where the structure of the dag is 
known before the execution begins.

*

M(i, j) = max E(i, j)

F(i, j)

F(i, j) = g3( M(i, 1),  M(i, 2),… ,M(i, j-1) )

(1, 2) (1, 3)

(2,0) (2,1) (2, 2) (2, 3)

Create a node for every cell M(i, j).  Then add dependency edges.
* In Nabbit, static task graphs still require dynamic scheduling.
We assume the compute time for each node may be unknown.   

E(i, j) = g2( M(1, j),  M(2, j),…, M(i-1, j) )



Interface for Static Nabbit

For static task graphs, each task graph node is 
derived from Nabbit’s DAGNode class, and 
overrides the node’s Compute() method.

class Mnode: public DAGNode {

Mnode(int key, MDag* dag);

class Mnode: public DAGNode {

Mnode(int key, MDag* dag);

Typically, each node 
needs to know its Mnode(int key, MDag* dag);

void Compute(); 

};

Mnode(int key, MDag* dag);

void Compute(); 

};

Programmer 
builds their own 
task graph.

needs to know its 
identity, and global 
parameters for task 
graph.

class MDag {

int N; int *M;

Mnode* g;

MDag(int N_, int* M_); 

};

class MDag {

int N; int *M;

Mnode* g;

MDag(int N_, int* M_); 

};



Constructing a Static Task Graph
Programmers use Nabbit’s AddDep method to 

specify dependencies between task graph nodes.
class MDag {

int N; int* s; Mnode* g;

MDag(int n_, int* M_) : N(N_), M(M_) {

g = new Mnode[N*N];

class MDag {

int N; int* s; Mnode* g;

MDag(int n_, int* M_) : N(N_), M(M_) {

g = new Mnode[N*N];
Allocate 
nodes

for (int i = 0; i < N; i++){

for (int j = 0; j < N; j++) {

int k = N*i+j;

g[k].key = k; g[k].dag = this;

if (i > 0) g[k].AddDep(&Mnode[k-N]);

if (j > 0) g[k].AddDep(&Mnode[k-1]);

}

}

} 

};

for (int i = 0; i < N; i++){

for (int j = 0; j < N; j++) {

int k = N*i+j;

g[k].key = k; g[k].dag = this;

if (i > 0) g[k].AddDep(&Mnode[k-N]);

if (j > 0) g[k].AddDep(&Mnode[k-1]);

}

}

} 

};

M(i, j) has edges from 
M(i-1, j) and M(i, j-1).

nodes



Implementing Task Nodes

class Mnode: public DAGNode {

int i, j;

void Compute() {

class Mnode: public DAGNode {

int i, j;

void Compute() {

One can call 
other Cilk

Task graph nodes inherit from a DAGNode class,
and override the node’s  Compute() method.

void Compute() {

int z = INFINITY;

int Eij = calcE(dag->M, i, j);

int Fij = calcF(dag->M, i, j);

if ((i > 0) && (j > 0))

z = g1(M, i, j);

dag->M[key] = min(z, Eij, Fij);

}

};

void Compute() {

int z = INFINITY;

int Eij = calcE(dag->M, i, j);

int Fij = calcF(dag->M, i, j);

if ((i > 0) && (j > 0))

z = g1(M, i, j);

dag->M[key] = min(z, Eij, Fij);

}

};

other Cilk
functions inside 
the Compute() 

method, including 
methods that 
spawn and 
sync.
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Static Nabbit Implementation

Nabbit uses a simple algorithm to execute static 
task graphs in parallel.  Each node
1. Maintains a count of the # of its immediate predecessors that are 

still incomplete. (Each node keeps a join counter.)

2. Notifies its immediate successors in parallel after it is computed.

3. Recursively computes any successors which become ready.

void ComputeAndNotify() {

this->Compute();

cilk_for (int q = 0; 

q < successors().size(); 

q++) {

DAGNode* Y = successors[q];

int val = AtomicDecAndFetch(Y.join);

if (val == 0) Y.ComputeAndNotify();

}

}

void ComputeAndNotify() {

this->Compute();

cilk_for (int q = 0; 

q < successors().size(); 

q++) {

DAGNode* Y = successors[q];

int val = AtomicDecAndFetch(Y.join);

if (val == 0) Y.ComputeAndNotify();

}

}

3. Recursively computes any successors which become ready.

Start 
execution by 
calling 
ComputeAnd

Notify from 

the source 
(root) node.



Work-Stealing in Nabbit

Nabbit is able to rely on Cilk++’s work-stealing 
scheduler to load-balance the computation.

� When a processor runs 
out of work, it tries to 
steal work from other steal work from other 
processors.

� Nabbit spawns task 
nodes in a way that 
makes the Cilk++ 
runtime likely to steal 
nodes along the critical 
path of the task graph.

Sample Dynamic-Program 
Execution with P=4



Smith-Waterman Dynamic Program

M(i, j) = max 

M(i-1, j-1) + s(i, j)

E(i, j)
(0, 3)

As a benchmark, we consider a dynamic program 
modeling the Smith-Waterman algorithm with a 
generic penalty gap:

M(i, j) = max E(i, j)

F(i, j)

E(i, j) = M(k, j) + γ(i-k)max 
k∊{0, 1,…i-1}  

F(i, j) = M(i, k) + γ(j-k)max
k∊{0, 1,…j-1}  

(1, 2) (1, 3)

(2,0) (2,1) (2, 2) (2, 3)

In this example, s(i, j) and γ(k) are constant arrays.



Comparison with Divide-and-Conquer

1 2 1 2

1 2

K-way divide-and-conquer

1 2 3 4

For the dynamic program, we compare the task graph 
evaluation using Nabbit with alternative algorithms.

Wavefront (Synchronous)

2 3 2 3

1 2 1 2

2 3 2 3

2 3

K=2

2 3 4 5

3 4 5 6

4 5 6 7

For all algorithms,  base case is blocks of size B by B.  
Grid is arranged in a cache-oblivious layout.



16-core AMD Barcelona

K=5

Wave-

front

Nabbit

K=2

K=5
Wavefront

Nabbit

Comparing implementations of the dynamic program

Opteron Processor 8354: 2.2 Ghz

Serial Running Time = 4.4 s
c = 4.4e-9 if TS ~= cN

3

K=2

Serial Running Time = 664 s
c = 5.3e-9 if TS ~= cN

3



Comparison, N=3000, P=16

WavefrontNabbit

K=2K=5
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Definitions
Let D=(V, E) be a task graph to execute.

A

W(A) : the work of A
(# of nodes in execution dag)

S(A) : the span of A

W(A) = 11

S(A) = 6

Consider the execution dag associated with the 
Compute() method of a task node A∊V.

A
S(A) : the span of A
(length of longest path in dag)

M: # of task nodes on longest 
path through task graph D.

∆: maximum degree of any 
task node

M = 5

∆ = 2

B
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C
D
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Work and Span of a Task Graph

We can define a “total” work and span for the 
task graph execution.   Define T1 and T∞ as:

T1 = Σ
A∊V

W(A) + O(E)

T = max Σ (S(A) + O(1))

B
A

C
D
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T
∞

= max
all paths p 

through D

Σ
A∊p

(S(A) + O(1))

Any execution of the task 
graph on P processors 
requires time at least:

max { T1/P, T
∞

}.



Completion Time for Static Nabbit

P

T1 + T
∞

+ M lg ∆ + C(D)O

THEOREM 1:  Nabbit executes a static task graph 
D = (V, E) on P processors in expected time

P

where
P

E
+ MC(D) = O min{∆, P} .

M lg ∆ : span of notifying task node successors 

C(D): worst-case contention for atomic decrements.

(min{∆, P}: time a decrement can wait)

Theorem is asymptotically optimal when ∆ = Θ(1).

M: # of nodes 
on longest 
path through 
task graph D.

∆∆∆∆: maximum 
degree of any 
task node

T
1
/P + T

∞ 
:  Bound for ordinary Cilk-like work-stealing
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Dynamic Nabbit

A
B

D

Nabbit also supports dynamic task graphs.  Roughly, a 
dynamic task graph can be thought of as performing a 
parallel traversal of a two-phase dag, where the first 
Init() phase creates new nodes.
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F

AD

H

EG

C

F

Init() section Compute() section
Dependency edge

(Initialize node 
on first visit)

Creation edge
(Compute node 
on last visit)



Complications for Dynamic Nabbit
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Dynamic task graphs are more complicated because
Init() and Compute() happen concurrently.
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D A D

H

E G

C

F

AD

H

EG

C

F

Init() section Compute() section
Dependency edge

(Initialize node 
on first visit)

Creation edge
(Compute node 
on last visit)



Completion Time for Dynamic Nabbit

P

T1 + T
∞

+ M∆ + C(D)O

THEOREM 2:  Nabbit executes a dynamic task graph 
D = (V, E) on P processors in expected time

P
O

where
P

E + MC(D) = O min{∆, P} .

M∆ : weaker bound because all edges in the graph are not 

known ahead of time. 

T1 and T
∞ 

are modified to account for Init() for each node.



Topics for Future Investigation

� Strongly Dynamic Task Graphs 
� Compute() of a task node can generate a new task.

� Reusing Nodes and Garbage Collection

We are interested in possibly extending Nabbit in 
several directions:

� Reusing Nodes and Garbage Collection

� Hierarchical Task Graphs

� Runtime/Compiler Support for Nabbit



Applications for Nabbit?

� Strongly Dynamic Task Graphs 
� Compute() of a task node can generate a new task.

� Reusing Nodes and Garbage Collection

We are interested in possibly extending Nabbit in 
several directions:

� Reusing Nodes and Garbage Collection

� Hierarchical Task Graphs

� Runtime/Compiler Support for Nabbit

The value of these possible extensions to Nabbit depends 
on programs that use static or dynamic task graphs.   

We value any feedback regarding potential applications!

� Applications!



Questions?


