A Multi-Source Label-Correcting Algorithm
for the All-Pairs Shortest Paths Problem

Hiroki Yanagisawa
(IBM Research — Tokyo)

All-Pairs Shortest Paths (APSP) Problem

e Compute shortest path length for every pair of nodes

Input: Graph with edge lengths Output: Distance matrix
e n = (# nodes)

e m= (# edges) to

A B |C|D|E

f A0 2|5 |57

(B 12 |0 (4 |3 |5

°1C |5 4]0 |53

D53 |5 |0 |2

E|7 (5|3 (2|0

Repeating Dijkstra’s Algorithm

e Multiple runs of single-source shortest path algorithm

— We often use Dijkstra’s algorithm

e O(mn+ nlog n) time and O(m + n) space
— Hereafter, we call this algorithm as rDijkstra algorithm

to
A B |C |D|E
A |__Compute for A >
B |L_Compute for B >
C |[__Compute for C >
D |L_Comp teﬁrD>
E

mpute for E

%

Contribution

e Faster algorithm for APSP on sparse graphs

— 10 times or more faster (with SIMD) than r-Dijkstra
algorithm

— O(m+n) working space

— Essentially equivalent to Hilger’s centralized algorithm (given

in 2007)
o We were not aware of this algorithm (thanks to an anonymous

reviewer)
e Its SIMD implementation
— 2.3 — 3.7 times faster than scalar implementation
— Hilger did not give SIMD implementation

— As far as we know, first acceleration with SIMD instructions
for sparse graph
e In contrast to many SIMD implementations for dense graphs

Inefficiency of n-Dijkstra

e Dijkstra algorithm does not use information on the
shortest paths from other source nodes

Compute for A

Independent to each other !

shortest —
path B
2

Compute for B

Compute for C

VIVIVIVT

Compute for D

ggmpytg fpr E >

30—1—h
m| OO0 | | X>

Idea

e Source nodes are close to each other
— shortest path trees are similar
— we can efficiently compute them at the same time!

Our algorithm

e Multiple runs of multi-source shortest paths
algorithm

to

Partition graph

A B |C|D

Compute for
A, B, and C

Compute for
D and

m o0 m@ >

A

Dijkstra’s algorithm

e Single-source shortest path () + in priority queue

O . unvisited

Extension of Dijkstra’s Algorithm

e Dijkstra’s algorithm

— Each node is associated with single / Label
label
— Label corresponds to distance label @

— Node with minimum label is extracted
from priority queue

e Our algorithm for multi-source case Key
— Each node is associated with single key / label

label and distance label for each source
node

— Node with minimum key label is 6,7,...
extracted from priority queue \

— Key label is set to the minimum of Distance
distance labels labels

Algorithm for Multi-Source Shortest Path

e Multi-source shortest paths () + in priority queue
— For case with two source nodes Q . unvisited

9,8

6 10,9

Extension for Many Source Nodes

e Easy to extend for case # source nodes is B(>2)

e There are tradeoffs

— Pros: The # extraction from priority queue may decrease by a
factor of B

e Only one extraction from priority queue in best case, whereas B runs of
Dijkstra’s algorithm needs B extractions from priority queue

— Cons: Each scan operation takes O(5) time
e QOur experiment shows B=128 is best

Key Selection Rule

e Any key rule outputs correct answer
— Key label should be closeness from source nodes
— Minimum key rule is the best one in our experiments

" Minimum key rule)

scan 5
3,1 8,6

o\ y

Maximum key rule

?
: _) —8
3,1 22 3,1 8,6

o

Average key rule

5
3,1 8,6

Label-Setting/Correcting Algorithms

e Dijkstra’s algorithm is classified as label-setting
algorithm
— Easy to analyze worst-case computation time

Qr O

scanned labeled

e Our algorithm is classified as label-correcting
algorithm
— Difficult to analyze worst-case computation time

OO Q@
7

scanned labeled

Time Complexity

e QOur algorithm terminates in finite time

e No theoretical time bound were given for
— Minimum key rule
— Average key rule
— Maximum key rule

e Hilger gave worst-case running time for
another key rule (minimum tentative key)
— O(B (m+nlog n)) time
e The same as Bruns of Dijkstra’s algorithm

— However slower than minimum key rule (from
experiments by Hilger)

SIMD implementation

e Each scan operation can be easily SIMDized

@% 3,4,7,7,6,5,2,1,3ceeeeeeereereeeeereeeereeereenen. 5| Blabels
[1+2 (SIMD)
2 5,6,9,9,8,7,4,3,5, - veeeerrreerereereseererrereenen. 7
1 [compare (SIMD)
@% 4,6,9,7,8,5,4,3,5,cererrrrrerreerereerssressnesneas A4
N J
Y

Compute minimum (SIMD)

Our algorithm

o Multiple runs of multi-source shortest path
algorithm

to

A B |C|D

Partition graph

Compute for
A, B, and C

Compute for
D and

m o0 m@ >

A

Graph Partitioning

e Repeating following procedure
— Pick up a node and traverse nearby nodes

e BFS is the best (among BFS, DFS, and kNN traverses)
e Times for graph partitioning are negligible

Ex. B=3

Experiment: Single-Thread

e Qur algorithm clearly outperforms n-Dijkstra algorithm
e SIMD implementation accelerates scalar version 2.3 — 3.7 times

3 Speedup
30]
25]
20 — | O n—Dijkstra
B Ours (scalar)
15 — |0 Ours (SIMD)
Grid 10 -

. ‘ ‘ ‘ ‘ networks
\E} Grid16x8192 Grid256x256 HI AK VT in US
G

We used B = 128, BFS partitioning, and minimum key rule
Machine: Quad Core Xeon 3.16 GHz on Windows Server 2003

Experiment: Single-Thread (cont.)

e The acceleration is due to the decrease of # operation on
priority queue
— In best case, this number is decreased by a factor of B

140
Best case
120
100
80
60

40

20

0

Grid16x8192 Grid256x256 HI AK VT

We used B = 128, BFS partitioning, and minimum key rule
Machine: Quad Core Xeon 3.16 GHz on Windows Server 2003

Experiment: Multiple-Thread

o Parallel speedup with multi-thread

implementation

Scalar

Speedup

SIMD

ovT
B Grid16x8192
O Grid256x256

wll

wll

threads

We used B = 128, BFS partitioning, and minimum key rule

Machine: Quad Core Xeon 3.16 GHz on Windows Server 2003

Improving Initializations

e Hilger suggested using better initializations
yields 1 — 3 times faster running time

Our algorithm Hilger’s algorithm

" Tnitialize
No with

initialization shortest
path

_ lengths

Many-to-Many Shortest Paths

o It is trivial to extend our algorithm for many-
to-many shortest paths problem

to

30—1—h
m O 0| @ >

A |B|C|D|E
0|3 |5]|6 |10
31012 |5 |7
512107 |6
6 (5|7 |05
1017 16 |5 |0

Summary

e Results

— We give fast algorithm for APSP on sparse graph
and its SIMD implementation

— First SIMD acceleration for sparse graph

e Future work

— Thorough investigations of our algorithm for the
many-to-many shortest paths problem

