
Chalmers University of Technology

Load Regulating Algorithm for Load Regulating Algorithm for 

Static-Priority Task Scheduling on Static-Priority Task Scheduling on 

Multiprocessors

Risat Mahmud Pathan and Jan Jonsson

Department of Computer Science and Engineering

Chalmers University of TechnologyChalmers University of Technology

Göteborg, Sweden



Chalmers University of Technology

OUTLINE OUTLINE 

•• IntroductionIntroduction•• IntroductionIntroduction

• Problem Statement

• Task Model• Task Model

• Scheduling

• Feasibility Condition• Feasibility Condition

• Multiprocessor scheduling

• IBPS Scheduling• IBPS Scheduling

• Conclusion



Chalmers University of Technology

IntroductionIntroduction

• Real-Time Systems have timing constraints

• Applications of real-time systems are often modeled 

as a collection of periodic tasksas a collection of periodic tasks

• Timing constraints (e.g. deadlines) are stringent in • Timing constraints (e.g. deadlines) are stringent in 

hard real-time systems

• Scheduling can ensure that all deadlines are met



Chalmers University of Technology

OUTLINE OUTLINE 

•• IntroductionIntroduction•• IntroductionIntroduction

•• Problem StatementProblem Statement

• Task Model• Task Model

• Scheduling

• Feasibility Condition• Feasibility Condition

• Multiprocessor scheduling

• IBPS Scheduling• IBPS Scheduling

• Conclusion



Chalmers University of Technology

Problem StatementProblem Statement

• Given • Given 

– a collection of tasks 

– a collection of available processors

• the multiprocessor scheduling problem is to 

determine determine 

– whether the tasks can be partitioned among the 

processors such that all deadlines are metprocessors such that all deadlines are met



Chalmers University of Technology

OUTLINE OUTLINE 

•• IntroductionIntroduction•• IntroductionIntroduction

•• Problem StatementProblem Statement

•• Task ModelTask Model•• Task ModelTask Model

• Scheduling

• Feasibility Condition• Feasibility Condition

• Multiprocessor scheduling

• IBPS Scheduling• IBPS Scheduling

• Conclusion



Chalmers University of Technology

Task ModelTask Model

• Application is modeled as a set of periodic tasks.

―A task set Γ = {τ , τ , . . . , τ } is to be executed on ―A task set Γ = {τ1, τ2, . . . , τn} is to be executed on 

m processors

• Each task τi has 

―A period Ti (inter-arrival time)i 

―A worst-case execution time Ci

• Each invocation requires C units of execution time • Each invocation requires Ci units of execution time 

before next period
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Task Model (cont.)Task Model (cont.)

• Rate-Monotonic (RM) pre-emptive scheduler is used 

in each processorin each processor

• Using RM scheduling, each task τi has a priority.• Using RM scheduling, each task τi has a priority.
―The shorter the period, the higher the priority.

• Utilization of a task τ is u = C /T• Utilization of a task τi is ui = Ci/Ti

• The total utilization of a set Γ of tasks is U(ΓΓΓΓ)= ∑ u• The total utilization of a set Γ of tasks is U(ΓΓΓΓ)= ∑ ui
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Example Task SetExample Task Set

ττττi Ci Ti

τ 5 10τ1 5 10

τ2 2 7

τ 6 15τ3 6 15

u = 5/10 = 0.5  u = 2/7 = 0.285       u = 6/14 = 0.428u1 = 5/10 = 0.5  u2 = 2/7 = 0.285       u3 = 6/14 = 0.428

Total utilization, U(Γ) = u1 + u2 + u3Total utilization, U(Γ) = u1 + u2 + u3

τ2 has the highest priority and τ3 has the lowest prirority.τ2 has the highest priority and τ3 has the lowest prirority.
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Rephrased Problem StatementRephrased Problem Statement

• How can we guarantee that a set of tasks Γ is RM 

schedulable on m processors?schedulable on m processors?

Interval-Based Partitioned Scheduling

The scheduling guarantee using IBPS is The scheduling guarantee using IBPS is 

given using a feasibility condition.



Chalmers University of Technology

OUTLINE OUTLINE 

•• IntroductionIntroduction•• IntroductionIntroduction

•• Problem StatementProblem Statement

•• Task ModelTask Model•• Task ModelTask Model

•• SchedulingScheduling

•• Feasibility ConditionFeasibility Condition•• Feasibility ConditionFeasibility Condition

• Multiprocessor scheduling

• IBPS Scheduling• IBPS Scheduling

• Conclusion



Chalmers University of Technology

Feasibility ConditionFeasibility Condition

Feasibility Condition of a scheduling algorithm is Feasibility Condition of a scheduling algorithm is 

used to determine (offline) whether all the tasks 

meet their deadlines during run-time. meet their deadlines during run-time. 

– Necessary and Sufficient, or

– Sufficient only

Necessary and sufficient feasibility test is Necessary and sufficient feasibility test is 

precise but has higher time complexity
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Sufficient Feasibility ConditionSufficient Feasibility Condition

Utilization based sufficient feasibility condition of Utilization based sufficient feasibility condition of 

algorithm A has the following form:   

A = Uniprocessor Rate-Monotonic(RM) Scheduling (Liu and Layland, 1973)

if U(ΓΓΓΓ) ≤≤≤≤ n(21/n - 1), then ΓΓΓΓ is RM-schedulable on uniprocessor.if U(ΓΓΓΓ) ≤≤≤≤ n(21/n - 1), then ΓΓΓΓ is RM-schedulable on uniprocessor.

A = Multiprocessor Rate-Monotonic(RM) First-Fit Scheduling (D. Oh 1998)

if U(ΓΓΓΓ) ≤≤≤≤ 0.41m, then ΓΓΓΓ is RM-schedulable on m processors.
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IBPS: Sufficient Feasibility ConditionIBPS: Sufficient Feasibility Condition

If U(Γ) ≤ 0.552m, then then Γ is IBPS-If U(Γ) ≤ 0.552m, then then Γ is IBPS-

schedulable on m processors.schedulable on m processors.
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Multiprocessor SchedulingMultiprocessor Scheduling

• Two main approaches 

―Global (no task assignment, global queue, migration)

―Partitioned (task assignment, local queue, no migration)―Partitioned (task assignment, local queue, no migration)

• Neither global nor partitioned scheduling can have 

achievable system utilization more than 50% for static-

priority taskspriority tasks (D. Oh et al. 1998, B. Andersson et al. 2001)
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Task-Splitting Partitioned MethodTask-Splitting Partitioned Method

• A variation of partitioned scheduling based on task-

splitting approach can achieve more than 50%

– When a task can not be assigned to a processor, it is split 

(i.e. migrated during runtime)(i.e. migrated during runtime)

– A bounded number of tasks are migrated
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Traditional Partitioned SchedulingTraditional Partitioned Scheduling

Task 2Task 2

Task 3

Processor A Processor B
Task 1

Task 3

Task 1

We assume Task 2, Task 1 and Task 3 be the ordering of the 

tasks to assign to the processors A and B. 
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Traditional Partitioned SchedulingTraditional Partitioned Scheduling

Task 3

Task 2

Processor A Processor B

Task 1
Task 3

Task 3 cannot be assigned to any processor 

because size of Task 3 is too largebecause size of Task 3 is too large
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Task-Splitting Partitioned SchedulingTask-Splitting Partitioned Scheduling

Task 3

Task 2

Processor A Processor B

Task 1
Task 3

Different subtasks of Task 3 can be assigned to different Different subtasks of Task 3 can be assigned to different 

processors. 

To construct the subtasks, we split Task 3.To construct the subtasks, we split Task 3.
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Task-Splitting Partitioned SchedulingTask-Splitting Partitioned Scheduling

SplitTask 

3a

Task 2

Processor A Processor B

Task 1

SplitTask 

3b

Different subtasks of Task 3 can be assigned to different Different subtasks of Task 3 can be assigned to different 

processors. 

To construct the subtasks, we split Task 3.To construct the subtasks, we split Task 3.
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Task-Splitting Partitioned SchedulingTask-Splitting Partitioned Scheduling

SplitTask 

3a

SplitTask 

3b

Task 2

Processor A Processor B

Task 1
3a
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IBPS: Basic IdeaIBPS: Basic Idea

• n tasks are grouped in seven utilization subintervals.

• n tasks are assigned to m processor in three • n tasks are assigned to m processor in three 

phases

– First two phases has load regulation– First two phases has load regulation

• Each processor executes tasks using RM scheduling
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IBPS: Basic IdeaIBPS: Basic Idea

• The total utilization in each processor in the first two 

phases is greater than 55.2% (load regulation)phases is greater than 55.2% (load regulation)

• All unassigned tasks are assigned in the third phase. • All unassigned tasks are assigned in the third phase. 

• A task that cannot be assigned to a processor is split.

― Split a task in exactly two parts, and― Split a task in exactly two parts, and

― Each processor only has at most one split task (i.e. m/2 split 

tasks)tasks)
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IBPS: Tasks Grouping in Subintervals

τ1, τ2, . . . τn

I7=(0, 0.136]                  I7
The utilization interval (0, 1.0] is 

I7=(0, 0.136]                  

I6=(0.136, 0.184]            

I5=(0.184, 0.221] 

I7

I6

I5

The utilization interval (0, 1.0] is 

divided into seven utilization 

subintervalsI5=(0.184, 0.221] 

I4=(0.221, 0.276]      

I3=(0.276, 0.368]            
Each task utilization is within one 

I5

I4

I

subintervals

I3=(0.276, 0.368]            

I2=(0.368, 0.552] 

I =(0.552, 1.0]

Each task utilization is within one 

of the seven utilization 

subintervals

I3

I2

I1=(0.552, 1.0]I1



Chalmers University of Technology

IBPS: Seven Utilization Subintervals

τ1, τ2, . . . τn

Each task is put in the corresponding bucket

I1 I2 I3 I4 I5 I6 I7

• Each subinterval has lower and upper bound

– For example, I =(0.368, 0.552]– For example, I2=(0.368, 0.552]

• If there are 3 tasks in I2, then the min and max utilization are 

× ×

2

(3 × 0.368) and (3 × 0.552), respectively. 
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IBPS: Task Assignment

I1 I2 I3 I4 I5 I6 I7

Phase-1 & Phase-2 Task Assignment Algorithms 

(LOAD REGULATION)

P P P

(LOAD REGULATION)

P1

L >55.2%

P2

L >55.2%

Pk
L >55.2%…

• First two phases assign tasks to k processors such that 

– each of the k processors has load greater than 55.2%– each of the k processors has load greater than 55.2%
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IBPS: Task Assignment

After Phase-1 and Phase-2, the unassigned tasks have special properties.

I1 I2 I3 I4 I5 I6 I7

Empty Number of tasks unassigned in I -I are known U ≤ 69%Empty Number of tasks unassigned in I2-I6 are known U7≤ 69%

• These unassigned tasks are called residue tasks• These unassigned tasks are called residue tasks

– Total (unassigned) utilization is Ures

• For residue tasks, the lower bound Ureslow on Ures is known

– We have Ureslow < Ures– We have Ureslow < Ures
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IBPS: Task Assignment-Third Phase

Given Ureslow < Ures, how many processors to assign the 

residue tasks?

IBPS: Task Assignment-Third Phase

residue tasks?

0.552 x < Ureslow ≤≤≤≤ 0.552 (x+1) for some x = 0, 1, 2 . . 

For example, if Ureslow = 0.01, then x = 0

or, if Ureslow = 0.65, then x = 1or, if Ureslow = 0.65, then x = 1

or, if Ureslow = 1.85, then x = 3

(x +1) processors are used in third pahse of task (x +1) processors are used in third pahse of task 

assignment to assign the residue tasks.
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I I I I I I II1 I2 I3 I4 I5 I6 I7

Phase-1 & Phase-2 Task Assignment Algorithms

P1 P2 Pk…

Phase-1 & Phase-2 Task Assignment Algorithms

I I I I I I

1

L >55.2%

2

L >55.2%

k

L >55.2%

…

Residue I2 I3 I4 I5 I6 I7

Phase-3 Task Assignment Algorithms

Residue 

Tasks

Phase-3 Task Assignment Algorithms

Pk+1 Pk+2 Pk+x+1…Pk+1 Pk+2 Pk+x+1…
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IBPS: Feasibility ConditionIBPS: Feasibility Condition
Theorem: If U(Γ) ≤ 0.552m, then then Γ is IBPS-

schedulable on m processors.schedulable on m processors.

Proof Sketch:Proof Sketch:

k processors are used in phase1 and phase 2

(x+1) processors are used in phase 3(x+1) processors are used in phase 3

We prove that, If U(ΓΓΓΓ) ≤ 0.552m, then (k+x+1) ≤ m.We prove that, If U(ΓΓΓΓ) ≤ 0.552m, then (k+x+1) ≤ m.
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Proof Sketch (cont.):

ULR + Ures = U(Γ) ≤≤≤≤ 0.552m

if k processors are used in first two phases, then if k processors are used in first two phases, then 

0.552 k < ULR  Because of Load Regulation

if at most (x+1) processors are used in third phase, then

0.552 x < Ureslow < Ures Because  x0.552 < Ureslow ≤ 

(x+1)0.552(x+1)0.552

Therefore, 0.552 k + 0.552 x < U + U ≤≤≤≤ 0.552mTherefore, 0.552 k + 0.552 x < ULR + Ures ≤≤≤≤ 0.552m

Or,  k + x < m

Or,  k + (x+1) ≤ m    (Proved)    Or,  k + (x+1) ≤ m    (Proved)    
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IBPS and Online SchedulingIBPS and Online Scheduling

If U(ΓΓΓΓ) ≤ 55.2m, then all tasks meet deadlines on mIf U(ΓΓΓΓ) ≤ 55.2m, then all tasks meet deadlines on m

processors.

IBPS is applicable for online scheduling

– If U(ΓΓΓΓexisting) + unew ≤  55.2m, then task ττττnew is accepted.

– Where to assign the task?
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Online Scheduling : O-IBPS

• Load regulation ⇒ third phase requires at most 4 

processors  (i.e. x+1 ≤ 4)processors  (i.e. x+1 ≤ 4)

• Load regulation enables efficient online scheduling• Load regulation enables efficient online scheduling
— When a task arrives, tasks are reassigned to at most min(m, 4)

processors 

—— When a task leaves, tasks are reassigned to at most min(m, 5)

processors

• Therefore, O-IBPS scales very well for large systems.  
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ConclusionConclusion

• IBPS has many advantages in comparison to other 

task-splitting algorithms 

―utilization bound of 55.2%

―load-regulation

― online scheduling― online scheduling

―scalable

― low overhead of task splitting

― Only m/2 split tasks.― Only m/2 split tasks.
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Thank YouThank You


