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Background: Adaptive 
Resource Allocation

� Adaptive resource allocation: 
Up to 70% improvement in avg. response times by

� Reducing fragmentation

� Adapting to current load (low/high)

98% of applications said to be moldable

�Requires knowing jobs’ scalability / efficiency

but not practically available yet

In fact, it is a response-time function in dependence on 
CPU/core resources (Burton Smith)



Illustration of Adaptive 
Resource Allocation
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More Background 

� Benefits for user:

� Help in choosing job sizes tactically

� Determine maximum meaningful job sizes           

(� our data about real applications)

� Relevance for resource allocation in: 

� Clusters (MPI jobs)

� SMPs (OpenMP or MPI jobs)

� Virtual-machine resource provisioning



Related Work

� Most approaches are white-box (detailed model)

� Require tools: code instrumentation, compiler/OS support, 

analysis of memory-access behavior, etc.

• Complex and computationally expensive

�Unsuitable for large-scale use in HPC centers

�Valuable for cross-site or new-platform performance 

projection

• Black-box approaches (few observ. points, simple model)

�Easy-to-use and cheap

�Suffer from anomalies or non-uniform scalability patterns



Goals of ADEPT Scalability 
Predictor

� Goals of ADEPT
� Achieve high prediction accuracy

� Provide computationally efficient approach

� Detect and automatically correct individual anomalies

� Detect and model non-uniform patterns (multi-phase)

� Perform reliability judgment with potential advice for 
outcome improvement

� Apply black-box prediction

� Based on Downey runtime/speedup model



Downey Model

� Simple (only A and σ to be learned)

� Needs few observation points

Speedup Curves, A varies
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ADEPT Predictor

1. Anomaly detection and scalability-pattern identification

2. Envelope derivation

3. Curve fitting
4. Reliability judgment

Core of ADEPT



Core: Envelope Derivation

� Derives constraints from observations

� Calculates closed-form solutions (within certain 

percentage of deviation) from pairs of observations

� Use lowest and highest bounds as overall envelope

Forming the Envelope
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Core: Curve Fitting

� Prediction per target point, biased to closest observations 

� Weighted least-squared relative errors

� Two-step 

1. Closest point fixed

2. Extending variation by certain percentage within envelope

� Constraints from envelope and two-step curve fitting make 
ADEPT both accurate and fast

Speedup Prediction Using 4 Methods
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Experimental Set-Up

� Experiments with MPI and OpenMP

� NAS benchmarks BT, CG, FT, LU, SP

� 7 real anonymous applications 

(from administrator scalability tests)

� Both interpolation and extrapolation

� 3 to 4 input observation points

� Prediction of T(n) and S(n)

� T(1) not always available



Experimental Results: 
Speedup
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� Applied fitting approach better than non-weighted
� Both interpolation and extrapolation work well
� Most extrapolation still good on twice the number of nodes
� Accuracy higher for closer extrapolation



Experimental Results: Runtime
NAS_BT
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� Both interpolation and extrapolation work well
� Whether T(1) available or not did not make any difference
� Some predictions perfect match (App_A, App_C, App_G)
� Accuracy higher for closer extrapolation



ADEPT Predictor

1. Anomaly detection and scalability-pattern 

identification
2. Envelope derivation

3. Curve fitting

4. Reliability judgment

Core of ADEPT



Anomaly Detection

� Serious deviations from model can be detected

(Application never fully conforms to model)

� Approach: fluctuation metric R

Ri = ((ti * ni/ni+1)/ti+1)*(1+(ni+1-ni)/ni+1)

(idea is relative speedup, normalized to distance)

Check whether Ri+1 > (1+ε)Ri

with ε being sensitivity factor

both Ri+1 and Ri are anomaly candidates



Individual Anomalous Points

Speedup curve, with anomalous point
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• Minimum of 4 input points required
• Check R curve after removal of anomaly candidate
• If improvement, classify as anomaly point and reduce  

its weight for curve fitting



Anomaly Patterns Stepwise NAS_OMP_FT
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Currently considered:
• Stepwise scalability (minimum of 5 points required) 
� Model instance per phase

• Specially optimized for certain numbers of nodes, e.g. powers of two
(minimum of 9 points required), regular anomalous points
� Omit other points from curve fitting
� Report suitable allocations



ADEPT Predictor

1. Anomaly detection and scalability-pattern identification

2. Envelope derivation

3. Curve fitting

4. Reliability judgment

Core of ADEPT



Automated Reliability 
Judgment

� All input points in linear section

� More input points needed (n ≥ A)

� High fitting error, not explainable as anomaly

� Report problem

� Runner-up problem (two or more model instances 
with greatly different A match)

� More input points needed (beyond current range)



Automatic Reliability 
Judgment (2)

High Fitting Error, NAS_LU
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Summary and Conclusion

� ADEPT is accurate and efficient

� For both interpolation and extrapolation (if not too far away)

� Works well without serial time T(1)

� Performance similar to that reported in literature for white-box 
approaches

� Employs envelope derivation technique to constrain search 
during model fitting

� Biased model fitting with efficient two-level approach

� Anomaly detection based on fluctuation metric and automatic 
correction

� Warnings by reliability judgment if prediction uncertain

� Suitable for production environments

� Extrapolative scalability prediction as feedback to users

� Adaptive resource allocation


