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Introduction

Architectural trends show an increasing communication
cost compared to the time it takes to perform arithmetic
operations

Motivated the design of communication avoiding
algorithms that minimize communication

First results are CAQR [Demmel, Grigori, Hoemmen, Langou
’08] and CALU [Grigori, Demmel, Xiang ’08], implemented
for distributed memory.

Our goal is to design multithreaded QR and LU
factorizations for multicores based on communication
avoiding algorithms.
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LU factorization with partial pivoting
Factorization on Pr by Pc grid of processors as implemented in
SCALAPACK:
For ib = 1 to n-1 step b
A(ib) = A(ib:n, ib:n)

1 Compute panel factorization (pdgetf2) O(nlog2Pr)

- find pivot in each column, swap rows

2 Apply all row permutations (pdlaswp)
O(n/b(log2Pc + log2Pr))

- broadcast pivot information along the rows
- swap rows at left and right

3 Compute block row of U (pdtrsm) O(n/blog2Pc)

- broadcast right diagonal block of L of current
panel

4 Update trailing matrix (pdgemm)
O(n/b(log2Pc + log2Pr))

- broadcast right block column of L
- broadcast down block row of U

Pivoting requires communication among processors on distributed
memory and synchronisation between threads on multicores.
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CALU and CAQR approach

Communication avoiding algorithms [Demmel, Grigori,
Hoemmen, Langou, Xiang ’08] approach:

Decrease communication required for pivoting and
overcome the latency bottleneck of classic algorithms by

performing the factorization of a block column (a tall and
skinny matrix) as a reduction operation

and doing some redundant computations

They are communication optimal in terms of both latency
and bandwidth

They lead to important speedups on distributed memory
computers
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Goal

Our goal

Combine the main ideas to reduce communication in CALU
and CAQR with :

appropriate blocking

task identification

dynamic scheduling

The reduction operation to use for a block-column
factorization is based on a binary tree with asynchronous
tasks :

reduces synchronisation between threads (only
O(log2(Pr)))

avoids bus contention
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CAQR

Each panel factorization is computed as a reduction
operation where at each node a QR factorization is
performed.
The reduction tree is chosen depending on the
underlying architecture.
For a binary tree log2(Pr) steps are used.

Figure: Parallel TSQR
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CAQR

Update the submatrix using the tree in log2(Pr) steps

Figure: The update of the trailing submatrix is triggered by the
reduction tree used during panel factorization
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CALU[Grigori, Demmel, Xiang ’08]
The panel factorization is performed in two steps:

A preprocessing steps aims at identifying at low communication
cost good pivot rows
The pivot rows are permuted in the first positions of the panel
and LU without pivoting of the panel is performed

Figure: Stable parallel panel factorization
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CALU (Stability)
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Figure: Stability of binary tree based CALU factorization for random
matrices

Extensive tests performed on random matrices and a set
of special matrices using binary tree and flat tree show
that CALU is as stable as GEPP in practice.
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Multithreaded CALU

The matrix is partitioned in blocks of size Tr x b
The computation of each block is associated with a task
The task dependency graph is scheduled using a
dynamic scheduler

Figure: Matrix 4 × 4 blocks and Tr = 2 and Corresponding task
dependency graph
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Multithreaded CALU
Panel factorization is performed in two steps: find good pivots at low
communication cost, permute them and compute LU factorization
of the panel without pivoting.

The panel factorization stays on the critical path but it is done more
efficiently
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Multithreaded CALU (Execution)

Figure: Example of execution of CALU for a 105 × 1000 tall skinny
matrix, using b = 100 and Tr = 1, on 8-core

Figure: Example of execution of CALU for a 105 × 1000 tall skinny
matrix, using b = 100 and Tr = 8, on 8-core
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Multithreaded CAQR

Same approach as CALU but:

Panel factorization is performed only once

The update of the trailing matrix is triggered by the binary
tree used for the panel factorization.
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Environments

Tests performed on: two-socket, quad-core machine
based on Intel Xeon EMT64 processor running on Linux
and on a four-socket, quad-core machine based on
AMD Opteron processor

Comparison with MKL-10.0.4.23 and PLASMA 2.0 (with
default parameters)

b = MIN(n, 100) has been chosen as block size
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Performance of CALU
Performance of CALU, MKL_dgetrf, PLASMA_dgetrf on 8 cores
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Figure: m=105 and varying n from 10 to 1000.
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Performance of CALU
Performance of CALU, MKL_dgetrf, PLASMA_dgetrf on 16
cores
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Figure: m=105 and varying n from 10 to 1000.
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Performance of CAQR
Performance of CAQR, MKL_dgeqrf, PLASMA_dgeqrf on 8
cores
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Figure: m=105 and varying n from 10 to 1000.
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Conclusion

Multithreaded CALU and CAQR lead to important
improvements for tall and skinny matrices with respect to
the corresponding routines in MKL and PLASMA.

PLASMA becomes more efficient with increasing number
of columns.

No significant improvements obtained so far for square
matrices.

Prospects:

Improve the performance of the trailing matrix update by
increasing the block size to optimize BLAS3 operations.

Compare with the recent approach of [Hadri, Ltaief,
Agullo, Dongarra’09] for QR factorization, which uses a
different reduction tree during panel factorization.
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Thank you

Thank you
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