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Key ldeas and rFindings

> First cross-platform single-node multicore study
of tuning the fast multipole method (FMM)

» Explores data structures, SIMD, multithreading,
mixed-precision, and tuning

» Show 25x speedups on Intel Nehalem,
9.4x AMD Barcelona, 37.6x Sun Victoria Falls

> Surprise? Multicore ~ GPU in performance &
energy efficiency for the FMM

» Broader context: Generalized n-body problems,
for particle simulation & statistical data analytics
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Computing Direct vs. Tree-based Interactions
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Barnes-Hut: O(N log N)
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Fast Multipole Method (FMM): O(N)
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Direct evaluation: O(N?)
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~ast multipole methoa

» Given:

------- e —— ---' r---- - - - (N - —

» N target points and N sources
i

» Tree type & max points per leaf, g

/4l
N\

§
N

» Desired accuracy, €
> Two steps
» Build tree

» Evaluate potential at all N targets

We use kernel-independent FMM (KIFMM) of Ying, Zorin, Biros (2004).
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Recursively divide space untll
each box has at most q points.

Tree construction
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Six phases:

(1.) Upward pass

R (2-5.) List computations
(6.) Downward pass

Phases vary in:
— data parallelism
— intensity (flops : mops)

Given the adaptive tree, FMM evaluation performs a

Evaluation phase series of tree traversals, doing some work at each
node, B.
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Direct B&U.:
— O(q?) flops : O(q) mops

UL(B: leaf) :- neighbors (B)

UL(B: non-leaf) - empty
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In 3D, FFTs + pointwise
multiplication:

— Easily vectorized

— Low intensity vs. U-list

Vi(B) :- child (neigh (par (B))) - adj(B)
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Moderate intensity

W.(B: leaf) :- desc [par (neigh (B)) n adj] (B)] - adj (B)

WL (B: non-leaf) :- empty
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Moderate intensity

X(B) - {A B € W (A)}
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Parallelism exists:

(1) among phases, with
some dependencies;
(2) within each phase;
(3) per-box.

Do not currently exploit (1).

Essence of the

computation
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Essence of the

computation

Large g implies

— large U-list cost, O(q?)
— cheaper V,W, X costs
(shallower tree)

Algorithmic tuning
parameter, g, has a global
Impact on cost.
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Essence of the

computation

KIFMM (our variant)

requires kernel evaluations
with expensive flops

For instance, square-root and divide are
expensive, sometimes not pipelined.

Tuesday, April 20, 2010



» High-performance multicore FMMs:
Analysis, optimization, and tuning

» Algorithmic characteristics
» Architectural implications

» Observations

A. Chandramowlishwaran, S.Williams, L. Oliker, I. Lashuk, G. Biros, R.Vuduc — IPDPS 2010

Tuesday, April 20, 2010



Hardware thread and core configurations

Intel X5550 “Nehalem”

2-sockets x 4-cores/socket x 2=thr/core — 16 threads

Fast 2.66 GHz cores, out-of-order, deep pipelines.

AMD Opteron 2356 “Barcelona”

2 x4 x I=thr/core — 8 threads

Fast 2.3 GHz cores, out-of-order, deep pipelines.

Sun T5140 “Victoria Falls”

2 x 8 x 8=thr/core — 128 threads

1.166 GHZz cores, in-order, shallow pipeline.

Il

How do they differ? What implications for FMM?
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Optimizations

> Single-core, manually coded & tuned
» Low-level: SIMD vectorization (x86)
» Numerical: rsqrtps + Newton-Raphson (x86)
» Data: Structure reorg. (transpose or “SOA”)
» Traffic: Matrix-free via interprocedural loop fusion
» FFTW plan optimization
» OpenMP parallelization

> Algorithmic tuning of max particles per box, g
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Single-core Optimizations
Ns = N; = 4M, Double-Precision, Non-uniform (ellipsoidal)

600%
Nehalem
500%
400%
2 300%
o
(\)
2 200%
/)]
100%
0%
-100%
- > > =z xX &
-+SIMDization +Newton-Raphson +Structure of Arrays -+Matrix-Free +FFTW
Approximation Computation

Reference: kifmm3d [Ying, Langston, Zorin, Biros]
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N;s =

I +SIMDization

Single-core Optimizations
N: = 4M, Double-Precision, Non-uniform (ellipsoidal)

600
° Nehalem
500%
4009 SIMD — 85.5 (double),
0 170.6 (single) Gflop/s
2 300%
©
o Reciprocal square-
v o
o 200% root — 0.853 (double),
100% 42.66 (single) Gflop/s
0%
-100%
- > > =z xX &
+Newton-Raphson +Structure of Arrays - +Matrix-Free +FFTW
Approximation Computation

x86 has fast approximate single-precision rsqrt, exploitable in double.
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Ns = N; = 4M, Double-Precision, Non-uniform (ellipsoidal)

~ 4. 5x

Single-core Optimizations

Nehalem
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Down

~ 2.2x

Barcelona
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Less impact on Barcelona (why?) and Victoria Falls.
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+FFTW
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Tuesday, April 20, 2010




Algorithmic Tuning of g = Max pts / box
Nehalem

600 -‘— Force Evaluation Only

<

-0 Reference Serial

4UU

300

Seconds

200

100

0 | | | |
50 100 250 500 750
Maximum Particles per Box

Tree shape and relative component costs vary as q varies.
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Algorithmic Tuning of g = Max pts / box
Nehalem

600 -‘— Force Evaluation Only
E =@—Reference Serial
- Optimized Serial
4UU
0
T
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O
)
n
200
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0 | | | |

50 100 250 500 750
Maximum Particles per Box

Shape of curve changes as we introduce optimizations.
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Algorithmic Tuning of g = Max pts / box
Nehalem

600 -‘— Force Evaluation Only

E -8 Reference Serial
——Optimized Serial

== Qptimized Parallel
4UU

300

Seconds
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100

0
50 100 250 500 750
Maximum Particles per Box

Shape of curve changes as we introduce optimizations.
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Algorithmic Tuning of g = Max pts / box

Nehalem
600 _‘7 Force Evaluation Only 14.0 Breakdown by List
g —®—Reference Serial 12.0
—i—-Optimized Serial
—&—Optimized Parallel 10.0 —&=U list
4UU
)
= S 8.0
S 300 o
O
8 g 6.0
200
4.0
100 2.0
0.4
0 | | 1 1 0.0 | | | 1
50 100 250 500 750 50 100 250 500 750
Maximum Particles per Box Maximum Particles per Box

Why? Consider phase costs for the “Optimized Parallel” implementation.
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Algorithmic Tuning of g = Max pts / box

Nehalem
600 _‘7 Force Evaluation Only 14.0 Breakdown by List
g —®—Reference Serial 12.0
—i—-Optimized Serial
—&—Optimized Parallel 10.0 —&=U list
4UU
)
= S 8.0
S 300 o
O
g g 6.0
200
4.0
100 2.0
0.4
0 | | 1 1 0.0 | | | 1
50 100 250 500 750 50 100 250 500 750
Maximum Particles per Box Maximum Particles per Box

Recall: Cost(U-list) ~ O(q?) per box
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Algorithmic Tuning of g = Max pts / box

Nehalem

14.0
12.0
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8.0

Seconds

6.0

4.0
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0.0

Breakdown by List

--U list

50 100 250 500 750
Maximum Particles per Box

A more shallow tree reduces cost of V-list phase.
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Algorithmic Tuning of g = Max pts / box

Nehalem
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Breakdown by List

- list

——\/ list

==\ |ist
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Maximum Particles per Box

Computational intensity of W, X more like U thanV.
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Algorithmic Tuning of g = Max pts / box

Nehalem
14.0 Breakdown by List
=o—-Up
12.0 —8-U list
——\/ list
10.0 ==\ list
7)) ==X list
EB IE% i;.() Down
5
A 6.0
4.0
2.0
0.0

50 100 250 500 750
Maximum Particles per Box

Optimal q will vary as the point distribution varies.
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Efficiency, via Parallel Cost -p-T;
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Efficiency, via Parallel Cost - ) T,
Uniform Distribution
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GPU comparison:

NVIDIA T 0P

» Our prior work on MPI+CUDA
Lashuk, et al., SC’09

» System: NCSA Lincoln Cluster

» Dual-socket Xeon

» | node, | MPI task per socket & GPU
(tasks mostly idle)

» |- and 2-GPU configs

» Single-precision only for now

» 12x compute + 5x bandwidth
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Cross-Platform Performance Comparison (Summary)

Single Precision
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Nehalem outperforms [-GPU case, a little slower than 2-GPU case.
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Cross-Platform Performance Comparison (Summary)
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Cross-Platform Performance Comparison (Summary)

Single Precision
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Nehalem outperforms [-GPU case, a little slower than 2-GPU case.
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Gflop/s

Performance of Direct n-body Computation
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~**NVIDIA Tesla C1060 [933 Gflop/s]

== AMD Barcelona [256 Gflop/s]
—NVIDIA Tesla C870 [512 Gflop/s]

GPU achieves ~50% of the theoretical peak for large n.

Tuesday, April 20, 2010

100000



Performance of Direct n-body Computation
Single Precision
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~**NVIDIA Tesla C1060 [933 Gflop/s]

Competing implementations have comparable performance for small n
(optimal for FMM).
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Decomposition of GPU time

Single Precision

100%

90%

80%

70%

60%

50%

40%

% of evaluation time

30%

20%

10%

O% 1] n
best "max" pts per box

® Setup ™ Transfer ® Computation

Setup time = time for
transforming data to
a GPU friendly form.

Transfer time = CPU
to GPU transfer time.

Could reduce setup time. But can computation be optimized further?
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Cross-Platform Energy-Efficiency Comparison
(Watt-Hours) / (Nehalem+OpenMP Watt-Hours)
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Amortized

consumes no power

Nehalem has same or better power efficiency than either GPU setup.
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Summary and Status

» First extensive multicore platform study for FMM

» Show 25x Nehalem, 9.4x Barcelona, 37.6x VF from
algorithmic, data, and numerical tuning

» Multicore CPU ~= GPU in power-performance
» Short-term:

» Perform more detailed modeling — autotuning

» Build integrated MPI+CPU+GPU implementation

» Parallel tree construction

» Long-term: Generalize infrastructure and merge with
on-going THOR effort for data analysis
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Memory systems

Intel X5550 “Nehalem”

Large (8 MB) L3 cache
High (51.2 GB/s) bandwidth

AMD Opteron 2356 “Barcelona”

Smaller (2 MB) L3 cache
Lower (21.33 GB/s) bandwidth

Sun T5140 “Victoria Falls”

4 MB L2
64.0 GB/s bandwidth

FMM has a mix of memory behaviors, so memory system impact will vary.
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Intel X5550 “Nehalem”

SIMD — 85.5 (double), 170.6 (single) Gflop/s

AMD Opteron 2356 “Barcelona”

SIMD — 73.6 (double), 146.2 (single) Gflop/s

Sun T5140 “Victoria Falls”

No SIMD — 18.66 Gflop/s in single & double

FMM can use SIMD well, so expect good performance on x86.
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Floating-point limitations

Intel X5550 “Nehalem”

Reciprocal square-root:
0.853 (double), 42.66 (single) Gflop/s

AMD Opteron 2356 “Barcelona”

0.897 (double), 73.6 (single) Gflop/s

Sun T5140 “Victoria Falls”

2.26 Gflop/s

However, x86 has fast approximate single-precision rsqrt, exploitable in double.
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Cross-Platform Performance Comparison (Summary)
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Nehalem-EX outperforms both |-GPU and 2-GPU case.
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