
Systems Research Group
Department of Computer Science

The University of Hong Kong

Adaptive Sampling-Based Profiling
Techniques for Optimizing the

Distributed JVM Runtime

IPDPS’10, Atlanta, Georgia, USA

King Tin Lam, Yang Luo, Cho-Li Wang

Speaker: King Tin Lam
Date: Apr 20, 2010

22

Outline

4

Background1

2

3

Challenges and Problems

Adaptive Object Sampling

Adaptive Stack Sampling

5 Performance Evaluation

3

Parallel Programming Paradigms



For a single computer (multiprocessor,
multicore),


Shared memory


e.g. OpenMP



Much easier


For a multicomputer (distributed-memory
system),


Message passing


e.g. MPI, PVM



Hard to programmers


Shared virtual memory (SVM)


a.k.a. Software DSM



e.g. Treadmarks, CVM, JiaJia


Bind to a memory consistency model



Resemble ease of shared memory


Less efficient

4

Parallel Programming Paradigms



For a single computer (multiprocessor,
multicore),


Shared memory


e.g. OpenMP



Much easier


For a multicomputer (distributed-memory
system),


Message passing


e.g. MPI, PVM



Hard to programmers


Shared virtual memory (SVM)


a.k.a. Software DSM



e.g. Treadmarks, CVM, JiaJia


Bind to a memory consistency model



Resemble ease of shared memory


Less efficient

System Developer Implementation Level Granularity Consistency Model

IVY Yale Library

+ OS Page

(1KB) SC

Munin Rice Library

+ OS Variable ERC

TreadMarks Rice Library Page

(4KB) LRC

CVM Maryland Library Page LRC, SC

Midway CMU Library

+ Compiler Variable EC, PC, RC

NCP2 UFRJ, Brail Library

+ Hardware support Page

(4KB) EC, RC

Quarks Utah Library Region, Page RC, SC

softFLASH Stanford OS Page

(16KB) RC, DIRC

Cashmere-2L Rochester Library Page

(8KB) HLRC

Brazos Rice Library Page ScC

Shasta DEC WRL Compiler Variable SC

Mermaid Toronto Library+OS Page

(1KB, 8KB) SC

Mirage UCLA OS 512Bytes SC

JIAJIA CAS, China Library Page

(4KB) ScC

Simple-COMA SICS

(Sweden)
and SUN

OS Page SC

Blizzard-S Wisconsin Library Cache line SC

Shrimp Princeton OS+Hardware

support Page AURC, SC

Linda Yale Language Variable SC

Orca Vrije

Univ.,
Netherlands

Language Variable EC-like

5

Parallel Programming Paradigms



For a single computer (multiprocessor,
multicore),


Shared memory


e.g. OpenMP



Much easier


For a multicomputer (distributed-memory
system),


Message passing


e.g. MPI, PVM



Hard to programmers


Shared virtual memory (SVM)


a.k.a. Software DSM



e.g. Treadmarks, CVM, JiaJia


Bind to a memory consistency model



Resemble ease of shared memory


Less efficient



Memory consistency models


Strict Consistency



Sequential Consistency (SC)


Release consistency (RC)


Eager Release Consistency

(ERC)



Lazy Release Consistency

(LRC)


Scope Consistency (ScC)



Entry Consistency (EC)



Memory consistency models


Strict Consistency



Sequential Consistency (SC)


Release consistency (RC)


Eager Release Consistency

(ERC)



Lazy Release Consistency

(LRC)


Scope Consistency (ScC)



Entry Consistency (EC)

6

Parallel Programming Paradigms



For a single computer (multiprocessor,
multicore),


Shared memory


e.g. OpenMP



Much easier


For a multicomputer (distributed-memory
system),


Message passing


e.g. MPI, PVM



Hard to programmers


Shared virtual memory (SVM)


a.k.a. Software DSM



e.g. Treadmarks, CVM, JiaJia


Bind to a memory consistency model



Resemble ease of shared memory


Less efficient



Remote memory access is the scalability killer!


Remote >>

local latency (assume in 50-60ns)



Infiniband

cluster (1-2μs): 20 x slower!


Ethernet cluster (100μs): 2,000 x slower!!



Grid/Internet (av. 500ms):

10,000,000 x slower!!!



Remote memory access is the scalability killer!


Remote >>

local latency (assume in 50-60ns)



Infiniband

cluster (1-2μs): 20 x slower!


Ethernet cluster (100μs): 2,000 x slower!!



Grid/Internet (av. 500ms):

10,000,000 x slower!!!



"To speed up" ≈

"Reduce as much remote
access as possible"



The key is to improve locality



"To speed up" ≈

"Reduce as much remote
access as possible"



The key is to improve locality

7

The PGAS Model


User hints


Add annotation



Use special API constructs

for locality hint inputs
 (e.g. X10’s places)



PGAS (Partitioned Global Address Space)


"Hybrid"

parallel paradigm



Essentially Distributed Shared Memory (DSM)


But corporate some MPI-like constructs



Research languages:
UPC, Co-Array Fortran (CAF), Titanium



HPCS Languages:
X10 (IBM), Chapel (Cray)



A burden to programmers

http://www.nsf.gov/
http://www.nsa.gov/home_html.cfm
http://www.nro.gov/
http://www.nnsa.doe.gov/
http://www.er.doe.gov/index.htm
http://www.hpcmo.hpc.mil/
http://www.nasa.gov/home/index.html

8

Our Dream Model: PGPGAS or (PG)2AS



Profile-Guided PGAS (PG2AS)


A built-in runtime profiler instead of humans for
digging out the locality hints



Profile-guided adaptive locality management


Thread migration



Object home migration


Object prefetching



API-free shared virtual memory


Transparent clustering and scaling


Automatic thread distribution



Location-transparent access


System instruments cluster-wide logics



No modification to existing applications

Something new in
this paper

Previous distributed JVM research
(e.g. cJVM, JavaSplit, JESSICA, …)

9

Techniques to improve locality

 Runtime techniques


Migration


Thread


Object (Home)



Prefetching


Spatial


Temporal

objects

T1 T2

node 1 node 2

remote access

10

Techniques to improve locality

 Runtime techniques


Migration


Thread


Object (Home)



Prefetching


Spatial


Temporal

objects

T1 T2

node 1 node 2

remote access

11

Techniques to improve locality

 Runtime techniques


Migration


Thread


Object (Home)



Prefetching


Spatial


Temporal

objects

T1 T2

node 1 node 2

remote access

12

Local HeapLocal HeapLocal HeapLocal HeapLocal HeapLocal Heap

Thread 3

Java
Method Area

Java
Method Area

Thread 2

Thread 1

PC

Execution
Engine

Execution
Engine

Class
Loader
Class

Loader

Registers

Stack
Frames

Thread
Scheduler
Thread

Scheduler

Master JVM

Thread 3

Java
Method Area

Java
Method Area

Thread 2

Thread 1

PC

Class
Loader
Class

Loader

Registers

Load
Monitor
Daemon

Thread
Scheduler
Thread

Scheduler

Thread 3

Java
Method Area

Java
Method Area

Thread 2

Thread 1

PC

Execution
Engine

Execution
Engine

Class
Loader
Class

Loader

Registers

Load
Monitor
Daemon

Stack
Frames

Thread
Scheduler
Thread

Scheduler

Execution
Engine

Execution
Engine

Stack
Frames

Remote Class Loading

Thread Migration
Source
Code

Source
Code

Java
Compiler

Java
Compiler

Class
Files

Class
Files

Portable Java Frames

Load
Monitor
Daemon

Host ManagerHost Manager

OS
Hardware

Worker JVM Host ManagerHost Manager

OS
Hardware

Worker JVM Host ManagerHost Manager

OS
Hardware

Communication Network

JESSICA Distributed Java VM



A cluster-wide JVM with


Dynamic thread mobility in JIT mode


Global Object Space (GOS)

Java

 Enabled

 Single

 System

 Image

 Computing

 Architecture

13

Local HeapLocal HeapLocal HeapLocal HeapLocal HeapLocal Heap

Thread 3

Java
Method Area

Java
Method Area

Thread 2

Thread 1

PC

Execution
Engine

Execution
Engine

Class
Loader
Class

Loader

Registers

Stack
Frames

Thread
Scheduler
Thread

Scheduler

Master JVM

Thread 3

Java
Method Area

Java
Method Area

Thread 2

Thread 1

PC

Class
Loader
Class

Loader

Registers

Load
Monitor
Daemon

Thread
Scheduler
Thread

Scheduler

Thread 3

Java
Method Area

Java
Method Area

Thread 2

Thread 1

PC

Execution
Engine

Execution
Engine

Class
Loader
Class

Loader

Registers

Load
Monitor
Daemon

Stack
Frames

Thread
Scheduler
Thread

Scheduler

Heap
(Global Object Space)

Heap
(Global Object Space)

object
object

Execution
Engine

Execution
Engine

Stack
Frames

object
object

Remote Class Loading

Thread Migration
Source
Code

Source
Code

Java
Compiler

Java
Compiler

Class
Files

Class
Files

Portable Java Frames

Load
Monitor
Daemon

Host ManagerHost Manager

OS
Hardware

Worker JVM Host ManagerHost Manager

OS
Hardware

Worker JVM Host ManagerHost Manager

OS
Hardware

Communication Network

JESSICA Distributed Java VM



A cluster-wide JVM with


Dynamic thread mobility in JIT mode


Global Object Space (GOS)

Java

 Enabled

 Single

 System

 Image

 Computing

 Architecture

14

Host ManagerHost Manager

OS
Hardware

Thread
Scheduler
Thread

Scheduler

Thread Space

Local HeapLocal Heap

…

Stack
Profiler
Stack

Profiler

OS
Hardware

OS
Hardware

Interconnection Network

Correlation
Collector

Correlation
Collector

OS
Hardware

Access
Profiler
Access
Profiler

Stack

Worker JVM 1

Host ManagerHost Manager

Thread
Scheduler
Thread

Scheduler

Thread Space

Local HeapLocal Heap

…

Stack
Profiler
Stack

Profiler

Migration
Engine

Migration
Engine

Correlation
Collector

Correlation
Collector

Access
Profiler
Access
Profiler

Stack

Worker JVM 2

Host ManagerHost Manager

Thread
Scheduler
Thread

Scheduler

Thread Space

Local HeapLocal Heap

…

Stack
Profiler
Stack

Profiler

Migration
Engine

Migration
Engine

Correlation
Collector

Correlation
Collector

Access
Profiler
Access
Profiler

Stack

Worker JVM 3

Host ManagerHost Manager

Global Load
Balancer

Global Load
Balancer

Correlation
Map

(Simplified View)
Master JVM

mig in/out mig in/out mig in/out

Portable Java Frames

Migration
Engine

Migration
Engine

Migration
Requests

PG-JESSICA: Profile-Guided Version

Correlation
Analyzer

Correlation
Analyzer



Now equipped with


Access profiler: track object access over heap to deduce inter-

thread sharing -> thread-thread relation



Stack profiler: track the set of frequent objects accessed by
each thread -> thread migration cost



Correlation analyzer: profile-guided decisions on dynamic
thread migration -> global locality improvement

15

Outline

4

Background1

2

3

Challenges and Problems

Adaptive Object Sampling

Adaptive Stack Sampling

5 Performance Evaluation

16

Challenge 1

 How does the runtime know which
threads to migrate can make the most
locality benefit?

 Difficult to decide if no global inter-
 thread sharing information

 Solution: Track sharing % threads


T1 accesses O1, O3, O5, …



T2 accesses O1, O2, O3, …


Sharing % T1 & T2: O1, O3

17

Thread Correlation Map (TCM)


Thitikamol

and Keleher; D-CVM (1999)



Proposed “Active Correlation Tracking”



Visualize

correlation % threads by a 2D map


Grayscale(x,y) = sharing amount of thread x

and y



TCM(1,1) = TCM(2,2) = TCM(3,3) = …

= 0

node 1

node 2

node 3
…

e.g. Water-Spatial
32 threads placed
on 8 nodes

18

Problems for OO-Based Systems

•

Low tracking overhead
•

But suffer false sharing

•

Induced sharing pattern
•

Can’t be used at all

Simulation
Barnes-Hut: 32 threads, 4K bodies (<100 bytes each), dist=7.0

Page size: 4KB Page size: 128 byte

•

No or little false sharing
•

Inherent sharing pattern

•

But at much higher cost:
32 times more tracking

19

Challenge 2


Thread migration cost is ill-modeled in past research.


Suppose thread T has n frames



Did not consider indirect cost of subsequent object
misses after migration 

inaccurate decisions



How about including cost of shipping the thread’s
working set?



Yes! But not the best model for the migration cost

 





),()(
)()()(1

1

tWiL
ititTt T

n

i frame
n

i
restorecapturemig


  

 … (2)

 


  




n

i frame
n

i
restorecapturemig

iL
ititTt 1

1

)(
)()()(

… (1)

network latency & bandwidth

20

Challenge 2 (Cont’)


Suppose T1 accesses within the same interval:


A (1 time), B (1 time), C (4 times)



WT1

={A, B, C}

acquire(L) release(L)

fetch(A) A fetch(B) B

read(A) read(B)

fetch(C) C

read(C) read(C) read(C)

acquire(L)

fetch(A) A fetch(B) B

read(A) read(B)

fetch(C) C

read(C)

read(C) read(C)

fetch(C) C

T1 migrated

release(L)

T1

T1

(1) Without migration:

(2) With migration:

Fetching roundtrips = 3

Fetching roundtrips = 4

read(C)

read(C)

21

Challenge 2 (Cont’)

acquire(L)

fetch(A) A fetch(B) B

read(A) read(B)

fetch(C) C

read(C)

read(C) read(C)

C

T1 migrated

release(L)

T1

(3) With migration prefetching WT1

:

Fetching roundtrips = 3 A B

However, prefetching A and B are unnecessary
overheads. We need prefetch of C only.
How can we know that?

WT1

={A, B, C}
A (1 time), B (1 time), C (4 times)

read(C)

22

Challenge 2 (Cont’)

acquire(L)

fetch(A) A fetch(B) B

read(A) read(B)

fetch(C) C

read(C)

read(C) read(C)

C

T1 migrated

release(L)

T1

(3) With migration prefetching WT1

:

Fetching roundtrips = 3 A B

However, prefetching A and B are unnecessary
overheads. We need prefetch of C only.
How can we know that?

WT1

={A, B, C}
A (1 time), B (1 time), C (4 times)

read(C)

Track access frequency

23

Sticky

Set

We define the sticky set (SS) of a
thread as a subset of working set that
includes only those frequently used
objects.

 “Sticky”

in the sense that if the thread
is migrated, this set of objects should
be prefetched

along to save most

object misses to follow.
 Objects in SS are more likely to be

fetched again after migration.
 Size of SS serves as a good estimate of

indirect cost of thread migration.

24

How to Detect Sticky Set

 Compiler can only give qualitative
answer


Pointer analysis, shape analysis, …

 Detecting SS at runtime


Our approach



Much more accurate


But tracking object access frequency is
also costly



How to cut costs?

25

Summary of Our Solution


What we want to do:
1.

Model thread sharing (inter-thread correlation)

2.

Model indirect thread migration cost


Profiling results:
1.

Thread correlation map (TCM)

2.

Per-thread sticky set (SS)


Use both to design new migration policy
1.

Correlation-driven

2.

Cost-aware


How we profile them efficiently? (Our main
contribution: lightweight techniques)
1. Adaptive object sampling 

TCM

2. Adaptive stack sampling 

SS

26

New Thread Migration Policy

 Correlation-Driven


TCM(T1, T2) > threshold 
migrate T1 to T2 or T2 to T1

 Cost-aware


But T1 to T2 or T2 to T1?


Depends on which of SS(T1), SS(T2) is
bigger?


Also need to compare with correlation
with other local threads

27

Outline

4

Background1

2

3

Challenges and Problems

Adaptive Object Sampling

Adaptive Stack Sampling

5 Performance Evaluation

28

Thread Correlation Tracking



Our mechanism is OO-based


OAL: Object Access List


We need to obtain thread-object relation first.



TCM: Thread Correlation Map


Collect OALs

from all threads cluster-wide



Compute each element of TCM from OALs


How to obtain OAL?


Passive: only when object checks see invalid object
states (i.e. access faults)



Active:


Real object states are stored separately



Purposefully

set object states to "falsely

invalid"
 

trigger correlation faults 

logging into OALs



Real states are restored after serving correlation
faults; access faults are handled normally

29

Object Sampling


CPU/comm.

overhead of TCM/OAL can be

substantial


Too many objects to track in a fine-grained app!



Can’t compute TCM

in time as system scales up


Need object sampling –

i.e. only a portion

of heap (selected objects) will undergo access
tracking.



But how much heap portion to sample?


Traditional (fixed rate):


Keep a global counter k of #bytes accessed over
the heap



Each object header has a "sample" flag;


Upon an object creation, mark the flag whenever
k > threshold

30

Adaptive Object Sampling (AOS)



Each object has a "sequence number"


Sample the object if sequence # is divisible
by the current "sampling gap"



Sampling gap can be selected and change at
runtime



Strike a balance of cost and accuracy


Sampling rate definition


1X = Sample 1 object per page of heap



1024X means "full sampling"

31

Accuracy of AOS

 Because of sampling, we miss to track
some objects in the heap.

 So we will see error.
 Let A = [aij]N×N and B = [bij]N×N be two

TCMs

and B is obtained by full
sampling.

 A contains a % error defined by:

2
11

2
11

)(

)(

ij
N
j

N
i

ijij
N
j

N
i

EUC
b

ba
E










ij
N
j

N
i

ijij
N
j

N
i

ABS b

ba
E

11

11










(Euclidean distance) (Absolute distance)

32

Accuracy of AOS (Cont’)

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

512X 256X 128X 64X 32X 16X 8X 4X 2X 1X

Absolute/ABS

Relative/ABS

Absolute/EUC

Relative/EUC

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

512X 256X 128X 64X 32X 16X 8X 4X 2X 1X

Absolute/ABS

Relative/ABS

Absolute/EUC

Relative/EUC

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

512X 256X 128X 64X 32X 16X 8X 4X 2X 1X

Absolute/ABS

Relative/ABS

Absolute/EUC

Relative/EUC

(a) SOR (b) Barnes-Hut (c) Water-Spatial

33

Outline

4

Background1

2

3

Challenges and Problems

Adaptive Object Sampling

Adaptive Stack Sampling

5 Performance Evaluation

34

Tracking sticky sets



Common belief is that we need to pay per-
 access overhead to maintain LRU/LFU/…, etc



We use an elegant stack profiling approach:
take and compare snapshots of stack states


no overhead for object access



background profiling is cheap and flexible

stackstack
o2
int

float
o4
int
o5
o1

t0
p0

stackstack
o0
int

float
double

o1
o2
o5

t0
p1

stackstack
int
o1
o2
int
int
int
int

t1
p0

stackstack
o10
o9

o100
int
int
o5
o1

t1
p1

Time:
Processor:

35

Tracking sticky sets



Common belief is that we need to pay per-
 access overhead to maintain LRU/LFU/…, etc



We use an elegant stack profiling approach:
take and compare snapshots of stack states


no overhead for object access



background profiling is cheap and flexible

stackstack

int
float
o4
int

t0
p0

stackstack
o0
int

float
double

o1

o5

t0
p1

stackstack
int
o1

int
int
int
int

t1
p0

stackstack
o10
o9

o100
int
int
o5
o1

t1
p1

Time:
Processor:

o1
o5

o2

o2

o2

36

Tracking sticky sets



Common belief is that we need to pay per-
 access overhead to maintain LRU/LFU/…, etc



We use an elegant stack profiling approach:
take and compare snapshots of stack states


no overhead for object access



background profiling is cheap and flexible

stackstack
o2
int

float
o4
int

t0
p0

stackstack
o0
int

float
double

o1
o2
o5

t0
p1

stackstack
into1
o2
int
int
int
int

t1
p0

stackstack
o10
o9

o100
int
int
o5
o1

t1
p1

Time:
Processor:

o1
o5

37

Stack Invariants

 Because JVM is a “stack machine”


Stack variables can be hint of constantly
accessed objects



Temporary variables are useless


Those references constantly stay in the
stack across snapshots taken (we call them
stack invariants) are good hints of SS.



Usually stack invariants are the entry
points of SS and important data structures
like Hashmap, TreeMap, Linked List

38

……

Sticky setInvariant
references

Stack

Size estimated via
object sampling

Sampled objects

Objects referenced
invariantly by stack

Key:

Unsampled objects

Stack Invariants (Cont’)

39

Adaptive Stack Sampling


Deduce

invariants by comparing stack state

snapshots frame by frame


Adaptive optimization


Adjustable timer controlling which period of time to
do stack sampling



Stack frame added with “visited”

flag


If not touched across

two sampling rounds, no

need to sample

it


Lazy Extraction: Capture frames in raw

(native)

form first


If a frame is not accessed again, no overhead



Compare two frames

by “probing”


For each remaining invariance in old frame,
check corresponding one in new frame.

40

Adaptive Stack Sampling (2)

stack state 1 stack state 2

= extracted frame = unvisited frame

= stack invariant =non-invariant

C

A

B

D

A

B

A

= comparison

E

F

A

G

= raw frame

A

G

H

stack state 3 stack state 4 stack state 5

41

Outline

4

Background1

2

3

Challenges and Problems

Adaptive Object Sampling

Adaptive Stack Sampling

5 Performance Evaluation

42

Experiments



Tests


Measure accuracy (shown already)



Measure overheads


Sampling-based access tracking



Computation of TCM


Stack profiling



Evaluate benefit over cost


Application benchmarks


Ported

from SPLASH2 to Java

version



Barnes-Hut: fine-grained


Water-Spatial: medium-grained



SOR: coarse-grained


Experimental environment: a

segment of 8

Intel P4 nodes over Fast Ethernet

43

Experiments



Tests


Measure accuracy



Measure overheads


Sampling-based access tracking



Computation of TCM


Stack profiling



Evaluate benefit over cost


Application benchmarks


Ported

from SPLASH2 to Java

version



Barnes-Hut: fine-grained


Water-Spatial: medium-grained



SOR: coarse-grained


Experimental environment: a

segment of 8

Intel P4 nodes over Fast Ethernet

Benchmark
Problem Size Sharing

Data set Rounds Granularity Object size

SOR 2K × 2K 10 Coarse each row at least several KB

Barnes-Hut 4K bodies 5 Fine each body less than 100 bytes

Water-Spatial 512 molecules 5 Medium each molecule about 512 bytes

44

Object Sampling Overheads

CPU Overhead of logging accesses into OALs

Overhead of Sending OALs

45

Object Sampling Overheads

 CPU overhead of computing TCM is the
greatest overhead in the profiling
subsystem


When system scales, TCM becomes
bottleneck soon!



So sampling must be done …

46

Stack Profiling Overhead


Timer-based control of stack sampling phases
saves over half of overheads



Lazy extraction saves up to 1/3 overheads

Bench

mark

Data
Set
Size

Baseline
Exe

Time

+ Stack Sampling Overhead + Sticky-set Footprinting

Overhead
+ Sticky-

set

Resolution
Overhead

Immediate
Extraction Lazy Extraction Nonstop Timer-based (100ms)

4ms 16ms 4ms 16ms 4X Full 4X Full

SOR 1K×1K 6201 6216
(0.24%)

6207
(0.10%)

6211
(0.17%)

6206
(0.08%)

6714
(8.28%)

6707
(8.17%)

6519
(5.13%)

6480
(4.50%)

6639
(1.85%)

Barnes
-Hut 4K 93857 94947

(1.16%)
94657

(0.85%)
94697

(0.89%)
95209

(1.44%)
98968

(5.45%)
102190
(8.88%)

93649
(-0.22%)

102334
(9.03%)

97585
(4.20%)

Water-
Spatial 512 59105 59232

(0.21%)
59161

(0.09%)
59209

(0.17%)
59124

(0.03%)
59834

(1.23%)
61985

(4.87%)
59501

(0.67%)
60313

(2.04%)
60002

(0.84%)

47

Effect of New Thread Migration Policy



We assess this using an application “Customer
Analytics“

with dynamic change in sharing patterns:

Epoch 1 Epoch 2 Epoch 3

With thread migration enabled,
the system strives for upkeep of
most of the locality (see right fig).

Execution time shorten by over 60%
compared to no migration.

48

Conclusion

 This work discusses a couple of
advanced profiling

strategies

for

optimizing locality


Adaptive object sampling



Online stack sampling
 Experimental results show


Low overhead



New thread migration policies based on


Profiled thread-thread correlation


Profiled per-thread sticky set



Can shorten much the execution on the
distributed runtime system

Any Questions or
Suggestions?

50

Contact Details

King Tin Lam
email: ktlam@cs.hku.hk

For more information, please visit

HKU Systems Research Group
http://www.srg.cs.hku.hk/

Dr. C.L. Wang’s webpage:
http://www.cs.hku.hk/~clwang/

mailto:ktlam@cs.hku.hk
http://www.srg.cs.hku.hk/
http://www.cs.hku.hk/~clwang/

	Adaptive Sampling-Based Profiling Techniques for Optimizing the Distributed JVM Runtime
	Outline
	Parallel Programming Paradigms
	Parallel Programming Paradigms
	Parallel Programming Paradigms
	Parallel Programming Paradigms
	The PGAS Model
	Our Dream Model: PGPGAS or (PG)2AS
	Techniques to improve locality
	Techniques to improve locality
	Techniques to improve locality
	JESSICA Distributed Java VM
	JESSICA Distributed Java VM
	PG-JESSICA: Profile-Guided Version
	Outline
	Challenge 1
	Thread Correlation Map (TCM)
	Problems for OO-Based Systems
	Challenge 2
	Challenge 2 (Cont’)
	Challenge 2 (Cont’)
	Challenge 2 (Cont’)
	Sticky Set
	How to Detect Sticky Set
	Summary of Our Solution
	New Thread Migration Policy
	Outline
	Thread Correlation Tracking
	Object Sampling
	Adaptive Object Sampling (AOS)
	Accuracy of AOS
	Accuracy of AOS (Cont’)
	Outline
	Tracking sticky sets
	Tracking sticky sets
	Tracking sticky sets
	Stack Invariants
	Stack Invariants (Cont’)
	Adaptive Stack Sampling
	Adaptive Stack Sampling (2)
	Outline
	Experiments
	Experiments
	Object Sampling Overheads
	Object Sampling Overheads
	Stack Profiling Overhead
	Effect of New Thread Migration Policy
	Conclusion
	Slide Number 49
	Slide Number 50

