
Communication-avoiding LU and QR
factorizations for multicore architectures

DONFACK Simplice

INRIA Saclay

Joint work with

Laura Grigori Alok Kumar Gupta
INRIA Saclay BCCS,Norway-5075

16th April 2010

Communication-avoiding LU and QR factorizations for multicore architectures 16th April 2010 1 / 25

1 Introduction

2 CALU and CAQR factorization

3 Multithreaded CALU and CAQR

4 Experimental section

5 Conclusion

Communication-avoiding LU and QR factorizations for multicore architectures 16th April 2010 2 / 25

1 Introduction

2 CALU and CAQR factorization

3 Multithreaded CALU and CAQR

4 Experimental section

5 Conclusion

Communication-avoiding LU and QR factorizations for multicore architectures 16th April 2010 3 / 25

Introduction

Architectural trends show an increasing communication
cost compared to the time it takes to perform arithmetic
operations

Motivated the design of communication avoiding
algorithms that minimize communication

First results are CAQR [Demmel, Grigori, Hoemmen, Langou
’08] and CALU [Grigori, Demmel, Xiang ’08], implemented
for distributed memory.

Our goal is to design multithreaded QR and LU
factorizations for multicores based on communication
avoiding algorithms.

Communication-avoiding LU and QR factorizations for multicore architectures 16th April 2010 4 / 25

LU factorization with partial pivoting
Factorization on Pr by Pc grid of processors as implemented in
SCALAPACK:
For ib = 1 to n-1 step b
A(ib) = A(ib:n, ib:n)

1 Compute panel factorization (pdgetf2) O(nlog2Pr)

- find pivot in each column, swap rows

2 Apply all row permutations (pdlaswp)
O(n/b(log2Pc + log2Pr))

- broadcast pivot information along the rows
- swap rows at left and right

3 Compute block row of U (pdtrsm) O(n/blog2Pc)

- broadcast right diagonal block of L of current
panel

4 Update trailing matrix (pdgemm)
O(n/b(log2Pc + log2Pr))

- broadcast right block column of L
- broadcast down block row of U

Pivoting requires communication among processors on distributed
memory and synchronisation between threads on multicores.

Communication-avoiding LU and QR factorizations for multicore architectures 16th April 2010 5 / 25

CALU and CAQR approach

Communication avoiding algorithms [Demmel, Grigori,
Hoemmen, Langou, Xiang ’08] approach:

Decrease communication required for pivoting and
overcome the latency bottleneck of classic algorithms by

performing the factorization of a block column (a tall and
skinny matrix) as a reduction operation

and doing some redundant computations

They are communication optimal in terms of both latency
and bandwidth

They lead to important speedups on distributed memory
computers

Communication-avoiding LU and QR factorizations for multicore architectures 16th April 2010 6 / 25

Goal

Our goal

Combine the main ideas to reduce communication in CALU
and CAQR with :

appropriate blocking

task identification

dynamic scheduling

The reduction operation to use for a block-column
factorization is based on a binary tree with asynchronous
tasks :

reduces synchronisation between threads (only
O(log2(Pr)))

avoids bus contention

Communication-avoiding LU and QR factorizations for multicore architectures 16th April 2010 7 / 25

1 Introduction

2 CALU and CAQR factorization

3 Multithreaded CALU and CAQR

4 Experimental section

5 Conclusion

Communication-avoiding LU and QR factorizations for multicore architectures 16th April 2010 8 / 25

CAQR

Each panel factorization is computed as a reduction
operation where at each node a QR factorization is
performed.
The reduction tree is chosen depending on the
underlying architecture.
For a binary tree log2(Pr) steps are used.

Figure: Parallel TSQR
Communication-avoiding LU and QR factorizations for multicore architectures 16th April 2010 9 / 25

CAQR

Update the submatrix using the tree in log2(Pr) steps

Figure: The update of the trailing submatrix is triggered by the
reduction tree used during panel factorization

Communication-avoiding LU and QR factorizations for multicore architectures 16th April 2010 10 / 25

CALU[Grigori, Demmel, Xiang ’08]
The panel factorization is performed in two steps:

A preprocessing steps aims at identifying at low communication
cost good pivot rows
The pivot rows are permuted in the first positions of the panel
and LU without pivoting of the panel is performed

Figure: Stable parallel panel factorization
Communication-avoiding LU and QR factorizations for multicore architectures 16th April 2010 11 / 25

CALU (Stability)

1024 2048 4096 8192
100

200

300

400

500

600

700

av
er

ag
e

gr
ow

th
 fa

ct
or

P=256,b=32
P=256,b=16
P=128,b=64
P=128,b=32
P=128,b=16
P=64, b=128
P=64, b=64
P=64, b=32
P=64, b=16
GEPP

n2/3

2*n2/3

3*n1/2

Figure: Stability of binary tree based CALU factorization for random
matrices

Extensive tests performed on random matrices and a set
of special matrices using binary tree and flat tree show
that CALU is as stable as GEPP in practice.

Communication-avoiding LU and QR factorizations for multicore architectures 16th April 2010 12 / 25

1 Introduction

2 CALU and CAQR factorization

3 Multithreaded CALU and CAQR

4 Experimental section

5 Conclusion

Communication-avoiding LU and QR factorizations for multicore architectures 16th April 2010 13 / 25

Multithreaded CALU

The matrix is partitioned in blocks of size Tr x b
The computation of each block is associated with a task
The task dependency graph is scheduled using a
dynamic scheduler

Figure: Matrix 4 × 4 blocks and Tr = 2 and Corresponding task
dependency graph

Communication-avoiding LU and QR factorizations for multicore architectures 16th April 2010 14 / 25

Multithreaded CALU
Panel factorization is performed in two steps: find good pivots at low
communication cost, permute them and compute LU factorization
of the panel without pivoting.

The panel factorization stays on the critical path but it is done more
efficiently

Communication-avoiding LU and QR factorizations for multicore architectures 16th April 2010 15 / 25

Multithreaded CALU (Execution)

Figure: Example of execution of CALU for a 105 × 1000 tall skinny
matrix, using b = 100 and Tr = 1, on 8-core

Figure: Example of execution of CALU for a 105 × 1000 tall skinny
matrix, using b = 100 and Tr = 8, on 8-core

Communication-avoiding LU and QR factorizations for multicore architectures 16th April 2010 16 / 25

Multithreaded CAQR

Same approach as CALU but:

Panel factorization is performed only once

The update of the trailing matrix is triggered by the binary
tree used for the panel factorization.

Communication-avoiding LU and QR factorizations for multicore architectures 16th April 2010 17 / 25

1 Introduction

2 CALU and CAQR factorization

3 Multithreaded CALU and CAQR

4 Experimental section

5 Conclusion

Communication-avoiding LU and QR factorizations for multicore architectures 16th April 2010 18 / 25

Environments

Tests performed on: two-socket, quad-core machine
based on Intel Xeon EMT64 processor running on Linux
and on a four-socket, quad-core machine based on
AMD Opteron processor

Comparison with MKL-10.0.4.23 and PLASMA 2.0 (with
default parameters)

b = MIN(n, 100) has been chosen as block size

Communication-avoiding LU and QR factorizations for multicore architectures 16th April 2010 19 / 25

Performance of CALU
Performance of CALU, MKL_dgetrf, PLASMA_dgetrf on 8 cores

3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

log2(n)

G
F

lo
ps

/s

Tall Skinny Matrix, CALU, m=105

MKL_dgetf2
MKL_dgetrf
PLASMA_dgetrf
CALU(Tr=4)
CALU(Tr=8)

Figure: m=105 and varying n from 10 to 1000.

Communication-avoiding LU and QR factorizations for multicore architectures 16th April 2010 20 / 25

Performance of CALU
Performance of CALU, MKL_dgetrf, PLASMA_dgetrf on 16
cores

3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

45

log2(n)

G
F

lo
ps

/s

Tall Skinny Matrix, CALU, m=105

ACML_dgeqrf
PLASMA_dgeqrf
CALU(Tr=8)
CALU(Tr=16)

Figure: m=105 and varying n from 10 to 1000.

Communication-avoiding LU and QR factorizations for multicore architectures 16th April 2010 21 / 25

Performance of CAQR
Performance of CAQR, MKL_dgeqrf, PLASMA_dgeqrf on 8
cores

3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

45

log2(n)

G
F

lo
ps

/s

Tall Skinny Matrix, CAQR, m=105

MKL_dgeqrf
PLASMA_dgeqrf
CAQR(Tr=2)
CAQR(Tr=4)
CAQR(Tr=8)
TSQR

Figure: m=105 and varying n from 10 to 1000.

Communication-avoiding LU and QR factorizations for multicore architectures 16th April 2010 22 / 25

1 Introduction

2 CALU and CAQR factorization

3 Multithreaded CALU and CAQR

4 Experimental section

5 Conclusion

Communication-avoiding LU and QR factorizations for multicore architectures 16th April 2010 23 / 25

Conclusion

Multithreaded CALU and CAQR lead to important
improvements for tall and skinny matrices with respect to
the corresponding routines in MKL and PLASMA.

PLASMA becomes more efficient with increasing number
of columns.

No significant improvements obtained so far for square
matrices.

Prospects:

Improve the performance of the trailing matrix update by
increasing the block size to optimize BLAS3 operations.

Compare with the recent approach of [Hadri, Ltaief,
Agullo, Dongarra’09] for QR factorization, which uses a
different reduction tree during panel factorization.

Communication-avoiding LU and QR factorizations for multicore architectures 16th April 2010 24 / 25

Thank you

Thank you

Communication-avoiding LU and QR factorizations for multicore architectures 16th April 2010 25 / 25

