
Parallelization of DQMC Simulations for
Strongly Correlated Electron Systems

Che-Rung Lee

Dept. of Computer Science
National Tsing-Hua University
Taiwan

joint work with
I-Hsin Chung (IBM Research), Zhaojun Bai (UCDavis)

IEEE International Parallel and Distributed Processing Symposium 2010

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallelization of DQMC Simulations IPDPS 2010 1 / 22

Outline

1 DQMC simulations

2 DQMC parallelization
Algorithmic approaches
System approaches

3 Experiment results

4 Conclusion

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallelization of DQMC Simulations IPDPS 2010 2 / 22

Computational Material Science

Understanding and exploiting the properties of solid-state materials:
magnetism, metal-insulator transition, high temperature superconductivity,
...

-15 -10 -5 0 5 10 15

A. Density

0.0

0.3

0.6

0.9

1.2

-15 -10 -5 0 5 10 15

B. Density fluctuations
×10-1

0.0

0.9

1.8

2.7

-15 -10 -5 0 5 10 15

C. Spin correlations

×10-1

0.0

0.8

1.6

2.4

3.2

-15 -10 -5 0 5 10 15

D. Pairing correlations
×10-1

0.0

0.8

1.6

2.4

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallelization of DQMC Simulations IPDPS 2010 3 / 22

Hubbard Model and DQMC Simulations

Many body simulation on multi-layer
lattices using Hubbard model and
quantum monte carlo method.

QUEST (QUantum Electron Simulation Toolbox):
Fortran 90 package for Determinant Quantum
Monte Carlo (DQMC) simulations.

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallelization of DQMC Simulations IPDPS 2010 4 / 22

Hubbard Model and DQMC Simulations

Many body simulation on multi-layer
lattices using Hubbard model and
quantum monte carlo method.

QUEST (QUantum Electron Simulation Toolbox):
Fortran 90 package for Determinant Quantum
Monte Carlo (DQMC) simulations.

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallelization of DQMC Simulations IPDPS 2010 4 / 22

DQMC Algorithm

Two stages:

Warmup stage

Sampling stage

A DQMC step

1 Propose a local change: h→ h′.

2 Throw a random number 0 < r < 1.

3 Accept the change if r < det(e−βH(h′))
det(e−βH(h))

.

DQMC step

Random HS field

thermalized

DQMC step

Measurements

yes

no

enough
samples

no

Aggregation

yes

w
arm

up
sam

pling

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallelization of DQMC Simulations IPDPS 2010 5 / 22

Computational Kernels

The equal time Green’s function

Gk = (I + BkBk+1 · · ·B1BL · · ·Bk−1)−1

The unequal time Green’s function

G τ =


I B1

−B2 I
. . .

. . .

−BL I


−1

Physical measurements

Operations on Gk and G τ , Fourier Transform, etc.

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallelization of DQMC Simulations IPDPS 2010 6 / 22

Computational Kernels

The equal time Green’s function

Gk = (I + BkBk+1 · · ·B1BL · · ·Bk−1)−1

The unequal time Green’s function

G τ =


I B1

−B2 I
. . .

. . .

−BL I


−1

Physical measurements

Operations on Gk and G τ , Fourier Transform, etc.

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallelization of DQMC Simulations IPDPS 2010 6 / 22

Computational Kernels

The equal time Green’s function

Gk = (I + BkBk+1 · · ·B1BL · · ·Bk−1)−1

The unequal time Green’s function

G τ =


I B1

−B2 I
. . .

. . .

−BL I


−1

Physical measurements

Operations on Gk and G τ , Fourier Transform, etc.

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallelization of DQMC Simulations IPDPS 2010 6 / 22

Computational Challenges

For simulating strongly correlated electron systems

The size of lattices need be large.
A longer warmup stage is required.

Numerical stability issues.

Additional stabilizing steps are required.
Most calculations need double precision.
Many fast updating methods and parallel algorithms cannot be used.

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallelization of DQMC Simulations IPDPS 2010 7 / 22

Computational Challenges

For simulating strongly correlated electron systems

The size of lattices need be large.
A longer warmup stage is required.

Numerical stability issues.

Additional stabilizing steps are required.
Most calculations need double precision.
Many fast updating methods and parallel algorithms cannot be used.

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallelization of DQMC Simulations IPDPS 2010 7 / 22

DQMC Parallelization

Algorithmic approaches

Parallel Markov chain

Rolling feeder algorithm

Parallel matrix computations

System approaches

Task decomposition

Communication and computation overlapping

Message compression

Load balance

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallelization of DQMC Simulations IPDPS 2010 8 / 22

Parallel Markov Chain

The sampling stage can be parallelized
embarrassingly.

The speedup of parallelization is
limited by the time of the warmup
stage. (Amdahl’s law)

ρspeedup =
Twarmup + Tsampling

Twarmup + Tsampling/Np

<
Twarmup + Tsampling

Twarmup

DQMC step

Random HS field

thermalized

D
Q

M
C

 step
M

easurem
ents

yes

no

Aggregation

w
arm

up
sam

pling

D
Q

M
C

 step
M

easurem
ents

D
Q

M
C

 step
M

easurem
ents

...

...

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallelization of DQMC Simulations IPDPS 2010 9 / 22

Parallel Markov Chain

The sampling stage can be parallelized
embarrassingly.

The speedup of parallelization is
limited by the time of the warmup
stage. (Amdahl’s law)

ρspeedup =
Twarmup + Tsampling

Twarmup + Tsampling/Np

<
Twarmup + Tsampling

Twarmup

DQMC step

Random HS field

thermalized

D
Q

M
C

 step
M

easurem
ents

yes

no

Aggregation

w
arm

up
sam

pling

D
Q

M
C

 step
M

easurem
ents

D
Q

M
C

 step
M

easurem
ents

...

...

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallelization of DQMC Simulations IPDPS 2010 9 / 22

Green’s Function Calculation

Matrix Gk need be computed cyclically with Bk−1 updated.

G1 = (I + B1B2 · · ·BL−1BL)−1.

G2 = (I + B2B3 · · ·BLB1)−1.

G3 = (I + B3B4 · · ·B1B2)−1.

· · ·
Parallel reduction (takes O(N3 log L) time.)

DQMC stepDQMC step

Compute GCompute G

4

3

2

1

4
3

2
1

4
3
2
1

...DQMC stepDQMC step

Compute GCompute G

1

4

3

2

1
4

3
2

1
4
3
2

DQMC stepDQMC step

Compute GCompute G

2

1

4

3

2
1

4
3

2
1
4
3

...

Numerically unstable!

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallelization of DQMC Simulations IPDPS 2010 10 / 22

Green’s Function Calculation

Matrix Gk need be computed cyclically with Bk−1 updated.

G1 = (I + B1B2 · · ·BL−1BL)−1.

G2 = (I + B2B3 · · ·BLB1)−1.

G3 = (I + B3B4 · · ·B1B2)−1.

· · ·
Parallel reduction (takes O(N3 log L) time.)

DQMC stepDQMC step

Compute GCompute G

4

3

2

1

4
3

2
1

4
3
2
1

...DQMC stepDQMC step

Compute GCompute G

1

4

3

2

1
4

3
2

1
4
3
2

DQMC stepDQMC step

Compute GCompute G

2

1

4

3

2
1

4
3

2
1
4
3

...

Numerically unstable!

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallelization of DQMC Simulations IPDPS 2010 10 / 22

Green’s Function Calculation

Matrix Gk need be computed cyclically with Bk−1 updated.

G1 = (I + B1B2 · · ·BL−1BL)−1.

G2 = (I + B2B3 · · ·BLB1)−1.

G3 = (I + B3B4 · · ·B1B2)−1.

· · ·
Parallel reduction (takes O(N3 log L) time.)

DQMC stepDQMC step

Compute GCompute G

4

3

2

1

4
3

2
1

4
3
2
1

...DQMC stepDQMC step

Compute GCompute G

1

4

3

2

1
4

3
2

1
4
3
2

DQMC stepDQMC step

Compute GCompute G

2

1

4

3

2
1

4
3

2
1
4
3

...

Numerically unstable!

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallelization of DQMC Simulations IPDPS 2010 10 / 22

Green’s Function Calculation

Matrix Gk need be computed cyclically with Bk−1 updated.

G1 = (I + B1B2 · · ·BL−1BL)−1.

G2 = (I + B2B3 · · ·BLB1)−1.

G3 = (I + B3B4 · · ·B1B2)−1.

· · ·

Parallel reduction (takes O(N3 log L) time.)

DQMC stepDQMC step

Compute GCompute G

4

3

2

1

4
3

2
1

4
3
2
1

...DQMC stepDQMC step

Compute GCompute G

1

4

3

2

1
4

3
2

1
4
3
2

DQMC stepDQMC step

Compute GCompute G

2

1

4

3

2
1

4
3

2
1
4
3

...

Numerically unstable!

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallelization of DQMC Simulations IPDPS 2010 10 / 22

Green’s Function Calculation

Matrix Gk need be computed cyclically with Bk−1 updated.

G1 = (I + B1B2 · · ·BL−1BL)−1.

G2 = (I + B2B3 · · ·BLB1)−1.

G3 = (I + B3B4 · · ·B1B2)−1.

· · ·
Parallel reduction (takes O(N3 log L) time.)

DQMC stepDQMC step

Compute GCompute G

4

3

2

1

4
3

2
1

4
3
2
1

...DQMC stepDQMC step

Compute GCompute G

1

4

3

2

1
4

3
2

1
4
3
2

DQMC stepDQMC step

Compute GCompute G

2

1

4

3

2
1

4
3

2
1
4
3

...

Numerically unstable!

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallelization of DQMC Simulations IPDPS 2010 10 / 22

Green’s Function Calculation

Matrix Gk need be computed cyclically with Bk−1 updated.

G1 = (I + B1B2 · · ·BL−1BL)−1.

G2 = (I + B2B3 · · ·BLB1)−1.

G3 = (I + B3B4 · · ·B1B2)−1.

· · ·
Parallel reduction (takes O(N3 log L) time.)

DQMC stepDQMC step

Compute GCompute G

4

3

2

1

4
3

2
1

4
3
2
1

...DQMC stepDQMC step

Compute GCompute G

1

4

3

2

1
4

3
2

1
4
3
2

DQMC stepDQMC step

Compute GCompute G

2

1

4

3

2
1

4
3

2
1
4
3

...

Numerically unstable!

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallelization of DQMC Simulations IPDPS 2010 10 / 22

Rolling Feeder Algorithm

The matrix product can be stably computed sequentially.

DQMC stepDQMC step DQMC stepDQMC step

Compute GCompute G Compute GCompute G

DQMC stepDQMC step

11

22

33

44

44

33

22 33 44

44 22

33

44

11

11

44

33 44 11

11

Compute GCompute G

11

33

44

22

22

11

44 11 22

22

... ...

Tasks to get one Gk Sequential Parallel reduction Rolling feeder
1. Matrix multiplication L log L 1
2. Stabilization step O(L) O(log L) 1
3. Inverting (I + B1 . . .BL) 1 1 1
4. Data transmission N2 O(LN2) N2

Comparisons on resources and stability
Processor O(1) O(L) O(L)
Numerically stable Y N Y

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallelization of DQMC Simulations IPDPS 2010 11 / 22

Rolling Feeder Algorithm

The matrix product can be stably computed sequentially.

DQMC stepDQMC step DQMC stepDQMC step

Compute GCompute G Compute GCompute G

DQMC stepDQMC step

11

22

33

44

44

33

22 33 44

44 22

33

44

11

11

44

33 44 11

11

Compute GCompute G

11

33

44

22

22

11

44 11 22

22

... ...

Tasks to get one Gk Sequential Parallel reduction Rolling feeder
1. Matrix multiplication L log L 1
2. Stabilization step O(L) O(log L) 1
3. Inverting (I + B1 . . .BL) 1 1 1
4. Data transmission N2 O(LN2) N2

Comparisons on resources and stability
Processor O(1) O(L) O(L)
Numerically stable Y N Y

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallelization of DQMC Simulations IPDPS 2010 11 / 22

Rolling Feeder Algorithm

The matrix product can be stably computed sequentially.

DQMC stepDQMC step DQMC stepDQMC step

Compute GCompute G Compute GCompute G

DQMC stepDQMC step

11

22

33

44

44

33

22 33 44

44 22

33

44

11

11

44

33 44 11

11

Compute GCompute G

11

33

44

22

22

11

44 11 22

22

... ...

Tasks to get one Gk Sequential Parallel reduction Rolling feeder
1. Matrix multiplication L log L 1
2. Stabilization step O(L) O(log L) 1
3. Inverting (I + B1 . . .BL) 1 1 1
4. Data transmission N2 O(LN2) N2

Comparisons on resources and stability
Processor O(1) O(L) O(L)
Numerically stable Y N Y

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallelization of DQMC Simulations IPDPS 2010 11 / 22

Parallel Matrix Computations

Two matrix computation kernels are parallelized.

1 The unequal time Green’s function is computed by blocks in parallel

G τ
k,` =


(I +Bk · · ·B1BL· · ·Bk+1)−1Bk · · ·B`+1 k>`
(I +Bk · · ·B1BL· · ·Bk+1)−1 k =`
−(I +Bk · · ·Bk+1)−1Bk · · ·B1BL· · ·B`+1 k<`

2 The matrix-matrix multiplication of Gk and each block matrix of G τ

is speeded up using multicore.
The matrix size of Gk , 100-1000, is too small such that the matrix
computation cannot be benefited by using MPI-style parallelization.

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallelization of DQMC Simulations IPDPS 2010 12 / 22

Parallel Matrix Computations

Two matrix computation kernels are parallelized.

1 The unequal time Green’s function is computed by blocks in parallel

G τ
k,` =


(I +Bk · · ·B1BL· · ·Bk+1)−1Bk · · ·B`+1 k>`
(I +Bk · · ·B1BL· · ·Bk+1)−1 k =`
−(I +Bk · · ·Bk+1)−1Bk · · ·B1BL· · ·B`+1 k<`

2 The matrix-matrix multiplication of Gk and each block matrix of G τ

is speeded up using multicore.
The matrix size of Gk , 100-1000, is too small such that the matrix
computation cannot be benefited by using MPI-style parallelization.

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallelization of DQMC Simulations IPDPS 2010 12 / 22

Parallel Matrix Computations

Two matrix computation kernels are parallelized.

1 The unequal time Green’s function is computed by blocks in parallel

G τ
k,` =


(I +Bk · · ·B1BL· · ·Bk+1)−1Bk · · ·B`+1 k>`
(I +Bk · · ·B1BL· · ·Bk+1)−1 k =`
−(I +Bk · · ·Bk+1)−1Bk · · ·B1BL· · ·B`+1 k<`

2 The matrix-matrix multiplication of Gk and each block matrix of G τ

is speeded up using multicore.
The matrix size of Gk , 100-1000, is too small such that the matrix
computation cannot be benefited by using MPI-style parallelization.

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallelization of DQMC Simulations IPDPS 2010 12 / 22

System Design

The system contains several “simulators” for parallel Markov chain.

Each simulator consists of a “walker” and a “M-server”.

M-server
Physical measurements

GC GC

Unequal time measurator

Equal time measurator

GC

MC walker
DQMC steps

Iterator

Feeder
Feeder

Feeder

Feeder
Feeder

 HS field

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallelization of DQMC Simulations IPDPS 2010 13 / 22

Implementation Techniques

System is implemented for hybrid systems (cluster+multicore)
Task MPI OpenMP Comm/comp Message Load

overlapping compression balance
Parallel
Markov X
chain
Rolling
feeder X X X X X
algorithm
Unequal
time X X X X
Green’s fn
Physical
measure- X X X
ment

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallelization of DQMC Simulations IPDPS 2010 14 / 22

Communication/Computation Overlapping

Iterator FeederHS field for
time slice 0

G0

MC
iterates
on G0

Multiply
B0 and
compute
G0

...

HS field for
time slice 1

MC iteration
starts here

Without overlapping

Iterator FeederHS field for
time slice 0

MC
iterates
on G0 G0

HS field for
time slice 1 Multiply

B1
MC
iterates
on G1

Multiply
B0 and
compute
G0

...

Get G0 by
FUA

Get G0 and
convert it to
G1 by FUA

MC iteration
starts here

Using fast update algorithm (FUA)
to reduce waiting time

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallelization of DQMC Simulations IPDPS 2010 15 / 22

Load Balance

Iterators are fully occupied → the bottleneck of speedup.

Processor utilization can be enhanced by merging tasks.

For example, when computing unequal time Green’s function, each
processor can take care of more than one block submatrix.

The load balance problem: how many block submatrices should one
processor compute?

Using the queueing theory (Little’s law) to estimate.

nC = max
P≤1

⌊
P

λT

⌋
≤
⌊

1

λT

⌋
.

λ: arrival rate; T : processing time; P: processor utilization.

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallelization of DQMC Simulations IPDPS 2010 16 / 22

Load Balance

Iterators are fully occupied → the bottleneck of speedup.

Processor utilization can be enhanced by merging tasks.

For example, when computing unequal time Green’s function, each
processor can take care of more than one block submatrix.

The load balance problem: how many block submatrices should one
processor compute?

Using the queueing theory (Little’s law) to estimate.

nC = max
P≤1

⌊
P

λT

⌋
≤
⌊

1

λT

⌋
.

λ: arrival rate; T : processing time; P: processor utilization.

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallelization of DQMC Simulations IPDPS 2010 16 / 22

Load Balance

Iterators are fully occupied → the bottleneck of speedup.

Processor utilization can be enhanced by merging tasks.

For example, when computing unequal time Green’s function, each
processor can take care of more than one block submatrix.

The load balance problem: how many block submatrices should one
processor compute?

Using the queueing theory (Little’s law) to estimate.

nC = max
P≤1

⌊
P

λT

⌋
≤
⌊

1

λT

⌋
.

λ: arrival rate; T : processing time; P: processor utilization.

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallelization of DQMC Simulations IPDPS 2010 16 / 22

Load Balance

Iterators are fully occupied → the bottleneck of speedup.

Processor utilization can be enhanced by merging tasks.

For example, when computing unequal time Green’s function, each
processor can take care of more than one block submatrix.

The load balance problem: how many block submatrices should one
processor compute?

Using the queueing theory (Little’s law) to estimate.

nC = max
P≤1

⌊
P

λT

⌋
≤
⌊

1

λT

⌋
.

λ: arrival rate; T : processing time; P: processor utilization.

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallelization of DQMC Simulations IPDPS 2010 16 / 22

System and Benchmark

System

Run on the IBM Blue Gene/P

Each compute node is equipped with 850MHz PowerPC 450
quad-core processor and 2GB memory.

IBM XL compilers with IBM BLAS and LAPACK libraries.

Benchmark

DQMC simulation on a two-dimensional periodic lattice.

The lattice size is N = 16× 16 = 256.

The ratio of DQMC steps for the warmup stage and the sampling
stages is 1 : 20.

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallelization of DQMC Simulations IPDPS 2010 17 / 22

System and Benchmark

System

Run on the IBM Blue Gene/P

Each compute node is equipped with 850MHz PowerPC 450
quad-core processor and 2GB memory.

IBM XL compilers with IBM BLAS and LAPACK libraries.

Benchmark

DQMC simulation on a two-dimensional periodic lattice.

The lattice size is N = 16× 16 = 256.

The ratio of DQMC steps for the warmup stage and the sampling
stages is 1 : 20.

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallelization of DQMC Simulations IPDPS 2010 17 / 22

Communication Pattern

Iterator 1
 Feeder 1.1
 Feeder 1.2
 Feeder 1.3
 Feeder 1.4
 Feeder 1.5
 Feeder 1.6
 Measurator 1
Iterator 2
 Feeder 2.1
 Feeder 2.2
 Feeder 2.3
 Feeder 2.4
 Feeder 2.5
 Feeder 2.6
 Measurator 2

Green bands show the waiting time of MPI RECV.

Iterators are fully occupied after started.

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallelization of DQMC Simulations IPDPS 2010 18 / 22

Speedup for Different L

nP

Speedup

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallelization of DQMC Simulations IPDPS 2010 19 / 22

Effect of Load Balance (L = 96)

nP

Speedup

nC : number of block submatrices computed per processor.

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallelization of DQMC Simulations IPDPS 2010 20 / 22

Summary

DQMC simulation for strongly correlated materials is a
computationally intensive task, which is eager for parallelization.

We targeted the hybrid massive parallel systems, and explored the
parallelism of DQMC simulations on different levels of granularity.

Our implementation shows over 80x speedup on thousand processors,
which is much better than embarrassing parallelization (speedup
< 21).

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallelization of DQMC Simulations IPDPS 2010 21 / 22

Summary

DQMC simulation for strongly correlated materials is a
computationally intensive task, which is eager for parallelization.

We targeted the hybrid massive parallel systems, and explored the
parallelism of DQMC simulations on different levels of granularity.

Our implementation shows over 80x speedup on thousand processors,
which is much better than embarrassing parallelization (speedup
< 21).

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallelization of DQMC Simulations IPDPS 2010 21 / 22

Summary

DQMC simulation for strongly correlated materials is a
computationally intensive task, which is eager for parallelization.

We targeted the hybrid massive parallel systems, and explored the
parallelism of DQMC simulations on different levels of granularity.

Our implementation shows over 80x speedup on thousand processors,
which is much better than embarrassing parallelization (speedup
< 21).

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallelization of DQMC Simulations IPDPS 2010 21 / 22

Future Works

More fine-grain parallel matrix computation kernels (pivoted QR, QR,
matrix inversion) to fully utilize the computational power of
multicores.

Better system design to enhance the processor utilization.

Different physics models and methods.

Code is still in the experimental stage. Further development is
required for practical use.

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallelization of DQMC Simulations IPDPS 2010 22 / 22

Future Works

More fine-grain parallel matrix computation kernels (pivoted QR, QR,
matrix inversion) to fully utilize the computational power of
multicores.

Better system design to enhance the processor utilization.

Different physics models and methods.

Code is still in the experimental stage. Further development is
required for practical use.

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallelization of DQMC Simulations IPDPS 2010 22 / 22

Future Works

More fine-grain parallel matrix computation kernels (pivoted QR, QR,
matrix inversion) to fully utilize the computational power of
multicores.

Better system design to enhance the processor utilization.

Different physics models and methods.

Code is still in the experimental stage. Further development is
required for practical use.

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallelization of DQMC Simulations IPDPS 2010 22 / 22

Future Works

More fine-grain parallel matrix computation kernels (pivoted QR, QR,
matrix inversion) to fully utilize the computational power of
multicores.

Better system design to enhance the processor utilization.

Different physics models and methods.

Code is still in the experimental stage. Further development is
required for practical use.

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallelization of DQMC Simulations IPDPS 2010 22 / 22

	DQMC simulations
	DQMC parallelization
	Algorithmic approaches
	System approaches

	Experiment results
	Conclusion

