Optimizing and Tuning the Fast Multipole Method for Multicore and Accelerator Systems

Georgia Tech
– Aparna Chandramowlishwaran, Aashay Shringarpure, Ilya Lashuk; George Biros, Richard Vuduc

Lawrence Berkeley National Laboratory
– Sam Williams, Lenny Oliker

IPDPS 2010
Key Ideas and Findings

- First cross-platform single-node multicore study of tuning the fast multipole method (FMM)
 - Explores data structures, SIMD, multithreading, mixed-precision, and tuning
 - Show 25x speedups on Intel Nehalem, 9.4x AMD Barcelona, 37.6x Sun Victoria Falls
- **Surprise?** Multicore ~ GPU in performance & energy efficiency for the FMM
- Broader context: Generalized n-body problems, for particle simulation & statistical data analytics
High-performance multicore FMMs: Analysis, optimization, and tuning

- Algorithmic characteristics
- Architectural implications
- Observations
High-performance multicore FMMs: Analysis, optimization, and tuning

- Algorithmic characteristics
- Architectural implications
- Observations
Computing Direct vs. Tree-based Interactions

Direct evaluation: $O(N^2)$

Barnes-Hut: $O(N \log N)$

Fast Multipole Method (FMM): $O(N)$
Given:
- N target points and N sources
- Tree type & max points per leaf, q
- Desired accuracy, ε

Two steps
- Build tree
- Evaluate potential at all N targets

We use *kernel-independent FMM (KIFMM)* of Ying, Zorin, Biros (2004).
Tree construction

Recursively divide space until each box has at most q points.
Six phases:
(1.) Upward pass
(2–5.) List computations
(6.) Downward pass

Phases vary in:
→ data parallelism
→ intensity (flops : mops)

Given the adaptive tree, FMM evaluation performs a series of tree traversals, doing some work at each node, B.
Evaluation phase

Given the adaptive tree, FMM evaluation performs a series of tree traversals, doing some work at each node, B.

Six phases:
(1.) Upward pass
(2–5.) List computations
(6.) Downward pass

Phases vary in:
→ data parallelism
→ intensity (flops : mops)
U-List

\[\text{U-List} \]

\[U_L(B: \text{leaf}) :\text{ neighbors } (B) \]
\[U_L(B: \text{non-leaf}) :\text{ empty} \]

Direct \(B \otimes U \):
\[\rightarrow O(q^2) \text{ flops} : O(q) \text{ mops} \]
V-List

\[V_L(B) \text{ :- child (neigh (par (B)))) - adj(B) \]

In 3D, FFTs + pointwise multiplication:
→ Easily vectorized
→ Low intensity vs. U-list
W-list

\[W_L(B: \text{leaf}) :\text{- desc [par (neigh (B)) \text{n adj (B)}]} - \text{adj (B)} \]

\[W_L(B: \text{non-leaf}) :\text{- empty} \]

Moderate intensity
$X_{L}(B) := \{A : B \in W_{L}(A)\}$
Parallelism exists:
(1) among phases, with some dependencies;
(2) within each phase;
(3) per-box.

Do not currently exploit (1).
Large q implies
\rightarrow \text{large U-list cost, } O(q^2)
\rightarrow \text{cheaper V, W, X costs (shallower tree)}

Algorithmic tuning parameter, q, has a global impact on cost.

Essence of the computation
Essence of the computation

\[K(r) = \frac{C}{\sqrt{r}} \]

KIFMM (our variant) requires kernel evaluations with expensive flops

For instance, square-root and divide are expensive, sometimes not pipelined.
High-performance multicore FMMs: Analysis, optimization, and tuning

- Algorithmic characteristics
- **Architectural implications**
- Observations
<table>
<thead>
<tr>
<th>Hardware thread and core configurations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel X5550 “Nehalem”</td>
</tr>
<tr>
<td>2-sockets × 4-cores/socket × 2-thr/core → 16 threads</td>
</tr>
<tr>
<td>Fast 2.66 GHz cores, out-of-order, deep pipelines.</td>
</tr>
<tr>
<td>AMD Opteron 2356 “Barcelona”</td>
</tr>
<tr>
<td>2 × 4 × 1-thr/core → 8 threads</td>
</tr>
<tr>
<td>Fast 2.3 GHz cores, out-of-order, deep pipelines.</td>
</tr>
<tr>
<td>Sun T5140 “Victoria Falls”</td>
</tr>
<tr>
<td>2 × 8 × 8-thr/core → 128 threads</td>
</tr>
<tr>
<td>1.166 GHz cores, in-order, shallow pipeline.</td>
</tr>
</tbody>
</table>

How do they differ? What implications for FMM?
High-performance multicore FMMs: Analysis, optimization, and tuning

- Algorithmic characteristics
- Architectural implications
- Observations
Optimizations

- Single-core, manually coded & tuned
 - Low-level: SIMD vectorization (x86)
 - Numerical: rsqrt_{ps} + Newton-Raphson (x86)
 - Data: Structure reorg. (transpose or “SOA”)
 - Traffic: Matrix-free via interprocedural loop fusion
 - FFTW plan optimization
- OpenMP parallelization
- Algorithmic tuning of max particles per box, q
Single-core Optimizations

$N_s = N_t = 4M$, Double-Precision, Non-uniform (ellipsoidal)

Reference: kifmm3d [Ying, Langston, Zorin, Biros]
Single-core Optimizations

$N_s = N_t = 4M$, Double-Precision, Non-uniform (ellipsoidal)

Nehalem

SIMD → 85.5 (double), 170.6 (single) Gflop/s

Reciprocal square-root → 0.853 (double), 42.66 (single) Gflop/s

* x86 has fast approximate single-precision rsqrt, exploitable in double.
Single-core Optimizations

\[N_s = N_t = 4M, \text{ Double-Precision, Non-uniform (ellipsoidal)} \]

~ 4.5x

~ 2.2x

~ 1.4x

Less impact on Barcelona (why?) and Victoria Falls.
Algorithmic Tuning of $q = \text{Max pts / box}$

Nehalem

Tree shape and relative component costs vary as q varies.
Algorithmic Tuning of $q = \text{Max pts / box}$

Nehalem

Shape of curve changes as we introduce optimizations.
Algorithmic Tuning of $q = \text{Max pts / box}$
Nehalem

Shape of curve changes as we introduce optimizations.
Algorithmic Tuning of $q = \text{Max pts / box}$
Nehalem

Why? Consider phase costs for the “Optimized Parallel” implementation.
Algorithmic Tuning of $q = \text{Max pts} / \text{box}$

Nehalem

Recall: $\text{Cost}(U\text{-list}) \sim O(q^2)$ per box
Algorithmic Tuning of $q = \text{Max pts / box}$

Nehalem

A more shallow tree reduces cost of V-list phase.
Computational intensity of W, X more like U than V.
Optimal q will vary as the point distribution varies.
Multicore Scalability over Optimized Baseline
Ellipsoidal Distribution

~ 6.3x

New tree constructed for every force evaluation

~ 4.3x

asymptotic limit (force evaluation time only)

~ 24x

Need to improve tree construction. Little benefit from SMT.

Tuesday, April 20, 2010
Efficiency, via Parallel Cost – $p \cdot T_p$

Uniform Distribution

Flat horizontal line = perfect scaling
Efficiency, via Parallel Cost – $p \cdot T_p$

Uniform Distribution

Hypothesis: Contention.

Idea: Could overlap U & V lists

Flat horizontal line = perfect scaling
GPU comparison: NVIDIA T10P

- Our prior work on MPI+CUDA
 Lashuk, et al., SC’09
- System: NCSA Lincoln Cluster
 - Dual-socket Xeon
 - 1 node, 1 MPI task per socket & GPU
 (tasks mostly idle)
 - 1- and 2-GPU configs
 - Single-precision only for now
- 12x compute + 5x bandwidth
Nehalem outperforms 1-GPU case, a little slower than 2-GPU case.
Nehalem outperforms 1-GPU case, a little slower than 2-GPU case.
Nehalem outperforms 1-GPU case, a little slower than 2-GPU case.
Performance of Direct n-body Computation
Single Precision

GPU achieves ~50% of the theoretical peak for large n.
Performance of Direct n-body Computation
Single Precision

Competing implementations have comparable performance for small \(n \) (optimal for FMM).
Decomposition of GPU time
Single Precision

Setup time = time for transforming data to a GPU friendly form.

Transfer time = CPU to GPU transfer time.

Could reduce setup time. But can computation be optimized further?
Cross-Platform Energy-Efficiency Comparison
(Watt-Hours) / (Nehalem+OpenMP Watt-Hours)

Nehalem has same or better power efficiency than either GPU setup.
Summary and Status

- First extensive multicore platform study for FMM
 - Show 25x Nehalem, 9.4x Barcelona, 37.6x VF from algorithmic, data, and numerical tuning
 - Multicore CPU ~ GPU in power-performance

- Short-term:
 - Perform more detailed modeling → autotuning
 - Build integrated MPI+CPU+GPU implementation
 - Parallel tree construction

- Long-term: Generalize infrastructure and merge with on-going THOR effort for data analysis
Memory systems

Intel X5550 “Nehalem”

- Large (8 MB) L3 cache
- High (51.2 GB/s) bandwidth

AMD Opteron 2356 “Barcelona”

- Smaller (2 MB) L3 cache
- Lower (21.33 GB/s) bandwidth

Sun T5140 “Victoria Falls”

- 4 MB L2
- 64.0 GB/s bandwidth

FMM has a mix of memory behaviors, so memory system impact will vary.

Tuesday, April 20, 2010
FMM can use SIMD well, so expect good performance on x86.

<table>
<thead>
<tr>
<th>Processor</th>
<th>SIMD Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel X5550 “Nehalem”</td>
<td>(85.5) (double), (170.6) (single) Gflop/s</td>
</tr>
<tr>
<td>AMD Opteron 2356 “Barcelona”</td>
<td>(73.6) (double), (146.2) (single) Gflop/s</td>
</tr>
<tr>
<td>Sun T5140 “Victoria Falls”</td>
<td>No SIMD (\rightarrow 18.66) Gflop/s in single & double</td>
</tr>
</tbody>
</table>

Tuesday, April 20, 2010
Floating-point limitations

Intel X5550 “Nehalem”

Reciprocal square-root:
- 0.853 (double), 42.66 (single) Gflop/s

AMD Opteron 2356 “Barcelona”

- 0.897 (double), 73.6 (single) Gflop/s

Sun T5140 “Victoria Falls”

- 2.26 Gflop/s

However, x86 has fast approximate single-precision rsqrt, exploitable in double.
Nehalem-EX outperforms both 1-GPU and 2-GPU case.