Load Regulating Algorithm for Static-Priority Task Scheduling on Multiprocessors

Risat Mahmud Pathan and Jan Jonsson
Department of Computer Science and Engineering
Chalmers University of Technology
Göteborg, Sweden
OUTLINE

- Introduction
- Problem Statement
- Task Model
- Scheduling
 - Feasibility Condition
 - Multiprocessor scheduling
- IBPS Scheduling
- Conclusion
Introduction

- **Real-Time Systems** have timing constraints

- Applications of real-time systems are often modeled as a collection of periodic tasks

- Timing constraints (e.g. deadlines) are stringent in *hard* real-time systems

- **Scheduling** can ensure that all deadlines are met
OUTLINE

• Introduction
• Problem Statement
• Task Model
• Scheduling
 • Feasibility Condition
 • Multiprocessor scheduling
• IBPS Scheduling
• Conclusion
Problem Statement

- **Given**
 - a collection of tasks
 - a collection of available processors

- **the multiprocessor scheduling problem is to determine**
 - whether the tasks can be partitioned among the processors such that all deadlines are met
OUTLINE

• Introduction
• Problem Statement
• **Task Model**
• Scheduling
 • Feasibility Condition
 • Multiprocessor scheduling
• IBPS Scheduling
• Conclusion
Task Model

• Application is modeled as a set of periodic tasks.
 — A task set $\Gamma = \{\tau_1, \tau_2, \ldots, \tau_n\}$ is to be executed on m processors

• Each task τ_i has
 — A period T_i (inter-arrival time)
 — A worst-case execution time C_i

• Each invocation requires C_i units of execution time before next period
Task Model (cont.)

- Rate-Monotonic (RM) pre-emptive scheduler is used in each processor

- Using RM scheduling, each task τ_i has a priority.
 — *The shorter the period, the higher the priority.*

- *Utilization* of a task τ_i is $u_i = C_i/T_i$

- The *total utilization* of a set Γ of tasks is $U(\Gamma) = \sum u_i$
Example Task Set

<table>
<thead>
<tr>
<th>τ_i</th>
<th>C_i</th>
<th>T_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_1</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>τ_2</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>τ_3</td>
<td>6</td>
<td>15</td>
</tr>
</tbody>
</table>

$u_1 = \frac{5}{10} = 0.5$ \quad $u_2 = \frac{2}{7} = 0.285$ \quad $u_3 = \frac{6}{14} = 0.428$

Total utilization, $U(\Gamma) = u_1 + u_2 + u_3$

τ_2 has the highest priority and τ_3 has the lowest priority.
Rephrased Problem Statement

• How can we guarantee that a set of tasks Γ is RM schedulable on m processors?

IBPS

Interval-Based Partitioned Scheduling

The scheduling guarantee using IBPS is given using a feasibility condition.
OUTLINE

• Introduction
• Problem Statement
• Task Model
• Scheduling
 • Feasibility Condition
 • Multiprocessor scheduling
• IBPS Scheduling
• Conclusion
Feasibility Condition

Feasibility Condition of a scheduling algorithm is used to determine (offline) whether all the tasks meet their deadlines during run-time.

- **Necessary and Sufficient, or**
- **Sufficient only**

Necessary and sufficient feasibility test is precise but has higher time complexity.
Sufficient Feasibility Condition

Utilization based sufficient feasibility condition of algorithm A has the following form:

$$A = \text{Uniprocessor Rate-Monotonic(RM) Scheduling (Liu and Layland, 1973)}$$

if $U(\Gamma) \leq n(2^{1/n} - 1)$, then Γ is RM-schedulable on uniprocessor.

$$A = \text{Multiprocessor Rate-Monotonic(RM) First-Fit Scheduling (D. Oh 1998)}$$

if $U(\Gamma) \leq 0.41m$, then Γ is RM-schedulable on m processors.
If $U(\Gamma) \leq 0.552m$, then Γ is IBPS-schedulable on m processors.
OUTLINE

- Introduction
- Problem Statement
- Task Model
- Scheduling
 - Feasibility Condition
 - Multiprocessor Scheduling
- IBPS Scheduling
- Conclusion
Multiprocessor Scheduling

• Two main approaches
 — **Global** (no task assignment, global queue, migration)
 — **Partitioned** (task assignment, local queue, no migration)

• Neither global nor partitioned scheduling can have achievable system utilization more than 50% for static-priority tasks
 (D. Oh et al. 1998, B. Andersson et al. 2001)
Task-Splitting Partitioned Method

• A variation of partitioned scheduling based on task-splitting approach can achieve more than 50%
 – When a task cannot be assigned to a processor, it is split (i.e. migrated during runtime)
 – A bounded number of tasks are migrated
Traditional Partitioned Scheduling

We assume Task 2, Task 1 and Task 3 be the ordering of the tasks to assign to the processors A and B.
Traditional Partitioned Scheduling

Partition Fails!
Task 3 cannot be assigned to any processor because size of Task 3 is too large
Task-Splitting Partitioned Scheduling

Different subtasks of Task 3 can be assigned to different processors.

To construct the subtasks, we split Task 3.
Task-Splitting Partitioned Scheduling

Different subtasks of Task 3 can be assigned to different processors.

To construct the subtasks, we split Task 3.
Task-Splitting Partitioned Scheduling

Partition Success!
OUTLINE

• Introduction
• Problem Statement
• Task Models
• Scheduling
 • Feasibility Condition
 • Multiprocessor Scheduling
• IBPS Scheduling
• Conclusion
IBPS: Basic Idea

• n tasks are grouped in seven utilization subintervals.

• n tasks are assigned to m processor in three phases
 – First two phases has load regulation

• Each processor executes tasks using RM scheduling
IBPS: Basic Idea

• The total utilization in each processor in the first two phases is greater than 55.2% (load regulation)

• All unassigned tasks are assigned in the third phase.

• A task that cannot be assigned to a processor is split.
 — Split a task in exactly two parts, and
 — Each processor only has at most one split task (i.e. \(m/2 \) split tasks)
IBPS: Tasks Grouping in Subintervals

The utilization interval $(0, 1.0]$ is divided into seven utilization subintervals:

- $I_7 = (0, 0.136]$
- $I_6 = (0.136, 0.184]$
- $I_5 = (0.184, 0.221]$
- $I_4 = (0.221, 0.276]$
- $I_3 = (0.276, 0.368]$
- $I_2 = (0.368, 0.552]$
- $I_1 = (0.552, 1.0]$

Each task utilization is within one of the seven utilization subintervals.
IBPS: Seven Utilization Subintervals

Each task is put in the corresponding bucket

- Each subinterval has lower and upper bound
 - For example, $I_2 = (0.368, 0.552)$

- If there are 3 tasks in I_2, then the min and max utilization are (3×0.368) and (3×0.552), respectively.
IBPS: Task Assignment

Phase-1 & Phase-2 Task Assignment Algorithms

(LOAD REGULATION)

- First two phases assign tasks to k processors such that
 - each of the k processors has load greater than 55.2%
IBPS: Task Assignment

After *Phase-1* and *Phase-2*, the unassigned tasks have special properties.

- These unassigned tasks are called *residue tasks*
 - Total (unassigned) utilization is U_{res}
- For residue tasks, the lower bound U_{reslow} on U_{res} is known
 - We have $U_{\text{reslow}} < U_{\text{res}}$

<table>
<thead>
<tr>
<th>I_1</th>
<th>I_2</th>
<th>I_3</th>
<th>I_4</th>
<th>I_5</th>
<th>I_6</th>
<th>I_7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empty</td>
<td>Number of tasks unassigned in I_2-I_6 are known</td>
<td>$U_7\leq 69%$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
IBPS: Task Assignment - Third Phase

Given $U_{reslow} < U_{res}$, how many processors to assign the residue tasks?

\[
0.552 \times x < U_{reslow} \leq 0.552 \times (x+1) \text{ for some } x = 0, 1, 2 \ldots
\]

For example, if $U_{reslow} = 0.01$, then $x = 0$

or, if $U_{reslow} = 0.65$, then $x = 1$

or, if $U_{reslow} = 1.85$, then $x = 3$

$(x + 1)$ processors are used in third phase of task assignment to assign the residue tasks.
Phase-1 & Phase-2 Task Assignment Algorithms

$P_1 \quad L > 55.2\%$

$P_2 \quad L > 55.2\%$

\ldots

$P_k \quad L > 55.2\%$

Residue Tasks

Phase-3 Task Assignment Algorithms

P_{k+1}

P_{k+2}

\ldots

P_{k+x+1}
IBPS: Feasibility Condition

Theorem: If $U(\Gamma) \leq 0.552m$, then Γ is IBPS-schedulable on m processors.

Proof Sketch:

k processors are used in phase 1 and phase 2
$(x+1)$ processors are used in phase 3

We prove that, If $U(\Gamma) \leq 0.552m$, then $(k+x+1) \leq m$.
Proof Sketch (cont.):

\[U_{LR} + U_{res} = U(\Gamma) \leq 0.552m \]

if \(k \) processors are used in first two phases, then
\[0.552 k < U_{LR} \quad \text{Because of Load Regulation} \]

if at most \((x+1) \) processors are used in third phase, then
\[0.552 x < U_{reslow} < U_{res} \quad \text{Because} \ x0.552 < U_{reslow} \leq (x+1)0.552 \]

Therefore, \(0.552 k + 0.552 x < U_{LR} + U_{res} \leq 0.552m \)

Or, \(k + x < m \)

Or, \(k + (x+1) \leq m \) \(\text{(Proved)} \)
IBPS and Online Scheduling

If $U(\Gamma) \leq 55.2m$, then all tasks meet deadlines on m processors.

IBPS is applicable for online scheduling

– If $U(\Gamma_{\text{existing}}) + u_{\text{new}} \leq 55.2m$, then task τ_{new} is accepted.

– Where to assign the task?
Online Scheduling : O-IBPS

• Load regulation ⇒ third phase requires at most 4 processors (i.e. $x+1 \leq 4$)

• Load regulation enables efficient online scheduling
 — When a task arrives, tasks are reassigned to at most $\min(m, 4)$ processors
 — When a task leaves, tasks are reassigned to at most $\min(m, 5)$ processors

• Therefore, O-IBPS scales very well for large systems.
OUTLINE

• Introduction
• Problem Statement
• Task Models
• Scheduling
 • Feasibility Condition
 • Multiprocessor Scheduling
• IBPS Scheduling
• Conclusion
Conclusion

• *IBPS has many advantages in comparison to other task-splitting algorithms*
 — utilization bound of 55.2%
 — load-regulation
 — online scheduling
 — scalable
 — low overhead of task splitting
 — Only $m/2$ split tasks.
Thank You