2

Fisheye Lens Distortion Correction on
Multicore and Hardware Accelerator

Platforms
Konstantis Christos D. Nikolaos Sek M.
Daloukas! Antonopoulost Bellas? Chai?

1Department of Computer and
Communications Engineering
University of Thessaly
Volos, Greece

’Motorola Inc.
Schaumburg, IL, USA

Introduction ("é‘\\

Wide-angle lenses (a.k.a. fisheye lenses) are traditionally used to
enlarge the field of view in photography

A. Conventional B. Full-frame fisheye lens C. Full circular fisheye lens
rectilinear lens 98 degrees horizontal 180 degrees horizontal
by 147 degrees vertical and vertical

April 20, 2010 IPDPS 2010 2

Introduction

e Main Applications
— Meteorology
— Astronomy
— Robot Navigation
— Video Surveillance
— Video Conferencing
— Digital Cameras

e The incoming rays are mapped onto a spherical
surface

e Such mapping introduces barrel distortion

April 20, 2010 IPDPS 2010

Motivation ;e‘;\

e Explore the mapping of the algorithm’s inherent
parallelism on three contemporary platforms:
— x86 Chip Multiprocessor (Core 2 Quad)
— Cell B.E. processor
— Virtex-4 FPGA

e Present a detailed characterization of the
performance using both high- and low-level
metrics

April 20, 2010 IPDPS 2010 4

Outline

e |Introduction

e Wide-angle Lenses Distortion Correction
Algorithm

e Description of Target Platforms
e Algorithm Optimizations

e Performance Evaluation

e Conclusions

April 20, 2010 IPDPS 2010

Wide-angle Lenses
Distortion Correction

Transformation of the distorted
wide-angle images back to the

April 20, 2010 IPDPS 2010

Projection Model of A
Wide-angle Lenses

Central Perspective
Projection

Wide-angle Projection

|

G‘l
O(‘]
B,)
P,
‘ image plane d,
d,
ou= P o = B &——— 1mage diameter ———>
o o,
April 20, 2010 IPDPS 2010 4 - 1 7
1 2

Algorithmic Flow (A)

2

e Inverse Mapping: Maps each image point (i, j) to the
corresponding point (x, y) in the wide-angle space

Xe ril
Ye |=|r21
Zc _r31

April 20, 2010

r12
r22
r32

r13
r23
r33

2Ratan[\/(XC)2 +(Yc)2]
T ZC

X = - +d, + X,
Y
(e)
C
2 2
R [\/(x(:) + (Yc)]
V4 YA
y = Y +d, +y,
(j +1
c
IPDPS 2010 8

Algorithmic Flow (A) ,"é\

Fisheye space

Perspective) ¢ i
space-----""""" TS
lf‘ _ - A
(201 (e (T ~ ~eel !\ °
® // ® /9/’ :,__——» Inverse T TERRTTC
L ® \
(i-2,j+1) (i-1.j+1) (i.j+1) (i+1,j+1) @ ®
[o o o
¢ ¢
/7 ’
V4 /’
U
® o /o [o o
e Need to approximate the value of fractional positions in the fisheye

space

e Complex memory access pattern
April 20, 2010 IPDPS 2010 9

Algorithmic Flow (B) ,”é\

e Bicubic Interpolation: uses a 4x4 window of pixels to

approximate intermediate points
Fisheye space

. ® ® ® ® ® ®
Perspective
_____ > ~
Spa,ge ——————— \\\\
-=" ———> e || @)) ® ()
(201 L) G (LT Tsel N
4 - ---—--1 _._,‘_—— ________ >
. ,/ . ’,’” . —————— ' |l"|\fﬂl'59 _ﬂi -..~~k O
Pt A ol » Mapping --""" ® e~ .‘N\A ® ® ®
(i2)f (1077 (1)) =7 (1)) === ‘0\ ~L ®
\ N
N\ S‘.
(i2j+1) (-1j*1) (ij#1) (i+1,)+1) o e o o ® o
® @ @ @ ;
® [[) ® ® ®
® ® ® ® ® ®

April 20, 2010 IPDPS 2010 10

Algorithmic Flow (B)

e Bicubic interpolation is broken into horizontal and vertical 1D
interpolation

e C, are the pixel values

g(x) =Ci*Ui(s) + C2*U2(s) + Cs*Us(s) + Ca*U 4(S) ‘/!’ ® /’.‘\ \7\
Us(s) = (=5 + 252 —5) /2 ' -
U2(s) = (3s° —5s° +2)/2
() (3))/ 4(.___i_ , @
Us(s) = (=3s° + 45 +5)/2 T
Ua(s) = (s — 57)/2 A
®_ o |eo | oT
9(X) *V1(t) + g2(X) *V 2(t) + ga(x) *Vs(t) + ga(x) *V a(t) 1
Va(t) = (£ + 2t —1)/2 e @ b
Va(t) = (3t —5t2 +2)/2 o __ @ \ e / 9

V(t) = (-3t° +4t% +1)/2 \/

Va(t) = (t* -t?)/2
April 20, 2010 IPDPS 2010 11

Complete Algorithm ;’é\

For each pixel (i, j) in the central perspective space {
Apply inverse mapping to find fractional
coordinates (x, y) in the wide-angle space

Use bicubic interpolation to approximate the pixel
value at (x,y)

}
Apply a 2D low pass filter and downscale
output image to VGA resolution (640x480)

April 20, 2010 IPDPS 2010 12

Outline

e |Introduction

e \Wide-angle Lenses Distortion Correction
Algorithm

e Description of Target Platforms
e Algorithm Optimizations

e Performance Evaluation

e Conclusions

April 20, 2010 IPDPS 2010

Intel Core 2 Quad ;e‘;\

e A mainstream homogeneous multicore system
e 2.5 GHz operating frequency

e 1.3 GHz FSB

e Organized as two independent dual core
processor blocks

e 3MB L2 cache for each block
e 64KB L1 cache for each processor
e Supports the SSE 4.1 vector instruction set

April 20, 2010 IPDPS 2010 14

Cell Broadband Engine

e A heterogeneous multicore processor
e |ntegrates a 2-way SMT PPC and 8 SPEs
e 3.2 GHz operating frequency

e Each SPE contains:
— A 128-bit wide SIMD execution engine
— 256KB private Local Store
e On-chip network (EIB) with 307.2 GBps peak perf.

e Peak Performance:
— 204.8 GFlops for single-precision
— 14.63 GFlops for double-precision

April 20, 2010 IPDPS 2010

Virtex-4 LX80 FPGA &%,

e Arrays of uncommitted logic blocks

e Flexibility in tailoring the architecture to match the
application

e High power efficiency

e Virtex-4 LX80:
— 80,640 logic cells
— 62.5 MHz operating frequency

e Main drawbacks:

— Programmed primarily with HDLs
— Low clock frequency

e Correction module generated using the Proteus

architectural synthesis tool
April 20, 2010 IPDPS 2010 16

Proteus ("é\

e Produces hardware accelerators that follow
the streaming paradigm

— Produces several load/store units and the
datapath as well

e The application is expressed using an
assembly-like streaming DFG

e Source code is modulo-scheduled with Il =2

e Generate 100K lines of synthesizable Verilog
from 800 lines of code

April 20, 2010 IPDPS 2010 17

Outline

e |Introduction

e \Wide-angle Lenses Distortion Correction
Algorithm

e Description of Target Platforms
e Algorithm Optimizations

e Performance Evaluation

e Conclusions

April 20, 2010 IPDPS 2010

High-Level Optimizations ("3\

e Block Tiling

— Partition the output image in blocks and correct a block of
pixels at a time

— Alleviates the problem of prefetching

— Facilitates efficient data partitioning (x86 and Cell) and
task-level pipelining (FPGA)

79279 Coordinates
Mapping

’

Vv
Y pixels
atan x) 4-57
— Y,CbC Y,CbC Output
r r -
E—\ M Bicubic Vertical low Horizontal pixels
Cb/Cr pixel Interpolation pass filter low pass filter
— - T
Input pixels —
April 20, 2010 4»57 IPDPS 2010 19

Low-Level Optimizations

e x86 and Cell:

— SIMD Optimization
— Explicit loop unrolling

— Eliminate pipeline stalls from data dependencies

_ ==

1 | 2 3 | 4

o2

13 | 14 | 15 | 16

NN
e e e e
<<\\

® \o\\e\\o
~

¢ e e e

@ \e\w\\e

April 20, 2010

IPDPS 2010

20

Low-Level Optimizations

e x86 and Cell:

— lnverse-mapping amortization
e Cell-specific:
— Manual instruction scheduling

¢ FPGA

— Modulo scheduling with Il =2
— 400 sDFG operations in all pipeline stages

April 20, 2010 IPDPS 2010

21

Outline

e |Introduction

e \Wide-angle Lenses Distortion Correction
Algorithm

e Description of Target Platforms
e Algorithm Optimizations

e Performance Evaluation

e Conclusions

April 20, 2010 IPDPS 2010

Performance and Scalability
Analysis

Processing Speed (Frames/Sec)

S
o

M Inverse Mapping Amortization

w
o

29.94 fps HL+LL optimizations
30
M HL optimizations
2> 22.28 fps
20
14.95 fps 15.82 fps
15
10 1 7.86 fps . 8.01 fps
. 3.83fps B 3.70 fps
0.55fps |-
0 — .
Only PPE 1SPE 2 SPE 4 SPE 8 SPE 1T 2T 47 Virtex-4
LX80
Cell Core 2 Quad FPGA

April 20, 2010 IPDPS 2010 23

Performance and Scalability

Analysis

Bicubic Interpolation M Low Pass Filter|

M Inverse Mapping

Ll

|

08X 7-XoHIA

FPGA

1 T1+1H

12 T+1H

1T 7T+7H

1¥ TH

12 H

11

1T H

Core 2 Quad

1dS 8 VNI

1dS ¥ ‘VIAI

1dS T VI

1dS T ‘VIAII

1dS 8 T+TH

AdS ¥ T1+1H

AdS ¢ T1+1H

AdS T T1+1H

1dS 8 “TH

AdS ¥ “H

1dS ¢ “H

3dS T H

3dd Ajluo

Cell

100%

80% -
60%
40%

20%
0%

umopyjealg awnuny ajNPo

24

IPDPS 2010

April 20, 2010

Memory Performance }’é\

Average Off-Chip Bandwidth

B 8 threads
400
350 || E 4 threads
300 | O 2 threads
8] M 1 thread
Q 250
~
é 200
a 150
2 100
50
0
Core2 Quad Core2 Quad Virtex-4 LX
HL optimizations HL + LL optimizations IMA

April 20, 2010 IPDPS 2010 25

Stall Cycles

Stall Cycles
O HL optimizations

2,5 -
Py B HL + LL optimizations
)
2 2 -
T B IMA
E 1,5 -
>
)
d) 1
o
o)
S 0,5
[0 Iy S— I — [=

Total Branch Resource Total Branch LS Busy
Misses Related Misses
(LD/ST)
Core2 Quad Cell

April 20, 2010 IPDPS 2010 26

Development Cost }’é\

e Asignificant factor that must be considered

— One aspect in the comparison of programming models in
the three platforms

— Use Lines-of-Code (LOC) as the primary metric
e |nitial single-threaded version: 800 lines
e Fully-optimized version for x86: extra 500 LOC
e Fully-optimized version for Cell: extra 1500 LOC
e FPGA Implementation: 800 assembly-like LOC

— Requires multiple time-consuming synthesis and Place &
Route iterations

April 20, 2010 IPDPS 2010 27

Outline

e |Introduction

e Wide-angle Lenses Distortion Correction
Algorithm

e Description of Target Platforms
e Algorithm Optimizations

e Performance Evaluation

e Conclusions

April 20, 2010 IPDPS 2010

28

Conclusions ("é\

e Presented the implementation of a real-time image
warping algorithm
— Analyzed and characterized the performance on all
underlying architectures

— Applied a series of optimizations and identified their effect

e Commercially available general purpose multi-cores
not capable of handling real-time distortion
correction

e Exotic architectures such as Cell or FPGAs offer the
necessary computational power
— Significantly higher development cost

— Advanced tools, development models and support

environments can alleviate this effort
April 20, 2010 IPDPS 2010 29

Acknowledgements (”é\

e \We would like to thank Barcelona
Supercomputing Center for providing us with
access to their IBM QS20 blade

e This project is partially supported by the EC
Marie Curie International Reintegration Grant
(IRG) 223819

April 20, 2010 IPDPS 2010 30

	Fisheye Lens Distortion Correction on Multicore and Hardware Accelerator Platforms
	Introduction
	Introduction
	Motivation
	Outline
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Outline
	Intel Core 2 Quad
	Cell Broadband Engine
	Virtex-4 LX80 FPGA
	Proteus
	Outline
	High-Level Optimizations
	Low-Level Optimizations
	Low-Level Optimizations
	Outline
	Performance and Scalability �Analysis
	Performance and Scalability �Analysis
	Memory Performance
	Stall Cycles
	Development Cost
	Outline
	Conclusions
	Acknowledgements

