Arash Deshmeh, Jacob Machina, and <u>Angela C. Sodan</u>

University of Windsor, Canada

ADEPT Scalability Predictor in Support of Adaptive Resource Allocation

IPDPS 2010

Outline

- Background: Adaptive Resource Allocation
- Related Work
- Downey Runtime/Speedup Model
- The ADEPT Predictor
- Experimental Results
- Anomaly Detection
- Automated Reliability Judgment
- Summary and Conclusion

Background: Adaptive Resource Allocation

- Adaptive resource allocation: Up to 70% improvement in avg. response times by
 Reducing fragmentation
 - Adapting to current load (low/high)
 98% of applications said to be moldable
- →Requires knowing jobs' scalability / efficiency but not practically available yet In fact, it is a response-time function in dependence on CPU/core resources (Burton Smith)

Illustration of Adaptive Resource Allocation

Fragmentation reduction

Adaptation to current load

- → Run at higher efficiency with smaller sizes if high load
- → Run at lower efficiency with larger sizes of low load

More Background

- Benefits for user:
 - Help in choosing job sizes tactically
 - Determine maximum meaningful job sizes
 (→ our data about real applications)
- Relevance for resource allocation in:
 - Clusters (MPI jobs)
 - SMPs (OpenMP or MPI jobs)
 - Virtual-machine resource provisioning

Related Work

- Most approaches are white-box (detailed model)
 - Require tools: code instrumentation, compiler/OS support, analysis of memory-access behavior, etc.
 - Complex and computationally expensive
 - \rightarrow Unsuitable for large-scale use in HPC centers
 - Valuable for cross-site or new-platform performance projection
- Black-box approaches (few observ. points, simple model)
 - ightarrow Easy-to-use and cheap
 - \rightarrow Suffer from anomalies or non-uniform scalability patterns

Goals of ADEPT Scalability Predictor

Goals of ADEPT

- Achieve high prediction accuracy
- Provide computationally efficient approach
- Detect and automatically correct individual anomalies
- Detect and model non-uniform patterns (multi-phase)
- Perform reliability judgment with potential advice for outcome improvement
- Apply black-box prediction
- Based on Downey runtime/speedup model

Downey Model

Mode	<i>n</i> range	S(n)	<i>T(n)</i>	
Low variance	$1 \le n \le A$ $A \le n \le 2A-1$ $2A-1 \le n$	An / (A+(σ/2)(n-1)) An / (σ(A-1/2+n(1-σ/2)) A	(A-σ/2)/n + σ/2 σ(A-1/2)/n + 1 1	
High variance	1 ≤ <i>n</i> ≤ <i>A</i> + <i>A</i> σ-σ <i>A</i> + <i>A</i> σ-σ ≤ <i>n</i>	nA(σ+1) / (σ(n+A- 1)+A) A	σ + (A+Aσ-σ)// σ +1	n

- \rightarrow Simple (only *A* and σ to be learned)
- → Needs few observation points

ADEPT Predictor

- 1. Anomaly detection and scalability-pattern identification
- 2. Envelope derivation
- 3. Curve fitting
- 4. Reliability judgment

Core of ADEPT

Core: Envelope Derivation

- Derives constraints from observations
- Calculates closed-form solutions (within certain percentage of deviation) from pairs of observations
- Use lowest and highest bounds as overall envelope

Core: Curve Fitting

- Prediction per target point, biased to closest observations
- Weighted least-squared relative errors
- Two-step
 - 1. Closest point fixed
 - 2. Extending variation by certain percentage within envelope
- Constraints from envelope and two-step curve fitting make ADEPT both accurate and fast

Experimental Set-Up

- Experiments with MPI and OpenMP
- NAS benchmarks BT, CG, FT, LU, SP
- 7 real anonymous applications (from administrator scalability tests)
- Both interpolation and extrapolation
- 3 to 4 input observation points
- Prediction of T(n) and S(n)
- T(1) not always available

Experimental Results: Speedup

- \rightarrow Applied fitting approach better than non-weighted
- \rightarrow Both interpolation and extrapolation work well
- \rightarrow Most extrapolation still good on twice the number of nodes
- \rightarrow Accuracy higher for closer extrapolation

Experimental Results: Runtime

- \rightarrow Both interpolation and extrapolation work well
- \rightarrow Whether T(1) available or not did not make any difference
- \rightarrow Some predictions perfect match (App_A, App_C, App_G)
- \rightarrow Accuracy higher for closer extrapolation

ADEPT Predictor

- 1. Anomaly detection and scalability-pattern identification
- 2. Envelope derivation
- 3. Curve fitting
- 4. Reliability judgment

Core of ADEPT

Anomaly Detection

- Serious deviations from model can be detected (Application never fully conforms to model)
- Approach: fluctuation metric R

 $R_{i} = ((t_{i} * n_{i}/n_{i+1})/t_{i+1})*(1+(n_{i+1}-n_{i})/n_{i+1})$ (idea is relative speedup, normalized to distance) Check whether $R_{i+1} > (1+\varepsilon)R_{i}$

with ε being sensitivity factor

both R_{i+1} and R_i are anomaly candidates

Individual Anomalous Points

- Minimum of 4 input points required
- Check R curve after removal of anomaly candidate
- If improvement, classify as anomaly point and reduce its weight for curve fitting

Currently considered:

- Stepwise scalability (minimum of 5 points required)
 → Model instance per phase
 - \rightarrow Model instance per phase
- Specially optimized for certain numbers of nodes, e.g. powers of two (minimum of 9 points required), regular anomalous points
 - \rightarrow Omit other points from curve fitting
 - \rightarrow Report suitable allocations

ADEPT Predictor

- 1. Anomaly detection and scalability-pattern identification
- 2. Envelope derivation
- 3. Curve fitting
- 4. Reliability judgment
- Core of ADEPT

Automated Reliability Judgment

- All input points in linear section
 → More input points needed (n ≥ A)
- High fitting error, not explainable as anomaly
 → Report problem
- Runner-up problem (two or more model instances with greatly different *A* match)
 - → More input points needed (beyond current range)

Automatic Reliability Judgment (2)

→ All 3 cases (linear, high-fitting error, runner-up) successfully detected

Summary and Conclusion

- ADEPT is accurate and efficient
 - For both interpolation and extrapolation (if not too far away)
 - Works well without serial time *T*(1)
 - Performance similar to that reported in literature for white-box approaches
- Employs envelope derivation technique to constrain search during model fitting
- Biased model fitting with efficient two-level approach
- Anomaly detection based on fluctuation metric and automatic correction
- Warnings by reliability judgment if prediction uncertain
- Suitable for production environments
 - Extrapolative scalability prediction as feedback to users
 - Adaptive resource allocation

