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All-Pairs Shortest Paths (APSP) Problem

e Compute shortest path length for every pair of nodes

Input: Graph with edge lengths Output: Distance matrix
e n = (# nodes)

e m= (# edges) to
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Repeating Dijkstra’s Algorithm

e Multiple runs of single-source shortest path algorithm

— We often use Dijkstra’s algorithm

e O(mn+ nlog n) time and O(m + n) space
— Hereafter, we call this algorithm as rDijkstra algorithm
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Contribution

e Faster algorithm for APSP on sparse graphs

— 10 times or more faster (with SIMD) than r-Dijkstra
algorithm

— O(m+n) working space

— Essentially equivalent to Hilger’s centralized algorithm (given

in 2007)
o We were not aware of this algorithm (thanks to an anonymous

reviewer)
e Its SIMD implementation
— 2.3 — 3.7 times faster than scalar implementation
— Hilger did not give SIMD implementation

— As far as we know, first acceleration with SIMD instructions
for sparse graph
e In contrast to many SIMD implementations for dense graphs



Inefficiency of n-Dijkstra

e Dijkstra algorithm does not use information on the
shortest paths from other source nodes
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Idea

e Source nodes are close to each other
— shortest path trees are similar
— we can efficiently compute them at the same time!




Our algorithm

e Multiple runs of multi-source shortest paths
algorithm

to

Partition graph
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Dijkstra’s algorithm

e Single-source shortest path () + in priority queue
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Extension of Dijkstra’s Algorithm

e Dijkstra’s algorithm

— Each node is associated with single / Label
label
— Label corresponds to distance label @

— Node with minimum label is extracted
from priority queue

e Our algorithm for multi-source case Key
— Each node is associated with single key / label

label and distance label for each source
node

— Node with minimum key label is 6,7,...
extracted from priority queue \

— Key label is set to the minimum of Distance
distance labels labels




Algorithm for Multi-Source Shortest Path

e Multi-source shortest paths () + in priority queue
— For case with two source nodes Q . unvisited
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Extension for Many Source Nodes

e Easy to extend for case # source nodes is B(>2)

e There are tradeoffs

— Pros: The # extraction from priority queue may decrease by a
factor of B

e Only one extraction from priority queue in best case, whereas B runs of
Dijkstra’s algorithm needs B extractions from priority queue

— Cons: Each scan operation takes O(5) time
e QOur experiment shows B=128 is best




Key Selection Rule

e Any key rule outputs correct answer
— Key label should be closeness from source nodes
— Minimum key rule is the best one in our experiments
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Label-Setting/Correcting Algorithms

e Dijkstra’s algorithm is classified as label-setting
algorithm
— Easy to analyze worst-case computation time
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e Our algorithm is classified as label-correcting
algorithm
— Difficult to analyze worst-case computation time

OO Q@
7

scanned labeled



Time Complexity

e QOur algorithm terminates in finite time

e No theoretical time bound were given for
— Minimum key rule
— Average key rule
— Maximum key rule

e Hilger gave worst-case running time for
another key rule (minimum tentative key)
— O(B (m+nlog n)) time
e The same as Bruns of Dijkstra’s algorithm

— However slower than minimum key rule (from
experiments by Hilger)



SIMD implementation

e Each scan operation can be easily SIMDized
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Our algorithm

o Multiple runs of multi-source shortest path
algorithm

to
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Graph Partitioning

e Repeating following procedure
— Pick up a node and traverse nearby nodes

e BFS is the best (among BFS, DFS, and kNN traverses)
e Times for graph partitioning are negligible

Ex. B=3




Experiment: Single-Thread

e Qur algorithm clearly outperforms n-Dijkstra algorithm
e SIMD implementation accelerates scalar version 2.3 — 3.7 times
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Experiment: Single-Thread (cont.)

e The acceleration is due to the decrease of # operation on
priority queue
— In best case, this number is decreased by a factor of B
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Experiment: Multiple-Thread

o Parallel speedup with multi-thread

implementation
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Improving Initializations

e Hilger suggested using better initializations
yields 1 — 3 times faster running time

Our algorithm Hilger’s algorithm
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Many-to-Many Shortest Paths

o It is trivial to extend our algorithm for many-
to-many shortest paths problem
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Summary

e Results

— We give fast algorithm for APSP on sparse graph
and its SIMD implementation

— First SIMD acceleration for sparse graph

e Future work

— Thorough investigations of our algorithm for the
many-to-many shortest paths problem



