Cost Estimation Algorithms for
Dynamic Load Balancing of AMR
Simulations
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Uintah Parallel Computing Framework

* Uintah - far-sighted design by Steve Parker :

— Automated parallelism

* Engineer only writes “serial” code for a
hexahedral patch

* Complete separation of user code
and parallelism

* Asynchronous communication,
message coalescing

— Multiple Simulation Components
* ICE, MPM, Arches, MPMICE, et al.

— Supports AMR with a ICE and MPMICE
— Automated load balancing & regridding

— Simulation of a broad class of fluid-structure
interaction problems
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Uintah
Applications

Plume Fires
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How Does Uintah Work?
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How Does Uintah Work?
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Legacy Issues

* Uintahis 12+ years old
* How do we scale to today’s largest machines?

— Identify and understand bottlenecks
* TAU, hand profiling, complexity analysis
e Reduce O(P) Dependencies

— Look at memory footprint?

— Redesigned components for O(100K) processors
* Regridding, Load Balancing, Scheduling, etc
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Uintah Load Balancing

* Assign Patches to Processors
— Minimize Load Imbalance
— Minimize Communication
— Run Quickly in Parallel

* Uintah Default: Space-Filling Curves
e Support for Zoltan

In order to assign work evenly we must
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Cost Estimation: Performance Models

E,,: Estimated Time G,: N.umber of P: Nur31ber of
' Grid Cells Particles
Er,t = C Gr +C, Pr + Cy

C1» €5, C3 : Model Constants

*Need to be proportionally accurate
*Vary with simulation component, sub models, compiler, material,
physical state, etc.

Can estimate constants using least squares at runtime

G, P, 1 c, Oo . O,.: Observed Time
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What if the constants
]S Ont| are not constant? U
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Cost Estimation: Fading Memory Filter

E,.: Estimated Time O,.: Observed Time  a: Decay Rate
Er,t+1 = a 0r,t + (1 - a) Er,t

al (Or,t' Er,t) + Er,t

\_'_I

Error in last prediction

 No model necessary
* Can track changing phenomena Compute per patch
* May react to system noise
* Also known as:
 Simple Exponential Smoothing
 Exponential Weighted Average U
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Cost Estimation: Kalman Filter, Ot Order

E,.: Estimated Time O,.: Observed Time

Update Equation: E .., =K, (O,,- E ) +E,
Gain: Kr,t = Mr,t / (Mr,t +02)
aprioricov: M =P, +¢

’

a posteri cov: Pr’t =(1- Kr’t) |\/||r’t P,= oo

* Accounts for uncertainty in the measurement: o2

e Accounts for uncertainty in the model: ¢

* No model necessary

* (Can track changing phenomena

* May react to system noise

» Faster convergence than fading memory filter U
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Cost Estimation Comparison

Mean Absolute Percent Error

Mean Absolute Percent Error

20 T I 20 T \
) "hj""de' Material Transport
Exploding Container e * Model .
alman * Memory .
15¢ | 157 * Kalman
10r . . e o
. 0.‘ "o‘n . ®e, .w.’\.-'.,,.
M e
S ¢0. 8: . . ': :": .* ‘i
M T TSNP S S SR
. @ . . es *_e . © . e 0 e 00,
R R I R Tt R LR R T
,3 !'.o ‘!Q& ! qi ’!!:i t'a é . J ': olo ‘§$ rt 3::“
O L L
0 100 200 300 400 500 0 100 200 300 400 500
Timestep Timestep
. . . Ex. Cont. | M. Trans.
*Filters provide best estimate --
. : SCPRT Model LS 6.08 6.63
*Filters spike when regridding
Memory 3.95 2.64
Kalman 3.44 1.21 U
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AMR ICE Scalability

AMR-ICE Scaling

Highly Scalable
AMR Framework

ra

:

Even with small
problem sizes

Mean Time Per Timestep [sec.

—

One 8% pattch __—=
12 24 48 96 182 384 768 1536 3072 6144 12288 24576 49152 88304
per processor Processors

Problem: Compressible Navier-Stokes U
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AMR MPMICE Scalability

Decent MPMICE
scaling

More work is
needed

One 83 patch
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AMR-MPMICE Scaling
|~ stong

per processor
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Problem: Exploding Container
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Conclusions

* The complexity and range of applications within Uintah
require an adaptable load balancer

* Profiling provides a good method to predict costs without
burdening the user

* Large-Scale AMR requires that all portions of the algorithm
scale well

* Through lots of work AMR within Uintah now scales to 100K
processors

* Alot more work is needed to scale to O(200K-300K)
processors

THE u

T— OF UTAH



Questions?
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