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Computational Material Science

Understanding and exploiting the properties of solid-state materials:
magnetism, metal-insulator transition, high temperature superconductivity,
...
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Hubbard Model and DQMC Simulations

Many body simulation on multi-layer
lattices using Hubbard model and
quantum monte carlo method.

QUEST (QUantum Electron Simulation Toolbox):
Fortran 90 package for Determinant Quantum
Monte Carlo (DQMC) simulations.
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DQMC Algorithm

Two stages:

Warmup stage

Sampling stage

A DQMC step

1 Propose a local change: h→ h′.

2 Throw a random number 0 < r < 1.

3 Accept the change if r < det(e−βH(h′))
det(e−βH(h))

.

DQMC step

Random HS field

thermalized

DQMC step

Measurements

yes

no

enough
samples

no

Aggregation

yes
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arm
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Computational Kernels

The equal time Green’s function

Gk = (I + BkBk+1 · · ·B1BL · · ·Bk−1)−1

The unequal time Green’s function

G τ =


I B1

−B2 I
. . .

. . .

−BL I


−1

Physical measurements

Operations on Gk and G τ , Fourier Transform, etc.
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Computational Challenges

For simulating strongly correlated electron systems

The size of lattices need be large.
A longer warmup stage is required.

Numerical stability issues.

Additional stabilizing steps are required.
Most calculations need double precision.
Many fast updating methods and parallel algorithms cannot be used.
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DQMC Parallelization

Algorithmic approaches

Parallel Markov chain

Rolling feeder algorithm

Parallel matrix computations

System approaches

Task decomposition

Communication and computation overlapping

Message compression

Load balance
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Parallel Markov Chain

The sampling stage can be parallelized
embarrassingly.

The speedup of parallelization is
limited by the time of the warmup
stage. (Amdahl’s law)

ρspeedup =
Twarmup + Tsampling

Twarmup + Tsampling/Np

<
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Green’s Function Calculation

Matrix Gk need be computed cyclically with Bk−1 updated.

G1 = (I + B1B2 · · ·BL−1BL)−1.

G2 = (I + B2B3 · · ·BLB1)−1.

G3 = (I + B3B4 · · ·B1B2)−1.

· · ·
Parallel reduction (takes O(N3 log L) time.)
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Numerically unstable!
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Rolling Feeder Algorithm

The matrix product can be stably computed sequentially.

DQMC stepDQMC step DQMC stepDQMC step

Compute GCompute G Compute GCompute G

DQMC stepDQMC step
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11
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44

33 44 11

11

Compute GCompute G

11

33

44

22

22

11

44 11 22

22

... ...

Tasks to get one Gk Sequential Parallel reduction Rolling feeder
1. Matrix multiplication L log L 1
2. Stabilization step O(L) O(log L) 1
3. Inverting (I + B1 . . .BL) 1 1 1
4. Data transmission N2 O(LN2) N2

Comparisons on resources and stability
Processor O(1) O(L) O(L)
Numerically stable Y N Y
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Parallel Matrix Computations

Two matrix computation kernels are parallelized.

1 The unequal time Green’s function is computed by blocks in parallel

G τ
k,` =


(I +Bk · · ·B1BL· · ·Bk+1)−1Bk · · ·B`+1 k>`
(I +Bk · · ·B1BL· · ·Bk+1)−1 k =`
−(I +Bk · · ·Bk+1)−1Bk · · ·B1BL· · ·B`+1 k<`

2 The matrix-matrix multiplication of Gk and each block matrix of G τ

is speeded up using multicore.
The matrix size of Gk , 100-1000, is too small such that the matrix
computation cannot be benefited by using MPI-style parallelization.
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System Design

The system contains several “simulators” for parallel Markov chain.

Each simulator consists of a “walker” and a “M-server”.

M-server
Physical measurements

GC GC

Unequal time measurator

Equal time measurator

GC

MC walker
DQMC steps

Iterator

Feeder
Feeder

Feeder

Feeder
Feeder

         HS field
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Implementation Techniques

System is implemented for hybrid systems (cluster+multicore)
Task MPI OpenMP Comm/comp Message Load

overlapping compression balance
Parallel
Markov X
chain
Rolling
feeder X X X X X
algorithm
Unequal
time X X X X
Green’s fn
Physical
measure- X X X
ment
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Communication/Computation Overlapping

Iterator FeederHS field for
time slice 0

G0 

MC 
iterates
on G0 

Multiply
B0 and 
compute 
G0 

...

HS field for 
time slice 1

MC iteration
starts here 

Without overlapping

Iterator FeederHS field for 
time slice 0

MC 
iterates
on G0 G0 

HS field for 
time slice 1 Multiply

B1 
MC 
iterates
on G1 

Multiply
B0 and 
compute 
G0 

...

Get G0 by 
FUA

Get G0 and
convert it to 
G1 by FUA

MC iteration
starts here 

Using fast update algorithm (FUA)
to reduce waiting time
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Load Balance

Iterators are fully occupied → the bottleneck of speedup.

Processor utilization can be enhanced by merging tasks.

For example, when computing unequal time Green’s function, each
processor can take care of more than one block submatrix.

The load balance problem: how many block submatrices should one
processor compute?

Using the queueing theory (Little’s law) to estimate.

nC = max
P≤1

⌊
P

λT

⌋
≤
⌊

1

λT

⌋
.

λ: arrival rate; T : processing time; P: processor utilization.
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System and Benchmark

System

Run on the IBM Blue Gene/P

Each compute node is equipped with 850MHz PowerPC 450
quad-core processor and 2GB memory.

IBM XL compilers with IBM BLAS and LAPACK libraries.

Benchmark

DQMC simulation on a two-dimensional periodic lattice.

The lattice size is N = 16× 16 = 256.

The ratio of DQMC steps for the warmup stage and the sampling
stages is 1 : 20.
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Communication Pattern

Iterator 1
   Feeder 1.1
   Feeder 1.2
   Feeder 1.3
   Feeder 1.4
   Feeder 1.5
   Feeder 1.6
   Measurator 1
Iterator 2
   Feeder 2.1
   Feeder 2.2
   Feeder 2.3
   Feeder 2.4
   Feeder 2.5
   Feeder 2.6
   Measurator 2

Green bands show the waiting time of MPI RECV.

Iterators are fully occupied after started.
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Speedup for Different L

nP

Speedup
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Effect of Load Balance (L = 96)

nP

Speedup

nC : number of block submatrices computed per processor.
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Summary

DQMC simulation for strongly correlated materials is a
computationally intensive task, which is eager for parallelization.

We targeted the hybrid massive parallel systems, and explored the
parallelism of DQMC simulations on different levels of granularity.

Our implementation shows over 80x speedup on thousand processors,
which is much better than embarrassing parallelization (speedup
< 21).
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Future Works

More fine-grain parallel matrix computation kernels (pivoted QR, QR,
matrix inversion) to fully utilize the computational power of
multicores.

Better system design to enhance the processor utilization.

Different physics models and methods.

Code is still in the experimental stage. Further development is
required for practical use.
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