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Computational Material Science

Understanding and exploiting the properties of solid-state materials:
magnetism, metal-insulator transition, high temperature superconductivity,
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Hubbard Model and DQMC Simulations

Many body simulation on multi-layer
lattices using Hubbard model and
quantum monte carlo method.
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Hubbard Model and DQMC Simulations

Many body simulation on multi-layer
lattices using Hubbard model and
quantum monte carlo method.

L

QUEST (QUantum Electron Simulation Toolbox):
Fortran 90 package for Determinant Quantum
Monte Carlo (DQMC) simulations.
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DQMC Algorithm

Two stages:
' s
o Warmup stage L
: 3
@ Sampling stage c
© ‘thermalized
yes
A DQMC step
. / )
@ Propose a local change: h — h'. %
@ Throw a random number 0 < r < 1. o
- det(e*BH(h/)) =3 enrﬁglg
© Accept the change if r < det(e—FFm) - Q Jou
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Computational Kernels

The equal time Green's function
Gk = (I + BkByy1---BiBr -+ By_1) 7t
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The unequal time Green's function
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Computational Kernels

The equal time Green's function

Physical measurements
Operations on Gy and G7, Fourier Transform, etc.
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Computational Challenges

@ For simulating strongly correlated electron systems

e The size of lattices need be large.
e A longer warmup stage is required.
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Computational Challenges

@ For simulating strongly correlated electron systems

e The size of lattices need be large.
e A longer warmup stage is required.

@ Numerical stability issues.
o Additional stabilizing steps are required.
e Most calculations need double precision.
e Many fast updating methods and parallel algorithms cannot be used.
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DQMC Parallelization

Algorithmic approaches

@ Parallel Markov chain

@ Rolling feeder algorithm

o Parallel matrix computations

System approaches

@ Task decomposition

@ Communication and computation overlapping
@ Message compression
°

Load balance
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Parallel Markov Chain

@ The sampling stage can be parallelized

embarrassingly.
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Parallel Markov Chain

@ The sampling stage can be parallelized
embarrassingly.

@ The speedup of parallelization is
limited by the time of the warmup
stage. (Amdahl’s law)
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Green's Function Calculation

Matrix Gx need be computed cyclically with Bi_; updated.
o G = (/ + B1By--- BL_lBL)_l.
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Green's Function Calculation

Matrix Gx need be computed cyclically with Bi_; updated.
) Glz(/—l—Ble--'BL_lBL)_l.
) GQZ(/+BgB3-~-BLBl)_1.
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Green's Function Calculation

Matrix Gx need be computed cyclically with Bi_; updated.
o G = (/ + B1By--- BL_lBL)_l.
© Go=(l+ByB3---B;B;)™L.
@ G3=(/+ B3By---B1By) L.
o .-

Parallel reduction (takes O(N3log L) time.)

... =» DQMC step DQMC step DQMC step
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Green's Function Calculation

Matrix Gx need be computed cyclically with Bi_; updated.
o G = (/ + B1By--- BL_lBL)_l.
© Go=(l+ByB3---B;B;)™L.
@ G3=(/+ B3By---B1By) L.
o .-

Parallel reduction (takes O(N3log L) time.)

... =» DQMC step DQMC step DQMC step

Numerically unstable!
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Rolling Feeder Algorithm

The matrix product can be stably computed sequentially.
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Rolling Feeder Algorithm

The matrix product can be stably computed sequentially.

= DQMC step é

DQMC step DQMC step

Compute G| Compute G|
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Rolling Feeder Algorithm

The matrix product can be stably computed sequentially.

HH +
= DQMC step

DQMC step

DQMC step

Compute G

Tasks to get one Gy Sequential | Parallel reduction | Rolling feeder
1. Matrix multiplication L log L 1

2. Stabilization step o(L) O(log L) 1

3. Inverting (I + By ... By) 1 1 1

4. Data transmission N? O(LN?) N?

Comparisons on resources and stability

Processor 0O(1) o(L) o(L)
Numerically stable Y N Y
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Parallel Matrix Computations

Two matrix computation kernels are parallelized.
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Parallel Matrix Computations

Two matrix computation kernels are parallelized.

© The unequal time Green's function is computed by blocks in parallel
(/+Bk"'BlBL'--Bk+1)_lBk'--Bg+1 k>/(

Giy=1 (I+Bi--BiBr---Biy1) ™! k=1¢
—(/+Bk'"Bk+1)_lBk-~-BlBL'--Bg_H k<t
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Parallel Matrix Computations

Two matrix computation kernels are parallelized.

© The unequal time Green's function is computed by blocks in parallel

(/+Bk-~~BlBL'--Bk+1)_lBk'--Bg+1 k>/
Gy = (I+Bk- BB+ -Biy1) 7t k=/{
—(/+Bk'"Bk+1)_1Bk-~-BlBL"-Bg_H k<t

@ The matrix-matrix multiplication of Gx and each block matrix of G™
is speeded up using multicore.

o The matrix size of G, 100-1000, is too small such that the matrix
computation cannot be benefited by using MPI-style parallelization.
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System Design

@ The system contains several “simulators” for parallel Markov chain.
@ Each simulator consists of a “walker” and a “M-server"”.

MC walker
DQMC steps

Feeder
Iterator @ @ ..... @

M-server

Physical measurements
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Implementation Techniques

System is implemented for hybrid systems (cluster+multicore)

Task MPI | OpenMP

Comm/comp
overlapping

Message
compression

Load
balance

Parallel
Markov v
chain

Rolling
feeder v v
algorithm

Unequal
time v v
Green's fn

Physical
measure- v
ment
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Communication/Computation Overlapping

lterator s e ror _Feeder lterator s field ror_Fe€der
time slice 0 time slice 0
» Get Gy by »
Multiply FUA Multiply
B, and By and
compute MC itorat compute
& e %
iterates
Go on G, Go
MC iteration Get Gy and
MC starts here convert it to |HS field for | ;
iterates G, by FUA |time slice 1 IE\;AuItlpIy
on G, 1
HS field for Me
time slice 1 SLaes
on G,
Without overlapping Using fast update algorithm (FUA)

to reduce waiting time
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Load Balance

@ lterators are fully occupied — the bottleneck of speedup.
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Load Balance

@ lterators are fully occupied — the bottleneck of speedup.
@ Processor utilization can be enhanced by merging tasks.

e For example, when computing unequal time Green's function, each
processor can take care of more than one block submatrix.
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Load Balance

Iterators are fully occupied — the bottleneck of speedup.

Processor utilization can be enhanced by merging tasks.

e For example, when computing unequal time Green's function, each
processor can take care of more than one block submatrix.

The load balance problem: how many block submatrices should one
processor compute?

Using the queueing theory (Little's law) to estimate.

nc = max i < i
CTPRSNT| = AT

e A: arrival rate; T: processing time; P: processor utilization.
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System and Benchmark

@ Run on the IBM Blue Gene/P

@ Each compute node is equipped with 850MHz PowerPC 450
quad-core processor and 2GB memory.

o IBM XL compilers with IBM BLAS and LAPACK libraries.
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System and Benchmark

@ Run on the IBM Blue Gene/P

@ Each compute node is equipped with 850MHz PowerPC 450
quad-core processor and 2GB memory.

o IBM XL compilers with IBM BLAS and LAPACK libraries.

v

o DQMC simulation on a two-dimensional periodic lattice.
@ The lattice size is N = 16 x 16 = 256.

@ The ratio of DQMC steps for the warmup stage and the sampling
stages is 1 : 20.

A\
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Communication Pattern

Iterator 1
Feeder 1.1
Feeder 1.2
Feeder 1.3

Feeder 1.4

Feeder 1.5
Feeder 1.6
Measurator 1
Iterator 2
Feeder 2.1
Feeder 2.2
Feeder 2.3

Feeder 2.4

Feeder 2.5
Feeder 2.6
Measurator 2

@ Green bands show the waiting time of MPI_RECV.

@ lterators are fully occupied after started.
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Speedup for Different L
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Effect of Load Balance (L = 96)

Speedup
100
80 /
/’ —e—nC=32
60 A | |-=—nc=64
—A— nC=96
40 - ——nC=128
——nC=192
20
0 . . . . nP
0 50 100 150 200 250

@ nC: number of block submatrices computed per processor.
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Summary

o DQMC simulation for strongly correlated materials is a
computationally intensive task, which is eager for parallelization.
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o DQMC simulation for strongly correlated materials is a
computationally intensive task, which is eager for parallelization.

@ We targeted the hybrid massive parallel systems, and explored the
parallelism of DQMC simulations on different levels of granularity.
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o DQMC simulation for strongly correlated materials is a
computationally intensive task, which is eager for parallelization.

@ We targeted the hybrid massive parallel systems, and explored the
parallelism of DQMC simulations on different levels of granularity.

@ Our implementation shows over 80x speedup on thousand processors,
which is much better than embarrassing parallelization (speedup
< 21).
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@ More fine-grain parallel matrix computation kernels (pivoted QR, QR,
matrix inversion) to fully utilize the computational power of
multicores.
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@ More fine-grain parallel matrix computation kernels (pivoted QR, QR,
matrix inversion) to fully utilize the computational power of
multicores.

@ Better system design to enhance the processor utilization.
@ Different physics models and methods.

@ Code is still in the experimental stage. Further development is
required for practical use.
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