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Parallel Programming Paradigms


 

For a single computer (multiprocessor,  
multicore), 


 
Shared memory


 
e.g. OpenMP


 

Much easier


 
For a multicomputer (distributed-memory 
system), 


 
Message passing


 
e.g. MPI,  PVM


 

Hard to programmers


 
Shared virtual memory (SVM)


 
a.k.a. Software DSM


 

e.g. Treadmarks, CVM, JiaJia


 
Bind to a memory consistency model


 

Resemble ease of shared memory


 
Less efficient



4

Parallel Programming Paradigms


 

For a single computer (multiprocessor,  
multicore), 


 
Shared memory


 
e.g. OpenMP


 

Much easier


 
For a multicomputer (distributed-memory 
system), 


 
Message passing


 
e.g. MPI,  PVM


 

Hard to programmers


 
Shared virtual memory (SVM)


 
a.k.a. Software DSM


 

e.g. Treadmarks, CVM, JiaJia


 
Bind to a memory consistency model


 

Resemble ease of shared memory


 
Less efficient

System Developer Implementation Level Granularity Consistency Model

IVY Yale Library

 

+ OS Page

 

(1KB) SC

Munin Rice Library

 

+ OS Variable ERC

TreadMarks Rice Library Page

 

(4KB) LRC

CVM Maryland Library Page LRC, SC

Midway CMU Library

 

+ Compiler Variable EC, PC, RC

NCP2 UFRJ, Brail Library

 

+ Hardware support Page

 

(4KB) EC, RC

Quarks Utah Library Region, Page RC, SC

softFLASH Stanford OS Page

 

(16KB) RC, DIRC

Cashmere-2L Rochester Library Page

 

(8KB) HLRC

Brazos Rice Library Page ScC

Shasta DEC WRL Compiler Variable SC

Mermaid Toronto Library+OS Page

 

(1KB, 8KB) SC

Mirage UCLA OS 512Bytes SC

JIAJIA CAS, China Library Page

 

(4KB) ScC

Simple-COMA SICS

 

(Sweden) 
and SUN

OS Page SC

Blizzard-S Wisconsin Library Cache line SC

Shrimp Princeton OS+Hardware

 

support Page AURC, SC

Linda Yale Language Variable SC

Orca Vrije

 

Univ.,  
Netherlands

Language Variable EC-like
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
 

Memory consistency models


 
Strict Consistency


 

Sequential Consistency (SC)

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

 
Eager Release Consistency
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Lazy Release Consistency
 

(LRC)


 
Scope Consistency (ScC)


 

Entry Consistency (EC)


 

Memory consistency models


 
Strict Consistency


 

Sequential Consistency (SC)


 
Release consistency (RC)


 
Eager Release Consistency

 
(ERC)


 

Lazy Release Consistency
 

(LRC)


 
Scope Consistency (ScC)


 

Entry Consistency (EC)



6

Parallel Programming Paradigms


 

For a single computer (multiprocessor,  
multicore), 


 
Shared memory


 
e.g. OpenMP


 

Much easier


 
For a multicomputer (distributed-memory 
system), 


 
Message passing


 
e.g. MPI,  PVM


 

Hard to programmers


 
Shared virtual memory (SVM)


 
a.k.a. Software DSM


 

e.g. Treadmarks, CVM, JiaJia


 
Bind to a memory consistency model


 

Resemble ease of shared memory


 
Less efficient


 

Remote memory access is the scalability killer!


 
Remote >>

 
local latency (assume in 50-60ns)


 

Infiniband
 

cluster (1-2μs): 20 x slower!


 
Ethernet cluster (100μs): 2,000 x slower!!


 

Grid/Internet (av. 500ms):
 

10,000,000 x slower!!!
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
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"To speed up" ≈
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
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
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
 

The key is to improve locality



7

The PGAS Model


 
User hints


 
Add annotation


 

Use special API constructs
 

for locality hint inputs
 (e.g. X10’s places)


 

PGAS (Partitioned Global Address Space)


 
"Hybrid"

 
parallel paradigm


 

Essentially Distributed Shared Memory (DSM)


 
But corporate some MPI-like constructs


 

Research languages: 
UPC,  Co-Array Fortran (CAF),  Titanium


 

HPCS Languages:
X10 (IBM),  Chapel (Cray)


 

A burden to programmers

http://www.nsf.gov/
http://www.nsa.gov/home_html.cfm
http://www.nro.gov/
http://www.nnsa.doe.gov/
http://www.er.doe.gov/index.htm
http://www.hpcmo.hpc.mil/
http://www.nasa.gov/home/index.html
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Our Dream Model: PGPGAS or (PG)2AS


 

Profile-Guided PGAS (PG2AS)


 
A built-in runtime profiler instead of humans for 
digging out the locality hints


 

Profile-guided adaptive locality management


 
Thread migration


 

Object home migration


 
Object prefetching


 

API-free shared virtual memory


 
Transparent clustering and scaling


 
Automatic thread distribution


 

Location-transparent access


 
System instruments cluster-wide logics


 

No modification to existing applications

Something new in 
this paper

Previous distributed JVM research
(e.g. cJVM, JavaSplit, JESSICA, …)
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Techniques to improve locality

 Runtime techniques


 
Migration


 
Thread


 
Object (Home)


 

Prefetching


 
Spatial


 
Temporal

objects

T1 T2

node 1 node 2

remote access
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

 
A cluster-wide JVM with


 

Dynamic thread mobility in JIT mode


 

Global Object Space (GOS)

Java
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 Computing

 Architecture
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

 
Now equipped with


 

Access profiler: track object access over heap to deduce inter-

 
thread sharing -> thread-thread relation



 

Stack profiler: track the set of frequent objects accessed by 
each thread -> thread migration cost



 

Correlation analyzer: profile-guided decisions on dynamic 
thread migration -> global locality improvement
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Challenge 1

 How does the runtime know which 
threads to migrate can make the most 
locality benefit?

 Difficult to decide if no global inter-
 thread sharing information

 Solution: Track sharing % threads


 
T1 accesses O1, O3, O5, …


 

T2 accesses O1, O2, O3, …


 
Sharing % T1 & T2: O1, O3 
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Thread Correlation Map (TCM)


 
Thitikamol

 
and Keleher; D-CVM (1999)


 

Proposed “Active Correlation Tracking”


 

Visualize
 

correlation % threads by a 2D map


 
Grayscale(x,y) = sharing amount of thread x

 
and y


 

TCM(1,1) = TCM(2,2) = TCM(3,3) = …
 

= 0

node 1

node 2

node 3
…

e.g. Water-Spatial
32 threads placed 
on 8 nodes
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Problems for OO-Based Systems

•
 

Low tracking overhead
•

 
But suffer false sharing

•
 

Induced sharing pattern
•

 
Can’t be used at all

Simulation
Barnes-Hut: 32 threads,  4K bodies (<100 bytes each),  dist=7.0

Page size: 4KB Page size: 128 byte

•
 

No or little false sharing
•

 
Inherent sharing pattern

•
 

But at much higher cost: 
32 times more tracking
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Challenge 2


 
Thread migration cost is ill-modeled in past research.


 
Suppose thread T has n frames


 

Did not consider indirect cost of subsequent object 
misses after migration 

 
inaccurate decisions


 

How about including cost of shipping the thread’s 
working set?


 

Yes! But not the best model for the migration cost 

 





),()(
)()()( 1

1

tWiL
ititTt T

n

i frame
n

i
restorecapturemig


  

 … (2)

 


  




n

i frame
n

i
restorecapturemig

iL
ititTt 1

1

)(
)()()(

… (1)

network latency & bandwidth
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Challenge 2 (Cont’)


 
Suppose T1 accesses within the same interval:


 
A (1 time), B (1 time), C (4 times)


 

WT1

 

={A, B, C}

acquire(L) release(L)

fetch(A) A fetch(B) B

read(A) read(B)

fetch(C) C

read(C) read(C) read(C)

acquire(L)

fetch(A) A fetch(B) B

read(A) read(B)

fetch(C) C

read(C)

read(C) read(C)

fetch(C) C

T1 migrated

release(L)

T1

T1

(1) Without migration:

(2) With migration:

Fetching roundtrips = 3

Fetching roundtrips = 4

read(C)

read(C)
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Challenge 2 (Cont’)

acquire(L)

fetch(A) A fetch(B) B

read(A) read(B)

fetch(C) C

read(C)

read(C) read(C)

C

T1 migrated

release(L)

T1

(3) With migration prefetching WT1

 

:

Fetching roundtrips = 3 A B

However, prefetching A and B are unnecessary 
overheads. We need prefetch of C only. 
How can we know that?

WT1

 

={A, B, C}
A (1 time), B (1 time), C (4 times)

read(C)
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Challenge 2 (Cont’)
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Sticky
 

Set

We define the sticky set (SS) of a 
thread as a subset of working set that 
includes only those frequently used 
objects.

 “Sticky”
 

in the sense that if the thread 
is migrated, this set of objects should 
be prefetched

 
along to save most 

object misses to follow.
 Objects in SS are more likely to be 

fetched again after migration.
 Size of SS serves as a good estimate of 

indirect cost of thread migration.
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How to Detect Sticky Set

 Compiler can only give qualitative 
answer


 
Pointer analysis, shape analysis, …

 Detecting SS at runtime


 
Our approach


 

Much more accurate


 
But tracking object access frequency is 
also costly


 

How to cut costs?
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Summary of Our Solution


 
What we want to do:
1.

 
Model thread sharing (inter-thread correlation)

2.
 

Model indirect thread migration cost


 
Profiling results:
1.

 
Thread correlation map (TCM)

2.
 

Per-thread sticky set (SS)


 
Use both to design new migration policy
1.

 
Correlation-driven

2.
 

Cost-aware


 
How we profile them efficiently? (Our main 
contribution: lightweight techniques)
1. Adaptive object sampling 

 
TCM

2. Adaptive stack sampling 
 

SS
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New Thread Migration Policy

 Correlation-Driven


 
TCM(T1, T2) > threshold 
migrate T1 to T2 or T2 to T1

 Cost-aware


 
But T1 to T2 or T2 to T1?


 
Depends on which of SS(T1), SS(T2) is 
bigger?


 
Also need to compare with correlation 
with other local threads
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Thread Correlation Tracking


 

Our mechanism is OO-based


 
OAL: Object Access List


 
We need to obtain thread-object relation first.


 

TCM: Thread Correlation Map


 
Collect OALs

 
from all threads cluster-wide


 

Compute each element of TCM from OALs


 
How to obtain OAL?


 
Passive: only when object checks see invalid object 
states (i.e. access faults)


 

Active: 


 
Real object states are stored separately


 

Purposefully
 

set object states to "falsely
 

invalid"
 

 
trigger correlation faults 

 
logging into OALs


 

Real states are restored after serving correlation 
faults; access faults are handled normally
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Object Sampling


 
CPU/comm.

 
overhead of TCM/OAL can be 

substantial


 
Too many objects to track in a fine-grained app!


 

Can’t compute TCM
 

in time as system scales up


 
Need object sampling –

 
i.e. only a portion 

of heap (selected objects) will undergo access 
tracking.


 

But how much heap portion to sample?


 
Traditional (fixed rate):


 
Keep a global counter k of #bytes accessed over 
the heap


 

Each object header has a "sample" flag; 


 
Upon an object creation, mark the flag whenever 
k > threshold   
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Adaptive Object Sampling (AOS)


 

Each object has a "sequence number" 


 
Sample the object if sequence # is divisible 
by the current "sampling gap"


 

Sampling gap can be selected and change at 
runtime


 

Strike a balance of cost and accuracy


 
Sampling rate definition


 
1X = Sample 1 object per page of heap


 

1024X means "full sampling"
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Accuracy of AOS

 Because of sampling, we miss to track 
some objects in the heap.

 So we will see error.
 Let A = [aij ]N×N and B = [bij ]N×N be two 

TCMs
 

and B is obtained by full 
sampling. 

 A contains a % error defined by:

2
11

2
11

)(

)(

ij
N
j

N
i

ijij
N
j

N
i

EUC
b

ba
E










ij
N
j

N
i

ijij
N
j

N
i

ABS b

ba
E

11

11










(Euclidean distance) (Absolute distance)
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Accuracy of AOS (Cont’)
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Tracking sticky sets


 

Common belief is that we need to pay per-
 access overhead to maintain LRU/LFU/…, etc


 

We use an elegant stack profiling approach: 
take and compare snapshots of stack states 


 
no overhead for object access


 

background profiling is cheap and flexible
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p1

Time:
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Stack Invariants

 Because JVM is a “stack machine”


 
Stack variables can be hint of constantly 
accessed objects


 

Temporary variables are useless


 
Those references constantly stay in the 
stack across snapshots taken (we call them 
stack invariants) are good hints of SS.


 

Usually stack invariants are the entry 
points of SS and important data structures 
like Hashmap, TreeMap, Linked List
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……

Sticky setInvariant
references

Stack

Size estimated via 
object sampling

Sampled objects

Objects referenced 
invariantly by stack

Key:

Unsampled objects

Stack Invariants (Cont’)
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Adaptive Stack Sampling


 
Deduce

 
invariants by comparing stack state 

snapshots frame by frame


 
Adaptive optimization


 
Adjustable timer controlling which period of time to 
do stack sampling


 

Stack frame added with “visited”
 

flag


 
If not touched across

 
two sampling rounds, no 

need to sample
 

it


 
Lazy Extraction: Capture frames in raw

 
(native) 

form first


 
If a frame is not accessed again, no overhead


 

Compare two frames
 

by “probing”


 
For each remaining invariance in old frame, 
check corresponding one in new frame.
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Adaptive Stack Sampling (2)

stack state 1 stack state 2

= extracted frame = unvisited frame

= stack invariant =non-invariant

C

A

B

D

A

B

A

= comparison

E

F

A

G

= raw frame

A

G

H

stack state 3 stack state 4 stack state 5
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Outline

4

Background1

2

3

Challenges and Problems

Adaptive Object Sampling

Adaptive Stack Sampling

5 Performance Evaluation
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Experiments


 

Tests


 
Measure accuracy (shown already)


 

Measure overheads


 
Sampling-based access tracking


 

Computation of TCM


 
Stack profiling


 

Evaluate benefit over cost


 
Application benchmarks 


 
Ported

 
from SPLASH2 to Java

 
version


 

Barnes-Hut: fine-grained


 
Water-Spatial: medium-grained


 

SOR: coarse-grained


 
Experimental environment: a

 
segment of 8 

Intel P4 nodes over Fast Ethernet
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Experiments


 

Tests


 
Measure accuracy


 

Measure overheads


 
Sampling-based access tracking


 

Computation of TCM


 
Stack profiling


 

Evaluate benefit over cost


 
Application benchmarks 


 
Ported

 
from SPLASH2 to Java

 
version


 

Barnes-Hut: fine-grained


 
Water-Spatial: medium-grained


 

SOR: coarse-grained


 
Experimental environment: a

 
segment of 8 

Intel P4 nodes over Fast Ethernet

Benchmark
Problem Size Sharing

Data set Rounds Granularity Object size

SOR 2K × 2K 10 Coarse each row at least several KB

Barnes-Hut 4K bodies 5 Fine each body less than 100 bytes

Water-Spatial 512 molecules 5 Medium each molecule about 512 bytes
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Object Sampling Overheads

CPU Overhead of logging accesses into OALs

Overhead of Sending OALs
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Object Sampling Overheads

 CPU overhead of computing TCM is the 
greatest overhead in the profiling 
subsystem


 
When system scales, TCM becomes 
bottleneck soon!


 

So sampling must be done …



46

Stack Profiling Overhead


 
Timer-based control of stack sampling phases 
saves over half of overheads


 

Lazy extraction saves up to 1/3 overheads

Bench

 
mark

Data
Set
Size

Baseline
Exe

Time

+ Stack Sampling Overhead + Sticky-set Footprinting

 

Overhead
+ Sticky-

 
set

Resolution
Overhead

Immediate 
Extraction Lazy Extraction Nonstop Timer-based (100ms)

4ms 16ms 4ms 16ms 4X Full 4X Full

SOR 1K×1K 6201 6216
(0.24%)

6207
(0.10%)

6211
(0.17%)

6206
(0.08%)

6714
(8.28%)

6707
(8.17%)

6519
(5.13%)

6480
(4.50%)

6639
(1.85%)

Barnes 
-Hut 4K 93857 94947

(1.16%)
94657

(0.85%)
94697

(0.89%)
95209

(1.44%)
98968

(5.45%)
102190
(8.88%)

93649
(-0.22%)

102334
(9.03%)

97585
(4.20%)

Water- 
Spatial 512 59105 59232

(0.21%)
59161

(0.09%)
59209

(0.17%)
59124

(0.03%)
59834

(1.23%)
61985

(4.87%)
59501

(0.67%)
60313

(2.04%)
60002

(0.84%)
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Effect of New Thread Migration Policy


 

We assess this using an application “Customer 
Analytics“

 
with dynamic change in sharing patterns:

Epoch 1 Epoch 2 Epoch 3

With thread migration enabled, 
the system strives for upkeep of
most of the locality (see right fig).

Execution time shorten by over 60% 
compared to no migration.



48

Conclusion

 This work discusses a couple of 
advanced profiling

 
strategies

 
for 

optimizing locality


 
Adaptive object sampling


 

Online stack sampling
 Experimental results show


 
Low overhead


 

New thread migration policies based on


 
Profiled thread-thread correlation


 
Profiled per-thread sticky set


 

Can shorten much the execution on the 
distributed runtime system



Any Questions or 
Suggestions? 
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