
Cost Estimation Algorithms for
Dynamic Load Balancing of AMR

Simulations

Justin Luitjens, Qingyu Meng, Martin Berzins, John Schmidt, et al.

Thanks to DOE for funding since 1997, NSF since 2008, TACC, NICS

Uintah Parallel Computing Framework

• Uintah - far-sighted design by Steve Parker :
– Automated parallelism

• Engineer only writes “serial” code for a
hexahedral patch

• Complete separation of user code
and parallelism

• Asynchronous communication,
message coalescing

– Multiple Simulation Components
• ICE, MPM, Arches, MPMICE, et al.

– Supports AMR with a ICE and MPMICE
– Automated load balancing & regridding
– Simulation of a broad class of fluid-structure

interaction problems

Uintah
Applications

Virtual

Soldier

Angiogenesis

Micropin Flow

Shaped Charges

Sandstone

Compaction

Foam

Compaction

Industrial Flares

Plume Fires

Explosions

How Does Uintah Work?

Task-Graph Specification
•Computes & Requries

Patch-Based Domain
Decomposition

How Does Uintah Work?

Simulation

Controller

Problem

Specification

XML

Simulation
(Arches, ICE, MPM,

MPMICE,
MPMArches, …)

Scheduler

Tasks

Data

Archiver
Tasks

MPILoad

Balancer

Regridder

Callbacks

Callbacks

Checkpoints

Data I/O

Models
(EoS, Constitutive, …)

Domain
Expert

Tuning
Expert

Legacy Issues

• Uintah is 12+ years old

• How do we scale to today’s largest machines?

– Identify and understand bottlenecks

• TAU, hand profiling, complexity analysis

• Reduce O(P) Dependencies
– Look at memory footprint?

– Redesigned components for O(100K) processors

• Regridding, Load Balancing, Scheduling, etc

Uintah Load Balancing

• Assign Patches to Processors
– Minimize Load Imbalance

– Minimize Communication

– Run Quickly in Parallel

• Uintah Default: Space-Filling Curves

• Support for Zoltan

In order to assign work evenly we must
know how much work a patch requires

Cost Estimation: Performance Models

Er,t = c1 Gr + c2 Pr + c3

Er,t: Estimated Time Gr: Number of
Grid Cells

Pr: Number of
Particles

c1, c2, c3 : Model Constants

G0 P0 1

… … …

Gn Pn 1

c1

c2

c3

=
Or,t: Observed TimeO0,t

…

On,t

•Need to be proportionally accurate
•Vary with simulation component, sub models, compiler, material,
physical state, etc.

Can estimate constants using least squares at runtime

What if the constants
are not constant?

Cost Estimation: Fading Memory Filter

Er,t: Estimated Time Or,t: Observed Time α: Decay Rate

Er,t+1 = α Or,t + (1 - α) Er,t

• No model necessary
• Can track changing phenomena
• May react to system noise
• Also known as:

• Simple Exponential Smoothing
• Exponential Weighted Average

= α (Or,t - Er,t) + Er,t

Error in last prediction

Compute per patch

Cost Estimation: Kalman Filter, 0th Order

Er,t+1 = Kr,t (Or,t - Er,t) + Er,t

Er,t: Estimated Time Or,t: Observed Time

Kr,t = Mr,t / (Mr,t +σ2)
Update Equation:

Gain:

Mr,t = Pr,t-1 + φa priori cov:

a posteri cov: Pr,t = (1 - Kr,t) Mr,t

• Accounts for uncertainty in the measurement: σ2

• Accounts for uncertainty in the model: φ
• No model necessary
• Can track changing phenomena
• May react to system noise
• Faster convergence than fading memory filter

P0= ∞

Cost Estimation Comparison

Ex. Cont. M. Trans.

Model LS 6.08 6.63

Memory 3.95 2.64

Kalman 3.44 1.21

Exploding Container
Material Transport

•Filters provide best estimate
•Filters spike when regridding

AMR ICE Scalability

One 83 patch
per processor

Highly Scalable
AMR Framework

Even with small
problem sizes

Problem: Compressible Navier-Stokes

AMR MPMICE Scalability

Decent MPMICE
scaling

More work is
needed

One 83 patch
per processor

Problem: Exploding Container

Conclusions

• The complexity and range of applications within Uintah
require an adaptable load balancer

• Profiling provides a good method to predict costs without
burdening the user

• Large-Scale AMR requires that all portions of the algorithm
scale well

• Through lots of work AMR within Uintah now scales to 100K
processors

• A lot more work is needed to scale to O(200K-300K)
processors

Questions?

