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Introduction ("é‘\\

Wide-angle lenses (a.k.a. fisheye lenses) are traditionally used to
enlarge the field of view in photography

A. Conventional B. Full-frame fisheye lens C. Full circular fisheye lens
rectilinear lens 98 degrees horizontal 180 degrees horizontal
by 147 degrees vertical and vertical
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Introduction

e Main Applications
— Meteorology
— Astronomy
— Robot Navigation
— Video Surveillance
— Video Conferencing
— Digital Cameras

e The incoming rays are mapped onto a spherical
surface

e Such mapping introduces barrel distortion
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Motivation ;e‘;\

e Explore the mapping of the algorithm’s inherent
parallelism on three contemporary platforms:
— x86 Chip Multiprocessor (Core 2 Quad)
— Cell B.E. processor
— Virtex-4 FPGA

e Present a detailed characterization of the
performance using both high- and low-level
metrics
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Wide-angle Lenses
Distortion Correction

Transformation of the distorted
wide-angle images back to the
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Projection Model of A
Wide-angle Lenses

Central Perspective
Projection

Wide-angle Projection
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Algorithmic Flow (A)

2

e Inverse Mapping: Maps each image point (i, j) to the
corresponding point (x, y) in the wide-angle space
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Algorithmic Flow (A) ,"é\

Fisheye space
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e Need to approximate the value of fractional positions in the fisheye

space

e Complex memory access pattern
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Algorithmic Flow (B) ,”é\

e Bicubic Interpolation: uses a 4x4 window of pixels to

approximate intermediate points
Fisheye space
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Algorithmic Flow (B)

e Bicubic interpolation is broken into horizontal and vertical 1D
interpolation

e C, are the pixel values

g(x) =Ci*Ui(s) + C2*U2(s) + Cs*Us(s) + Ca*U 4(S) ‘/!’ ® /’.‘\ \7\
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Complete Algorithm ;’é\

For each pixel (i, j) in the central perspective space {
Apply inverse mapping to find fractional
coordinates (x, y) in the wide-angle space

Use bicubic interpolation to approximate the pixel
value at (x,y)

}
Apply a 2D low pass filter and downscale
output image to VGA resolution (640x480)
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Intel Core 2 Quad ;e‘;\

e A mainstream homogeneous multicore system
e 2.5 GHz operating frequency

e 1.3 GHz FSB

e Organized as two independent dual core
processor blocks

e 3MB L2 cache for each block
e 64KB L1 cache for each processor
e Supports the SSE 4.1 vector instruction set
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Cell Broadband Engine

e A heterogeneous multicore processor
e |ntegrates a 2-way SMT PPC and 8 SPEs
e 3.2 GHz operating frequency

e Each SPE contains:
— A 128-bit wide SIMD execution engine
— 256KB private Local Store
e On-chip network (EIB) with 307.2 GBps peak perf.

e Peak Performance:
— 204.8 GFlops for single-precision
— 14.63 GFlops for double-precision
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Virtex-4 LX80 FPGA &%,

e Arrays of uncommitted logic blocks

e Flexibility in tailoring the architecture to match the
application

e High power efficiency

e Virtex-4 LX80:
— 80,640 logic cells
— 62.5 MHz operating frequency

e Main drawbacks:

— Programmed primarily with HDLs
— Low clock frequency

e Correction module generated using the Proteus

architectural synthesis tool
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Proteus ("é\

e Produces hardware accelerators that follow
the streaming paradigm

— Produces several load/store units and the
datapath as well

e The application is expressed using an
assembly-like streaming DFG

e Source code is modulo-scheduled with Il =2

e Generate 100K lines of synthesizable Verilog
from 800 lines of code
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High-Level Optimizations ("3\

e Block Tiling

— Partition the output image in blocks and correct a block of
pixels at a time

— Alleviates the problem of prefetching

— Facilitates efficient data partitioning (x86 and Cell) and
task-level pipelining (FPGA)
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Low-Level Optimizations

e x86 and Cell:

— SIMD Optimization
— Explicit loop unrolling

— Eliminate pipeline stalls from data dependencies
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Low-Level Optimizations

e x86 and Cell:

— lnverse-mapping amortization
e Cell-specific:
— Manual instruction scheduling

¢ FPGA

— Modulo scheduling with Il =2
— 400 sDFG operations in all pipeline stages
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Performance and Scalability
Analysis

Processing Speed (Frames/Sec)
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Performance and Scalability

Analysis
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Memory Performance }’é\
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Stall Cycles

Stall Cycles
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Development Cost }’é\

e Asignificant factor that must be considered

— One aspect in the comparison of programming models in
the three platforms

— Use Lines-of-Code (LOC) as the primary metric
e |nitial single-threaded version: 800 lines
e Fully-optimized version for x86: extra 500 LOC
e Fully-optimized version for Cell: extra 1500 LOC
e FPGA Implementation: 800 assembly-like LOC

— Requires multiple time-consuming synthesis and Place &
Route iterations
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Conclusions ("é\

e Presented the implementation of a real-time image
warping algorithm
— Analyzed and characterized the performance on all
underlying architectures

— Applied a series of optimizations and identified their effect

e Commercially available general purpose multi-cores
not capable of handling real-time distortion
correction

e Exotic architectures such as Cell or FPGAs offer the
necessary computational power
— Significantly higher development cost

— Advanced tools, development models and support

environments can alleviate this effort
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