Parallel I/O Performance: From Events to Ensembles

In collaboration with:

- Lenny Oliker
- David Skinner
- Mark Howison
- Nick Wright
- Noel Keen
- John Shalf
- Karen Karavanic

Andrew Uselton
National Energy Research Scientific Computing Center
Lawrence Berkeley National Laboratory
Parallel I/O Evaluation and Analysis

- Explosion of sensor & simulation data make I/O a critical component
- Petascale I/O requires new techniques: analysis, visualization, diagnosis
- Statistical methods can be revealing
- Present case studies and optimization results for:
 - MADbench – A cosmology application
 - GCRM – A climate simulation
IPM-I/O is an interposition library that wraps I/O calls with tracing instructions.

Job trace

- **Input**
 - Read I/O: 0-10 seconds
 - Barrier: 10-20 seconds
 - Write I/O: 20 seconds

- **Task 0**
 - Read I/O: 0-10 seconds
 - Barrier: 10-20 seconds
 - Write I/O: 20 seconds

- **Task 1**
 - Read I/O: 0-10 seconds
 - Barrier: 10-20 seconds
 - Write I/O: 20 seconds

- **Task 2**
 - Read I/O: 0-10 seconds
 - Barrier: 10-20 seconds
 - Write I/O: 20 seconds

- **Task 3**
 - Read I/O: 0-10 seconds
 - Barrier: 10-20 seconds
 - Write I/O: 20 seconds
Events to Ensembles

The details of a trace can obscure as much as they reveal
And it does not scale
Statistical methods reveal what the trace obscures
And it does scale

Task 0

10,000

Wall clock time

count
Case Study #1:

MADCAP analyzes the Cosmic Microwave Background radiation. Madbench – An out-of-core matrix solver writes and reads all of memory multiple times.
CMB Data Analysis

- Time domain - $O(10^{12})$
- Pixel sky map - $O(10^{8})$
- Angular power spectrum - $O(10^{4})$
MADbench Overview

- MADCAP is the maximum likelihood CMB angular power spectrum estimation code
- MADbench is a lightweight version of MADCAP
- Out-of-core calculation due to large size and number of pix-pix matrices
Computational Structure

I. Compute, Write (Loop)

II. Compute/Communicate (no I/O)

III. Read, Compute, Write (Loop)

IV. Read, Compute/Communicate (Loop)

The compute intensity can be tuned down to emphasize I/O.
MADbench I/O Optimization

Phase II. Read # 4 5 6 7 8

Click to edit Master text styles
Second level
• Third level
• Fourth level
• Fifth level

wall clock time
MADbench I/O Optimization

count

duration (seconds)
MADbench I/O Optimization

Cumulative Probability

A statistical approach revealed a systematic pattern

duration (seconds)
MADbench I/O Optimization

Before

• Third level
• Fourth level
• Fifth level

After

Lustre patch eliminated slow reads
Case Study #2:

Global Cloud Resolving Model (GCRM) developed by scientists at CSU

Runs resolutions fine enough to simulate cloud formulation and dynamics

Mark Howison’s analysis fixed it
GCRM I/O Optimization

Wall clock time

Task 0

At 4km resolution, GCRM is dealing with a lot of data. The goal is to work at 1km and 40k tasks, which will require 16x as much data.

Task 10,000

desired checkpoint time

checkpoint time
GCRM I/O Optimization

Worst case 20 sec

Insight: all 10,000 are happening at once
GCRM I/O Optimization

Worst case 3 sec

Collective buffering reduces concurrency
GCRM I/O Optimization

Before

desired checkpoint time

After
GCRM I/O Optimization

Insight:
Still need better aligned I/O
worst case behavior
Worst case 1 sec
GCRM I/O Optimization

Before

desired checkpoint time

After
GCRM I/O Optimization

Sometimes the trace view is the right way to look at it.

Metadata is being serialized through task 0.
GCRM I/O Optimization

Defer metadata ops so there are fewer and they are larger
GCRM I/O Optimization

Before

desired checkpoint time

After
Conclusions and Future Work

Traces do not scale, can obscure underlying features

Statistical methods scale, give useful diagnostic insights into large datasets

Future work: gather statistical info directly in IPM

Future work: Automatic recognition of model and moments within IPM
Acknowledgements

- Julian Borrill wrote MADCAP/MADbench
- Mark Howison performed the GCRM optimizations
- Noel Keen wrote the I/O extensions for IPM
- Kitrick Sheets (Cray) and Tom Wang (SUN/Oracle) assisted with the diagnosis of the Lustre bug

- This work was funded in part by the DOE Office of Advanced Scientific Computing Research (ASCR) under contract number DE-C02-05CH11231