Distributed Computing and Systems Chalmers university of technology

Overlays with preferences: Approximation algorithms for matching with preference lists

Giorgos Georgiadis Marina Papatriantafilou

Happier times in Iceland, when no volcanoes were erupting...

Overview

- How do nodes flirt?
- Matching with preferences
- Recent work on matchings
- Key question
- Satisfaction and how it works
- Distributed Matching using satisfaction
- Calculating the approximation
- Conclusions/Future work

How do nodes flirt*?

*Especially when they are polygamous

Matching with preferences Nodes are tough customers

- Well studied (centralized)
- More complex than simple matching [GaleShapley62, Iwama-etal99, Manlove-etal02, Irving-etal07, ...]
- Stability in focus of these studies

<u>Marriages</u>

Stable solution? Yes*

*no ties though

<u>Roommates</u>

(1,2), (3,4)?

Stable solution? Not always

Recent work on matchings

• [Gai-etal07, Lebedev-etal07, Mathieu08]:

b-matching with preferences [aka stable fixtures, Irving-etal07]; stabilization in overlay construction

- 1. *m-to-m matchings*: proposal-refusal distributed algorithm leads to stable conf in n² initiatives
- 2. acyclic preferences imply stable configurations
- 3. If stable configuration exists, can be reached in a finite number of blocking pair resolutions
- Defined Satisfaction

max 1, subtract penalty for each "hole" in the list

$$S_{i} = \left(\frac{1}{b_{i}} - \frac{1}{b_{i}} \frac{R_{i}(C_{1}(i))}{|L_{i}|}\right) + \dots + \left(\frac{1}{b_{i}} - \frac{1}{b_{i}} \frac{R_{i}(C_{c(i)}(i)) - (c(i) - 1)}{|L_{i}|}\right)$$

Simulation results [Mathieu08] Satisfaction and convergence

Problem	Convergence time						Satisfaction	
Instance	<i>i</i> = B (best)		<i>i</i> = R (random)		<i>i</i> = H(hybrid)			
	Mean	Std	Mean	Std	Mean	Std	Mean	Std
• • •								
Global ordering	45.0	1.5	947.2	162.0	43.0	2.0	0.52	0.0
Random ordering	N/A						0.77	0.031

- Random ordered lists could not converge (!)
- Globally ordered lists converge but $\overline{S} = 0.52 < 0.77$

Key question

What is important in m-to-m matchings?

- Strict stabilization?
- Some stabilization condition?
- Something else?

What if we see it as an optimization problem? What would that problem be?

Overview

- How do nodes flirt?
- Matching with preferences
- Recent work on matchings
- Key question
- Satisfaction and how it works
- Distributed Matching using satisfaction
- Calculating the approximation
- Conclusions/Future work

How satisfaction works

Classical stable matchings revisited An example

Approximating satisfaction

The story so far... ... and then some.

Satisfaction maximization problem

Approx satisfaction maximization problem

- Satisfaction values are known locally from the beginning
- Neighbors exchange and add (approx) satisfaction values
- Weights for edges are formed

Maximum m2m weighted matching

• Non-trivial to solve!

Greedy Local Distributed Matching (LID aloc) using satisfaction

Greedy Distributed m2m weighted Matching

- p_i: find b_i locally heaviest edges
- Generalization of 1-1 weighted matching by [Hoepman04]
- Convergence depends on longest weight chains

Lemma: LID algo gives ½ approximation of opt weighted many-to-many matching Generalization of proof in [Preis99] for centralized 1-1 matching **Thm:** ... $\frac{1}{4} \left(1 + \frac{1}{b_{max}} \right)$ -approximation of optimal max satisfaction

Distributed Matching using satisfaction Initialization phase

Distributed Matching using satisfaction Matching phase

Send PROP to top b_i

Total satisfaction (sum): 3.0

 $\frac{1}{4}\left(1+\frac{1}{b_{\max}}\right)$ -approximation of optimal

Calculating the approximation Two steps to $\frac{1}{4} \left(1 + \frac{1}{b_{max}} \right)$

① Using approx. satisfaction $\overline{\Delta S}$ instead of ΔS

② Fully distributed many-to-many matching algorithm

Calculating the approximation ① Using approx. satisfaction

• Find the proportions of S_i^{static} and $S_i^{dynamic}$ inside $S_i = \sum_{j \in C_i} \frac{1}{b_i} - \frac{R_i(j) - Q_i(j)}{b_i L_i}$

Hint: $S_i^{dynamic}$ max when b_i connections and S_i^{static} lowest when these connections are from the bottom of the list.

• Deduce:
$$\frac{S_i^{static}}{S_i^{static} + S_i^{dynamic}} \ge \frac{1}{2} \left(1 + \frac{1}{b_{\max}} \right)$$

Conclusion How to keep everybody (approx) happy*?

- Overlay construction and matching
- Seeking alternative to classical stable matchings: satisfaction
- Converted max satisfaction problem to m-to-m weighted matching
- Distributed m-to-m weighted matching algorithm (*LID*)
 - Guaranteed minimum collective satisfaction
 - Exchange of local info only (cf. also "price of being near-sighted" [Kuhn-etal06])
- Algorithm of independent interest to weighted matchings

*provided they cooperate

Future work And now?

- Other optimization targets may be set (ie min individual satisfaction).
- Could it work to build on more sophisticated matching algos? (can get better approx.ratio/convergence?)
- Relation of convergence and churn?
- Non-collaborating actions/nodes?

Distributed Computing and Systems Chalmers university of technology

Thank you for your attention!

Contact

{georgiog,ptrianta}@chalmers.se

Visit

http://www.cs.chalmers.se/~dcs/