Analysis of Durability in Replicated Distributed Storage Systems

Sriram Ramabhadran and Joseph Pasquale

Dept. of Computer Science and Engineering University of California, San Diego

IPDPS 2010

Replication

- Generate/regenerate enough replicas of object so it lives long enough
- Time to repair may be long
 - Must detect failure, and then regenerate
 - Repair process itself may fail
 - Have enough so we never run out
- Uncertainty whether node is down or dead

Formulation

- Given expected
 - Failure rate, λ
 - Repair rate, μ
 - Target time to live, L
- How many replicas *N* to achieve *L*?
- Note: Repairs triggered by failures

Model For 6 Replicas

Similar to Gambler's Ruin

Erasure Coding: 3 Fragments

Result: Lifetime

$$L_N = \frac{1}{N\lambda} \sum_{i=0}^{N-1} \sum_{j=0}^{i} \frac{\binom{N}{j}}{\binom{N-1}{i}} \left(\frac{\mu}{\lambda}\right)^{i-j}$$

- Increases with N and μ (without bound)
- Question: Which is it better to increase?

Constrained Repair Bandwidth

N: number of replicas

- Small N: aggressive repair
- Large N: minimal repair

Distinguishing Down / Dead

- Assumptions for single node, T>>d
 - lifetime ~ exp (T)
 - uptime ~ exp (u)
 - downtime ~ exp (d)
- $\lambda_{dead} = (u+d)/uT$ $\lambda_{up} = 1/d$ $\lambda_{down} = (T-u-d)/uT$

Uncertainty: Down or Dead

• Timeout α

- If node not up after α , declare dead, repair
- What value of α maximizes efficiency?

Ex: Number of replicas r=2

Time

$E[Y_{\alpha}] = Replica Mean Timeout$

 α

Lifetime L vs. α , r = 4

 α

Conclusions

- There is an optimal timeout
- Can be determined by observing a single node
- Without–memory performs close to with–memory