
Executing Task Graphs

Using Work-Stealing

Jim Sukha

MIT CSAIL

IPDPS, 4/21/2010

Kunal Agrawal (Washington University in St. Louis)

Charles E. Leiserson (MIT)

Task Graphs

A task graph is a directed acyclic graph (dag) where

� Every node A is a task requiring computation,

� Every edge (A, B) means that the computation of B
depends on the result of A’s computation.

B

A
C

D

FE G

s t

Example: Counting Paths

Counting the number of paths through a dag can be
expressed as a task graph.

Source starts
with value 1.

The value of a node X is the
sum of the values of X’s
immediate predecessors.

A

s t

B

C
D

E F G

1

immediate predecessors.

1
1

1

2

1 1 1

3

Fork-Join Languages

Some task graphs can be executed in parallel using
a fork-join language such as Cilk++.

A

s t

B

C
D

void f1() {

A();

cilk_spawn B();

C();

void f1() {

A();

cilk_spawn B();

C();

f1

s tC

E F G

C();

cilk_sync;

D();

}

C();

cilk_sync;

D();

}

int main() {

cilk_spawn f1();

f2();

cilk_sync;

}

int main() {

cilk_spawn f1();

f2();

cilk_sync;

}

f2

void f2() {

E(); F(); G();

}

void f2() {

E(); F(); G();

}

Graphs with Arbitrary Dependencies

Unfortunately, one can not directly express task
graphs with arbitrary dependencies using only
spawn and sync.

A
B

D1

1
1

3
Counting
paths in a A

s tC
D

E F G

1

2

1 2 2

5

paths in a
non-series-
parallel dag.

Question: Can we efficiently execute arbitrary task
graphs in parallel in a fork-join language such as Cilk++?

Our Contributions: Nabbit

We are developing Nabbit, a Cilk++ library for
executing task graphs with arbitrary dependencies.

B
A

C
D

s t

� Nabbit is built on top of Cilk++. It utilizes Cilk++’s
provably-efficient work-stealing scheduler without
any modification to the Cilk++ runtime.

� Using Nabbit, the computation of an individual task
graph node can itself be parallel.

FE Gs t

Provable Bounds for Nabbit

� Nabbit offers provable bounds on the time
required for parallel execution of (static and
dynamic) task graphs.

We are developing Nabbit, a Cilk++ library for
executing task graphs with arbitrary dependencies.

dynamic) task graphs.

� The time bounds for Nabbit are asymptotically
optimal for task graphs whose nodes have
constant in-degree and out-degree.

Outline

� Static Task Graphs using Nabbit

� Nabbit Implementation

� Completion Time Bound

� Dynamic Task Graphs and Other Extensions

Dynamic-Programming Example

Generic dynamic programs can often be
expressed as a task graph.

(0, 3)

M(i, j) = max

g1(M(i-1, j-1))

E(i, j)
(1, 2) (1, 3)

(2,0) (2,1) (2, 2) (2, 3)

M(i, j) = max E(i, j)

F(i, j)

F(i, j) = g3(M(i, 1), M(i, 2),…, M(i, j-1))

E(i, j) = g2(M(1, j), M(2, j),…, M(i-1, j))

Static Task Graphs

(0, 3)

For this example, we can use a static task graph,
i.e., a task graph where the structure of the dag is
known before the execution begins.

M(i, j) = max

g1(M(i-1, j-1))

E(i, j)
(1, 2) (1, 3)

(2,0) (2,1) (2, 2) (2, 3)

Create a node for every cell M(i, j).

M(i, j) = max E(i, j)

F(i, j)

F(i, j) = g3(M(i, 1), M(i, 2),…, M(i, j-1))

E(i, j) = g2(M(1, j), M(2, j),…, M(i-1, j))

Static Task Graphs

M(i, j) = max

g1(M(i-1, j-1))

E(i, j)
(0, 3)

For this example, we can use a static task graph,
i.e., a task graph where the structure of the dag is
known before the execution begins.

*

M(i, j) = max E(i, j)

F(i, j)

F(i, j) = g3(M(i, 1), M(i, 2),… ,M(i, j-1))

(1, 2) (1, 3)

(2,0) (2,1) (2, 2) (2, 3)

Create a node for every cell M(i, j). Then add dependency edges.
* In Nabbit, static task graphs still require dynamic scheduling.
We assume the compute time for each node may be unknown.

E(i, j) = g2(M(1, j), M(2, j),…, M(i-1, j))

Interface for Static Nabbit

For static task graphs, each task graph node is
derived from Nabbit’s DAGNode class, and
overrides the node’s Compute() method.

class Mnode: public DAGNode {

Mnode(int key, MDag* dag);

class Mnode: public DAGNode {

Mnode(int key, MDag* dag);

Typically, each node
needs to know its Mnode(int key, MDag* dag);

void Compute();

};

Mnode(int key, MDag* dag);

void Compute();

};

Programmer
builds their own
task graph.

needs to know its
identity, and global
parameters for task
graph.

class MDag {

int N; int *M;

Mnode* g;

MDag(int N_, int* M_);

};

class MDag {

int N; int *M;

Mnode* g;

MDag(int N_, int* M_);

};

Constructing a Static Task Graph
Programmers use Nabbit’s AddDep method to

specify dependencies between task graph nodes.
class MDag {

int N; int* s; Mnode* g;

MDag(int n_, int* M_) : N(N_), M(M_) {

g = new Mnode[N*N];

class MDag {

int N; int* s; Mnode* g;

MDag(int n_, int* M_) : N(N_), M(M_) {

g = new Mnode[N*N];
Allocate
nodes

for (int i = 0; i < N; i++){

for (int j = 0; j < N; j++) {

int k = N*i+j;

g[k].key = k; g[k].dag = this;

if (i > 0) g[k].AddDep(&Mnode[k-N]);

if (j > 0) g[k].AddDep(&Mnode[k-1]);

}

}

}

};

for (int i = 0; i < N; i++){

for (int j = 0; j < N; j++) {

int k = N*i+j;

g[k].key = k; g[k].dag = this;

if (i > 0) g[k].AddDep(&Mnode[k-N]);

if (j > 0) g[k].AddDep(&Mnode[k-1]);

}

}

}

};

M(i, j) has edges from
M(i-1, j) and M(i, j-1).

nodes

Implementing Task Nodes

class Mnode: public DAGNode {

int i, j;

void Compute() {

class Mnode: public DAGNode {

int i, j;

void Compute() {

One can call
other Cilk

Task graph nodes inherit from a DAGNode class,
and override the node’s Compute() method.

void Compute() {

int z = INFINITY;

int Eij = calcE(dag->M, i, j);

int Fij = calcF(dag->M, i, j);

if ((i > 0) && (j > 0))

z = g1(M, i, j);

dag->M[key] = min(z, Eij, Fij);

}

};

void Compute() {

int z = INFINITY;

int Eij = calcE(dag->M, i, j);

int Fij = calcF(dag->M, i, j);

if ((i > 0) && (j > 0))

z = g1(M, i, j);

dag->M[key] = min(z, Eij, Fij);

}

};

other Cilk
functions inside
the Compute()

method, including
methods that
spawn and
sync.

Outline

� Static Task Graphs using Nabbit

� Nabbit Implementation

� Completion Time Bound

� Dynamic Task Graphs and Other Extensions

Static Nabbit Implementation

Nabbit uses a simple algorithm to execute static
task graphs in parallel. Each node
1. Maintains a count of the # of its immediate predecessors that are

still incomplete. (Each node keeps a join counter.)

2. Notifies its immediate successors in parallel after it is computed.

3. Recursively computes any successors which become ready.

void ComputeAndNotify() {

this->Compute();

cilk_for (int q = 0;

q < successors().size();

q++) {

DAGNode* Y = successors[q];

int val = AtomicDecAndFetch(Y.join);

if (val == 0) Y.ComputeAndNotify();

}

}

void ComputeAndNotify() {

this->Compute();

cilk_for (int q = 0;

q < successors().size();

q++) {

DAGNode* Y = successors[q];

int val = AtomicDecAndFetch(Y.join);

if (val == 0) Y.ComputeAndNotify();

}

}

3. Recursively computes any successors which become ready.

Start
execution by
calling
ComputeAnd

Notify from

the source
(root) node.

Work-Stealing in Nabbit

Nabbit is able to rely on Cilk++’s work-stealing
scheduler to load-balance the computation.

� When a processor runs
out of work, it tries to
steal work from other steal work from other
processors.

� Nabbit spawns task
nodes in a way that
makes the Cilk++
runtime likely to steal
nodes along the critical
path of the task graph.

Sample Dynamic-Program
Execution with P=4

Smith-Waterman Dynamic Program

M(i, j) = max

M(i-1, j-1) + s(i, j)

E(i, j)
(0, 3)

As a benchmark, we consider a dynamic program
modeling the Smith-Waterman algorithm with a
generic penalty gap:

M(i, j) = max E(i, j)

F(i, j)

E(i, j) = M(k, j) + γ(i-k)max
k∊{0, 1,…i-1}

F(i, j) = M(i, k) + γ(j-k)max
k∊{0, 1,…j-1}

(1, 2) (1, 3)

(2,0) (2,1) (2, 2) (2, 3)

In this example, s(i, j) and γ(k) are constant arrays.

Comparison with Divide-and-Conquer

1 2 1 2

1 2

K-way divide-and-conquer

1 2 3 4

For the dynamic program, we compare the task graph
evaluation using Nabbit with alternative algorithms.

Wavefront (Synchronous)

2 3 2 3

1 2 1 2

2 3 2 3

2 3

K=2

2 3 4 5

3 4 5 6

4 5 6 7

For all algorithms, base case is blocks of size B by B.
Grid is arranged in a cache-oblivious layout.

16-core AMD Barcelona

K=5

Wave-

front

Nabbit

K=2

K=5
Wavefront

Nabbit

Comparing implementations of the dynamic program

Opteron Processor 8354: 2.2 Ghz

Serial Running Time = 4.4 s
c = 4.4e-9 if TS ~= cN

3

K=2

Serial Running Time = 664 s
c = 5.3e-9 if TS ~= cN

3

Comparison, N=3000, P=16

WavefrontNabbit

K=2K=5

Outline

� Static Task Graphs using Nabbit

� Nabbit Implementation

� Completion Time Bound

� Dynamic Task Graphs and Other Extensions

Definitions
Let D=(V, E) be a task graph to execute.

A

W(A) : the work of A
(# of nodes in execution dag)

S(A) : the span of A

W(A) = 11

S(A) = 6

Consider the execution dag associated with the
Compute() method of a task node A∊V.

A
S(A) : the span of A
(length of longest path in dag)

M: # of task nodes on longest
path through task graph D.

∆: maximum degree of any
task node

M = 5

∆ = 2

B
A

C
D

FE G
s t

Work and Span of a Task Graph

We can define a “total” work and span for the
task graph execution. Define T1 and T∞ as:

T1 = Σ
A∊V

W(A) + O(E)

T = max Σ (S(A) + O(1))

B
A

C
D

FE G
s t

T
∞

= max
all paths p

through D

Σ
A∊p

(S(A) + O(1))

Any execution of the task
graph on P processors
requires time at least:

max { T1/P, T
∞

}.

Completion Time for Static Nabbit

P

T1 + T
∞

+ M lg ∆ + C(D)O

THEOREM 1: Nabbit executes a static task graph
D = (V, E) on P processors in expected time

P

where
P

E
+ MC(D) = O min{∆, P} .

M lg ∆ : span of notifying task node successors

C(D): worst-case contention for atomic decrements.

(min{∆, P}: time a decrement can wait)

Theorem is asymptotically optimal when ∆ = Θ(1).

M: # of nodes
on longest
path through
task graph D.

∆∆∆∆: maximum
degree of any
task node

T
1
/P + T

∞
: Bound for ordinary Cilk-like work-stealing

Outline

� Static Task Graphs using Nabbit

� Nabbit Implementation

� Completion Time Bound

� Dynamic Task Graphs and Other Extensions

Dynamic Nabbit

A
B

D

Nabbit also supports dynamic task graphs. Roughly, a
dynamic task graph can be thought of as performing a
parallel traversal of a two-phase dag, where the first
Init() phase creates new nodes.

A
B

D A D

H

E G

C

F

AD

H

EG

C

F

Init() section Compute() section
Dependency edge

(Initialize node
on first visit)

Creation edge
(Compute node
on last visit)

Complications for Dynamic Nabbit

A
B

D

Dynamic task graphs are more complicated because
Init() and Compute() happen concurrently.

A
B

D A D

H

E G

C

F

AD

H

EG

C

F

Init() section Compute() section
Dependency edge

(Initialize node
on first visit)

Creation edge
(Compute node
on last visit)

Completion Time for Dynamic Nabbit

P

T1 + T
∞

+ M∆ + C(D)O

THEOREM 2: Nabbit executes a dynamic task graph
D = (V, E) on P processors in expected time

P
O

where
P

E + MC(D) = O min{∆, P} .

M∆ : weaker bound because all edges in the graph are not

known ahead of time.

T1 and T
∞

are modified to account for Init() for each node.

Topics for Future Investigation

� Strongly Dynamic Task Graphs
� Compute() of a task node can generate a new task.

� Reusing Nodes and Garbage Collection

We are interested in possibly extending Nabbit in
several directions:

� Reusing Nodes and Garbage Collection

� Hierarchical Task Graphs

� Runtime/Compiler Support for Nabbit

Applications for Nabbit?

� Strongly Dynamic Task Graphs
� Compute() of a task node can generate a new task.

� Reusing Nodes and Garbage Collection

We are interested in possibly extending Nabbit in
several directions:

� Reusing Nodes and Garbage Collection

� Hierarchical Task Graphs

� Runtime/Compiler Support for Nabbit

The value of these possible extensions to Nabbit depends
on programs that use static or dynamic task graphs.

We value any feedback regarding potential applications!

� Applications!

Questions?

