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High Performance Computing
I Today, HPC usually means using clusters

I Homogeneous nodes connected via high speed network
I These are ubiquitous
I But large ones are expensive

I Users submit requests to run jobs
I Running jobs are made up of nearly identical tasks

I The number of tasks is generally specified by the user
I Tasks in a job are nearly identical
I Tasks can block while communicating with each other
I Most systems put each task on a dedicated node
I Many jobs are serial, a few require all of the system nodes

I Jobs are temporary
I The user wants a final result
I Quick turnaround relative to runtime is desired

I Jobs may have to wait until resources are available to start
I The assignment of resources to jobs is called scheduling
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Current HPC Scheduling Approaches

I Batch Scheduling, which no one likes
I Usually FCFS with backfilling
I Backfilling needs (unreliable) compute time estimates
I Unbounded wait times
I Inefficient use of nodes/resources

I Gang Scheduling, which no one uses
I Globally coordinated time sharing
I Complicated and slow
I Memory pressure a concern
I Large granularity limits improvement over batch scheduling
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Our Proposal

I Use virtual machine technology.
I Multiple tasks on one node
I Sharing of fractional resources

I Similar to preemption
I Performance isolation

I Define a run-time computable metric that captures notions
of performance and fairness.

I Design heuristics that allocate resources to jobs while
explicitly trying to achieve high ratings by our metric.
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Requirements, Needs, and Yield

I Tasks have memory requirements and CPU needs
I All tasks of a job have the same requirements and needs
I For a task to be placed on a node there must be memory

available at least equal to its requirements
I A task can be allocated less CPU than its need, and the

ratio of the allocation to the need is the yield
I All tasks of a job must have the same yield, so we can also

speak of the yield of a job
I The yield of a job is the rate at which it progresses toward

completion relative to the rate if it were run on a dedicated
system
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Stretch

I Our goal: minimize maximum stretch (aka slowdown)
I Stretch: the time a job spends in the system divided by the

time that would be spent in a dedicated
system [Bender et al., 1998]

I Popular to quantify schedule quality post-mortem
I Not generally used to make scheduling decisions
I Runtime computation requires (unreliable) user estimates.
I Minimizing average stretch prone to starvation
I Minimizing maximum stretch captures notions of both

performance and fairness.
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Approach

I Job arrival/completion times are not known in advance
I We avoid the use of runtime estimates
I Instead we focus on maximizing minimum yield
I Similar, but not the same, as minimizing maximum stretch
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Task Placement Heuristics

We apply task placement heuristics studied in our previous
work [Stillwell et al., 2008, Stillwell et al., 2009]

I Greedy Task Placement – Incremental, puts each task on
the node with the lowest computational load on which it
can fit without violating memory constraints

I MCB Task Placement – Global, iteratively applies
multi-capacity (vector) bin-packing heuristics during a
binary search for the maximized minimum yield

I Much better placement than greedy
I Can cause lots of migration

I But what if the system is oversubscribed?
I Need a priority function to decide which jobs to run
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Priority Function?

I Virtual Time: The subjective time experienced by a job
I First Idea: 1

VIRTUAL TIME
I Informed by ideas about fairness
I Lead to good results
I But theoretically prone to starvation

I Second Idea: FLOW TIME
VIRTUAL TIME

I Addresses starvation problem
I But lead to poor performance

I Third Idea: FLOW TIME
(VIRTUAL TIME)2

I Combines idea #1 and idea #2
I Addresses starvation
I Performs about the same as first priority function
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Use of Priority

I By Greedy
I GreedyP – Greedily schedule tasks, and suspend

lower-priority tasks if necessary to run higher-priority tasks
I GreedyPM – Like GreedyP, but can also migrate tasks

instead of suspending them
I by MCB

I If no valid solution can be found for any yield value, remove
the lowest priority task and try again
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DFRS for HPC Workloads



Introduction Framework Simulation Experiments Summary Appendix

Resource Allocation

I Once tasks are placed on nodes we iteratively maximize
the minimum yield

I Based on network resource allocation ideas about fairness
I Easy to compute and slightly better than maximizing

average yield
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When to apply Heuristics

We consider a number of different options:
I Job Submission – heuristics can use greedy or bin packing

approaches
I Job Completion – as above, can help with throughput

when there are lots of short running jobs
I Periodically – some heuristics periodically apply vector

packing to improve overall job placement

Mark Stillwell, Frédéric Vivien, Henri Casanova UH Mānoa ICS
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MCB-Stretch Algorithm

I Like MCB, but tries to minimize maximum stretch
I Requires knowledge of time until next rescheduling period,

uses current and estimated future stretch
I Second phase focuses on iteratively minimizing the

maximum stretch
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DFRS for HPC Workloads



Introduction Framework Simulation Experiments Summary Appendix

Methodology

I Experiments conducted using discrete event simulator
I Mix of synthetic and real trace data
I Ran experiments with and without migration penalties
I Periodic approaches use a 600 second (10 minute) period
I Absolute bound on max stretch computed for each

instance
I Performance comparison based on max stretch

degradation from bound
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Max Stretch Degradation vs. Load, No Migration Cost
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Max Stretch Degradation vs. Load, 5 minute penalty
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Max Stretch Degradation vs. Load, 5 minute penalty
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Bandwidth vs. Period
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Max Stretch Degradation vs. Period
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Conclusions
I DFRS approaches can significantly outperform traditional

approaches
I Aggressive repacking can lead to much better resource

allocations
I But also to heavy migration costs

I A combination of opportunistic greedy scheduling, with
limited periodic repacking has the best average case
performance across all load levels

I Bandwidth costs can be reduced by extending the period
without much loss of performance

I Greedy migration is not that useful
I Attempting to maximize the minimum yield does about the

same as trying to minimize the maximum stretch
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Summary

I We have proposed a novel approach to job scheduling on
clusters, Dynamic Fractional Resource Scheduling, that
makes use of modern virtual machine technology and
seeks to optimize a runtime-computable, user-centric
measure of performance called the minimum yield

I Our approach avoids the use of unreliable runtime
estimates

I This approach has the potential to lead to
order-of-magnitude improvements in performance over
current technology

I Overhead costs from migration are manageable
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