
Chalmers University of Technology

Load Regulating Algorithm for Load Regulating Algorithm for

Static-Priority Task Scheduling on Static-Priority Task Scheduling on

Multiprocessors

Risat Mahmud Pathan and Jan Jonsson

Department of Computer Science and Engineering

Chalmers University of TechnologyChalmers University of Technology

Göteborg, Sweden

Chalmers University of Technology

OUTLINE OUTLINE

•• IntroductionIntroduction•• IntroductionIntroduction

• Problem Statement

• Task Model• Task Model

• Scheduling

• Feasibility Condition• Feasibility Condition

• Multiprocessor scheduling

• IBPS Scheduling• IBPS Scheduling

• Conclusion

Chalmers University of Technology

IntroductionIntroduction

• Real-Time Systems have timing constraints

• Applications of real-time systems are often modeled

as a collection of periodic tasksas a collection of periodic tasks

• Timing constraints (e.g. deadlines) are stringent in • Timing constraints (e.g. deadlines) are stringent in

hard real-time systems

• Scheduling can ensure that all deadlines are met

Chalmers University of Technology

OUTLINE OUTLINE

•• IntroductionIntroduction•• IntroductionIntroduction

•• Problem StatementProblem Statement

• Task Model• Task Model

• Scheduling

• Feasibility Condition• Feasibility Condition

• Multiprocessor scheduling

• IBPS Scheduling• IBPS Scheduling

• Conclusion

Chalmers University of Technology

Problem StatementProblem Statement

• Given • Given

– a collection of tasks

– a collection of available processors

• the multiprocessor scheduling problem is to

determine determine

– whether the tasks can be partitioned among the

processors such that all deadlines are metprocessors such that all deadlines are met

Chalmers University of Technology

OUTLINE OUTLINE

•• IntroductionIntroduction•• IntroductionIntroduction

•• Problem StatementProblem Statement

•• Task ModelTask Model•• Task ModelTask Model

• Scheduling

• Feasibility Condition• Feasibility Condition

• Multiprocessor scheduling

• IBPS Scheduling• IBPS Scheduling

• Conclusion

Chalmers University of Technology

Task ModelTask Model

• Application is modeled as a set of periodic tasks.

―A task set Γ = {τ , τ , . . . , τ } is to be executed on ―A task set Γ = {τ1, τ2, . . . , τn} is to be executed on

m processors

• Each task τi has

―A period Ti (inter-arrival time)i

―A worst-case execution time Ci

• Each invocation requires C units of execution time • Each invocation requires Ci units of execution time

before next period

Chalmers University of Technology

Task Model (cont.)Task Model (cont.)

• Rate-Monotonic (RM) pre-emptive scheduler is used

in each processorin each processor

• Using RM scheduling, each task τi has a priority.• Using RM scheduling, each task τi has a priority.
―The shorter the period, the higher the priority.

• Utilization of a task τ is u = C /T• Utilization of a task τi is ui = Ci/Ti

• The total utilization of a set Γ of tasks is U(ΓΓΓΓ)= ∑ u• The total utilization of a set Γ of tasks is U(ΓΓΓΓ)= ∑ ui

Chalmers University of Technology

Example Task SetExample Task Set

ττττi Ci Ti

τ 5 10τ1 5 10

τ2 2 7

τ 6 15τ3 6 15

u = 5/10 = 0.5 u = 2/7 = 0.285 u = 6/14 = 0.428u1 = 5/10 = 0.5 u2 = 2/7 = 0.285 u3 = 6/14 = 0.428

Total utilization, U(Γ) = u1 + u2 + u3Total utilization, U(Γ) = u1 + u2 + u3

τ2 has the highest priority and τ3 has the lowest prirority.τ2 has the highest priority and τ3 has the lowest prirority.

Chalmers University of Technology

Rephrased Problem StatementRephrased Problem Statement

• How can we guarantee that a set of tasks Γ is RM

schedulable on m processors?schedulable on m processors?

Interval-Based Partitioned Scheduling

The scheduling guarantee using IBPS is The scheduling guarantee using IBPS is

given using a feasibility condition.

Chalmers University of Technology

OUTLINE OUTLINE

•• IntroductionIntroduction•• IntroductionIntroduction

•• Problem StatementProblem Statement

•• Task ModelTask Model•• Task ModelTask Model

•• SchedulingScheduling

•• Feasibility ConditionFeasibility Condition•• Feasibility ConditionFeasibility Condition

• Multiprocessor scheduling

• IBPS Scheduling• IBPS Scheduling

• Conclusion

Chalmers University of Technology

Feasibility ConditionFeasibility Condition

Feasibility Condition of a scheduling algorithm is Feasibility Condition of a scheduling algorithm is

used to determine (offline) whether all the tasks

meet their deadlines during run-time. meet their deadlines during run-time.

– Necessary and Sufficient, or

– Sufficient only

Necessary and sufficient feasibility test is Necessary and sufficient feasibility test is

precise but has higher time complexity

Chalmers University of Technology

Sufficient Feasibility ConditionSufficient Feasibility Condition

Utilization based sufficient feasibility condition of Utilization based sufficient feasibility condition of

algorithm A has the following form:

A = Uniprocessor Rate-Monotonic(RM) Scheduling (Liu and Layland, 1973)

if U(ΓΓΓΓ) ≤≤≤≤ n(21/n - 1), then ΓΓΓΓ is RM-schedulable on uniprocessor.if U(ΓΓΓΓ) ≤≤≤≤ n(21/n - 1), then ΓΓΓΓ is RM-schedulable on uniprocessor.

A = Multiprocessor Rate-Monotonic(RM) First-Fit Scheduling (D. Oh 1998)

if U(ΓΓΓΓ) ≤≤≤≤ 0.41m, then ΓΓΓΓ is RM-schedulable on m processors.

Chalmers University of Technology

IBPS: Sufficient Feasibility ConditionIBPS: Sufficient Feasibility Condition

If U(Γ) ≤ 0.552m, then then Γ is IBPS-If U(Γ) ≤ 0.552m, then then Γ is IBPS-

schedulable on m processors.schedulable on m processors.

Chalmers University of Technology

OUTLINE OUTLINE
•• IntroductionIntroduction

•• Problem StatementProblem Statement•• Problem StatementProblem Statement

•• Task ModelTask Model

•• SchedulingScheduling•• SchedulingScheduling

•• Feasibility ConditionFeasibility Condition

•• Multiprocessor SchedulingMultiprocessor Scheduling•• Multiprocessor SchedulingMultiprocessor Scheduling

• IBPS Scheduling

• Conclusion• Conclusion

Chalmers University of Technology

Multiprocessor SchedulingMultiprocessor Scheduling

• Two main approaches

―Global (no task assignment, global queue, migration)

―Partitioned (task assignment, local queue, no migration)―Partitioned (task assignment, local queue, no migration)

• Neither global nor partitioned scheduling can have

achievable system utilization more than 50% for static-

priority taskspriority tasks (D. Oh et al. 1998, B. Andersson et al. 2001)

Chalmers University of Technology

Task-Splitting Partitioned MethodTask-Splitting Partitioned Method

• A variation of partitioned scheduling based on task-

splitting approach can achieve more than 50%

– When a task can not be assigned to a processor, it is split

(i.e. migrated during runtime)(i.e. migrated during runtime)

– A bounded number of tasks are migrated

Chalmers University of Technology

Traditional Partitioned SchedulingTraditional Partitioned Scheduling

Task 2Task 2

Task 3

Processor A Processor B
Task 1

Task 3

Task 1

We assume Task 2, Task 1 and Task 3 be the ordering of the

tasks to assign to the processors A and B.

Chalmers University of Technology

Traditional Partitioned SchedulingTraditional Partitioned Scheduling

Task 3

Task 2

Processor A Processor B

Task 1
Task 3

Task 3 cannot be assigned to any processor

because size of Task 3 is too largebecause size of Task 3 is too large

Chalmers University of Technology

Task-Splitting Partitioned SchedulingTask-Splitting Partitioned Scheduling

Task 3

Task 2

Processor A Processor B

Task 1
Task 3

Different subtasks of Task 3 can be assigned to different Different subtasks of Task 3 can be assigned to different

processors.

To construct the subtasks, we split Task 3.To construct the subtasks, we split Task 3.

Chalmers University of Technology

Task-Splitting Partitioned SchedulingTask-Splitting Partitioned Scheduling

SplitTask

3a

Task 2

Processor A Processor B

Task 1

SplitTask

3b

Different subtasks of Task 3 can be assigned to different Different subtasks of Task 3 can be assigned to different

processors.

To construct the subtasks, we split Task 3.To construct the subtasks, we split Task 3.

Chalmers University of Technology

Task-Splitting Partitioned SchedulingTask-Splitting Partitioned Scheduling

SplitTask

3a

SplitTask

3b

Task 2

Processor A Processor B

Task 1
3a

Chalmers University of Technology

OUTLINE OUTLINE
•• IntroductionIntroduction

•• Problem StatementProblem Statement•• Problem StatementProblem Statement

•• Task ModelsTask Models

•• SchedulingScheduling•• SchedulingScheduling

•• Feasibility ConditionFeasibility Condition

•• Multiprocessor SchedulingMultiprocessor Scheduling•• Multiprocessor SchedulingMultiprocessor Scheduling

•• IBPS SchedulingIBPS Scheduling

• Conclusion• Conclusion

Chalmers University of Technology

IBPS: Basic IdeaIBPS: Basic Idea

• n tasks are grouped in seven utilization subintervals.

• n tasks are assigned to m processor in three • n tasks are assigned to m processor in three

phases

– First two phases has load regulation– First two phases has load regulation

• Each processor executes tasks using RM scheduling

Chalmers University of Technology

IBPS: Basic IdeaIBPS: Basic Idea

• The total utilization in each processor in the first two

phases is greater than 55.2% (load regulation)phases is greater than 55.2% (load regulation)

• All unassigned tasks are assigned in the third phase. • All unassigned tasks are assigned in the third phase.

• A task that cannot be assigned to a processor is split.

― Split a task in exactly two parts, and― Split a task in exactly two parts, and

― Each processor only has at most one split task (i.e. m/2 split

tasks)tasks)

Chalmers University of Technology

IBPS: Tasks Grouping in Subintervals

τ1, τ2, . . . τn

I7=(0, 0.136] I7
The utilization interval (0, 1.0] is

I7=(0, 0.136]

I6=(0.136, 0.184]

I5=(0.184, 0.221]

I7

I6

I5

The utilization interval (0, 1.0] is

divided into seven utilization

subintervalsI5=(0.184, 0.221]

I4=(0.221, 0.276]

I3=(0.276, 0.368]
Each task utilization is within one

I5

I4

I

subintervals

I3=(0.276, 0.368]

I2=(0.368, 0.552]

I =(0.552, 1.0]

Each task utilization is within one

of the seven utilization

subintervals

I3

I2

I1=(0.552, 1.0]I1

Chalmers University of Technology

IBPS: Seven Utilization Subintervals

τ1, τ2, . . . τn

Each task is put in the corresponding bucket

I1 I2 I3 I4 I5 I6 I7

• Each subinterval has lower and upper bound

– For example, I =(0.368, 0.552]– For example, I2=(0.368, 0.552]

• If there are 3 tasks in I2, then the min and max utilization are

× ×

2

(3 × 0.368) and (3 × 0.552), respectively.

Chalmers University of Technology

IBPS: Task Assignment

I1 I2 I3 I4 I5 I6 I7

Phase-1 & Phase-2 Task Assignment Algorithms

(LOAD REGULATION)

P P P

(LOAD REGULATION)

P1

L >55.2%

P2

L >55.2%

Pk
L >55.2%…

• First two phases assign tasks to k processors such that

– each of the k processors has load greater than 55.2%– each of the k processors has load greater than 55.2%

Chalmers University of Technology

IBPS: Task Assignment

After Phase-1 and Phase-2, the unassigned tasks have special properties.

I1 I2 I3 I4 I5 I6 I7

Empty Number of tasks unassigned in I -I are known U ≤ 69%Empty Number of tasks unassigned in I2-I6 are known U7≤ 69%

• These unassigned tasks are called residue tasks• These unassigned tasks are called residue tasks

– Total (unassigned) utilization is Ures

• For residue tasks, the lower bound Ureslow on Ures is known

– We have Ureslow < Ures– We have Ureslow < Ures

Chalmers University of Technology

IBPS: Task Assignment-Third Phase

Given Ureslow < Ures, how many processors to assign the

residue tasks?

IBPS: Task Assignment-Third Phase

residue tasks?

0.552 x < Ureslow ≤≤≤≤ 0.552 (x+1) for some x = 0, 1, 2 . .

For example, if Ureslow = 0.01, then x = 0

or, if Ureslow = 0.65, then x = 1or, if Ureslow = 0.65, then x = 1

or, if Ureslow = 1.85, then x = 3

(x +1) processors are used in third pahse of task (x +1) processors are used in third pahse of task

assignment to assign the residue tasks.

Chalmers University of Technology

I I I I I I II1 I2 I3 I4 I5 I6 I7

Phase-1 & Phase-2 Task Assignment Algorithms

P1 P2 Pk…

Phase-1 & Phase-2 Task Assignment Algorithms

I I I I I I

1

L >55.2%

2

L >55.2%

k

L >55.2%

…

Residue I2 I3 I4 I5 I6 I7

Phase-3 Task Assignment Algorithms

Residue

Tasks

Phase-3 Task Assignment Algorithms

Pk+1 Pk+2 Pk+x+1…Pk+1 Pk+2 Pk+x+1…

Chalmers University of Technology

IBPS: Feasibility ConditionIBPS: Feasibility Condition
Theorem: If U(Γ) ≤ 0.552m, then then Γ is IBPS-

schedulable on m processors.schedulable on m processors.

Proof Sketch:Proof Sketch:

k processors are used in phase1 and phase 2

(x+1) processors are used in phase 3(x+1) processors are used in phase 3

We prove that, If U(ΓΓΓΓ) ≤ 0.552m, then (k+x+1) ≤ m.We prove that, If U(ΓΓΓΓ) ≤ 0.552m, then (k+x+1) ≤ m.

Chalmers University of Technology

Proof Sketch (cont.):

ULR + Ures = U(Γ) ≤≤≤≤ 0.552m

if k processors are used in first two phases, then if k processors are used in first two phases, then

0.552 k < ULR Because of Load Regulation

if at most (x+1) processors are used in third phase, then

0.552 x < Ureslow < Ures Because x0.552 < Ureslow ≤

(x+1)0.552(x+1)0.552

Therefore, 0.552 k + 0.552 x < U + U ≤≤≤≤ 0.552mTherefore, 0.552 k + 0.552 x < ULR + Ures ≤≤≤≤ 0.552m

Or, k + x < m

Or, k + (x+1) ≤ m (Proved) Or, k + (x+1) ≤ m (Proved)

Chalmers University of Technology

IBPS and Online SchedulingIBPS and Online Scheduling

If U(ΓΓΓΓ) ≤ 55.2m, then all tasks meet deadlines on mIf U(ΓΓΓΓ) ≤ 55.2m, then all tasks meet deadlines on m

processors.

IBPS is applicable for online scheduling

– If U(ΓΓΓΓexisting) + unew ≤ 55.2m, then task ττττnew is accepted.

– Where to assign the task?

Chalmers University of Technology

Online Scheduling : O-IBPS

• Load regulation ⇒ third phase requires at most 4

processors (i.e. x+1 ≤ 4)processors (i.e. x+1 ≤ 4)

• Load regulation enables efficient online scheduling• Load regulation enables efficient online scheduling
— When a task arrives, tasks are reassigned to at most min(m, 4)

processors

—— When a task leaves, tasks are reassigned to at most min(m, 5)

processors

• Therefore, O-IBPS scales very well for large systems.

Chalmers University of Technology

OUTLINE OUTLINE
•• IntroductionIntroduction

•• Problem StatementProblem Statement•• Problem StatementProblem Statement

•• Task ModelsTask Models

•• SchedulingScheduling•• SchedulingScheduling

•• Feasibility ConditionFeasibility Condition

•• Multiprocessor SchedulingMultiprocessor Scheduling•• Multiprocessor SchedulingMultiprocessor Scheduling

•• IBPS SchedulingIBPS Scheduling

•• ConclusionConclusion•• ConclusionConclusion

Chalmers University of Technology

ConclusionConclusion

• IBPS has many advantages in comparison to other

task-splitting algorithms

―utilization bound of 55.2%

―load-regulation

― online scheduling― online scheduling

―scalable

― low overhead of task splitting

― Only m/2 split tasks.― Only m/2 split tasks.

Chalmers University of Technology

Thank YouThank You

