1 Slide 3: Introduction multi-way sorting algorithms

A general divide-and-conquer technique can be describ#laré@e steps: the input is recursively
splitinto & tiles while the tile size exceeds a fixed sikk individual tiles are sorted independently
and merged into the final sorted sequence. Most divide-andter algorithms are based either on
ak-way distribution or &-way merge procedure. In the former case, the input is spittiles that
are delimited byt ordered splitting elements. The sorted tiles form a sorggisnce, thus making
the merge step superfluous. As fokavay merge procedure, the input is evenly divided into
log, n/M tiles, that are sorted aridway merged in the last step. In contrast to two-way quidksor
or merge sort, multi-way approaches perfdrg, n/M scans through the data (in expectation for
k-way distribution).

This general pattern gives rise to several efficient margyatgorithms varying only in the way
they implement individual steps. For instance, in a mutgagcc sort routine [10], each core gets
an equal-sized part of the input (thkigss equal to the number of cores), sorts it using introsort [6]
and finally, cooperatively-way merges the intermediate results.



2 Slide 4: NVidia Tesla Architecture

Current NVidia GPUs feature up 8 streaming multiprocessors (SMs) each of which containing
8 scalar processors (SPs), i.e., up2th physical cores. However, they require a minimum of
around5 000—10 000 threads to fully utilize hardware and hide memory latencyidgle SM has
2048 32-bit registers, for a total dd4 KB of register space anth KB on-chip shared memory that
has very low latency and high bandwidth similar to L1 cache.



3 Slide 5: Computing Unified Device Architecture Model

The CUDA programming model provides the means for a develap@map a computing problem
to such a highly parallel processing architecture. A commbesign pattern is to decompose the
problem into many data-independent sub-problems that easolved by groups of cooperative
parallel threads, referred to in CUDA #wead blocks. Such a two-level parallel decomposition
maps naturally to the SIMT architecture: a block virtuadizn SM processor and concurrent
threads within the block are scheduled for execution on #&@& one SM.

A single CUDA computation is in fact similar to the SPMD (sliegprogram multiple-data)
software model: a scalar sequential prograrkerael, is executed by a set of concurrent threads,
that constitute a grid of blocks. Overall, a CUDA applicatie a sequential CPUWost, program
that launches kernels on a GPdigvice, and specifies the number of blocks and threads per block
for each kernel call.



4 Slide 6: Performance Guidelines

To achieve peak performance, an efficient algorithm sh@kd tertain SIMT attributes into care-
ful consideration:

Conditional branching: threads within a warp are executed in an SIMD fashion, f.¢hréeads
diverge on a conditional statement, both branches are g@ame after another. Therefore, an
SIMT processor realizes its full efficiency when all warpeiwis agree on the same execution path.
Divergence between different warps, however, introducgsarformance penalty;

Shared memory: SIMT multiprocessors have on-chip memory (currently up@&B) for low-
latency access to data shared by its cooperating threadsedmemory is orders of magnitude
faster than the global device memory. Therefore, desigamaggorithm that exploits fast memory
is often essential for higher performance;

Coalesced global memory operations: aligned load/store requests of individual threads of a
warp to the same memory block are coalesced into fewer meaomgsses than to separate ones.
Hence, an algorithm that uses such access patterns is @fpable of achieving higher memory
throughput.



5 Slide 7: Algorithm Overview

Sample sort is considered to be one of the most efficient cosgrabased algorithms for dis-
tributed memory architectures. Its sequential versionradably best described in pseudocode.
The oversampling factos trades off the overhead for sorting the splitters and theiraoy of
partitioning.

The splitters partition input elements intobuckets delimited by successive splitters. Each
bucket can then be sorted recursively and their concatanétrms the sorted output. [/ is
the size of the input wheBmal | Sort is applied, the algorithm require8(log, n/M) k-way
distribution phases in expectation until the whole inpugpht inton /M buckets. Using quicksort
as a small sorter leads to an expected execution tind& aflog n).



6 Slide 8 High Level GPU Algorithm Design

In order to efficiently map a computational problem to a GPthaecture we need to decompose
it into data-independent subproblems that can be processearallel by blocks of concurrent
threads. Therefore, we divide the input inte= [n/(t - ¢)] tiles oft - ¢ elements and assign one
block oft¢ threads to each tile, thus each thread processksnents sequentially. Even though one
thread per element would be a natural choice, such indepérdeal work allows a better balance
of the computational load and memory latency.

A high-level design of a sample-sort’s distribution phasgleen the bucket size exceeds a fixed
size M, can be described ihphases corresponding to individual GPU kernel launches,.

Phase 1. Choose splitters.

Phase 2. Each thread block computes the bucket indices for all elésnienits tile, counts the
number of elements in each bucket and stores this per-ltaekry histogram in global memory.

Phase 3. Perform a prefix sum over thex p histogram tables stored in a column-major order to
compute global bucket offsets in the output, for instaneeTthrust implementation [9].

Phase 4. Each thread block again computes the bucket indices foteathents in its tile, com-
putes their local offsets in the buckets and finally storeseints at their proper output positions
using the global offsets computed in the previous step.

At first glance it seems to be inefficient to do the same workhases2 and4. However,
we found out that storing the bucket indices in global men{asyin [7]) was not faster than just
recomputing them, i.e., the computation is memory bandwbdunded so that the added overhead
of n global memory accesses undoes the savings in computation.



7 Slide 9: Flavor of Implementation Details computing elemet
bucket indices

We take a random sampfe of a - £ input elements using a simple GPU LCG random number
generator that takes its seed from the CPU Mersenne Twistef hen we sort it, and place each
a-th element ofS in the array of splitterét such that they form a complete binary search tree with
bt[1] = si/2 as the root. The left child dfj] is placed at the positiozy and the right one atj + 1.

To find a bucket index for an element we adopt a technique tigihally was used to prevent
branch mispredictions impeding instruction-level paigim on commodity CPUs [7]. In our
case, it allows avoiding conditional branching of threadislevtraversing the search tree. Indeed,
a conditional increment in the loop is replaced by a preditanstruction. Therefore, threads
concurrently traversing the search tree do not diverga, @laiding serialization. Sindeis known
at compile time, the compiler can unroll the loop, which lfiertimproves the performance.



8 Slide 10: Experimental Evaluation

We report experimental results of our sample sort impleatent on sequences of float®-bit
and64-bit integers and key-value pairs where both keys and vatesR-bit integers. We compare
the performance of our algorithm to a number of existing GRiglementations including: state-
of-the-art Thrust and CUDPP radix sorts and Thrust mergg&Jpas well as quicksort [1], hybrid
sort [11] and bbsort [2]. Since most of the algorithms do roaept arbitrary key types, we omit
them for the inputs they were not implemented for. We haveim@duded approaches based on
graphics APls in our benchmark, bitonic sort in particulr gince they are not competitive to the
CUDA-based implementations listed above.

Our experimental platform is an Intel Q6600 GHz quad-core machine withGB of mem-
ory. We used an NVidia Tesla C1060 that Bagviultiprocessors, each containiBgcalar proces-
sors, for a total of up t@40 cores on chip. In comparison to commodity NVidia cards, tasld
C1060 has a larger memory ¢fGB, that allows a better scalability evaluation. We congbidi
implementations using CUDA 3 and gcct.3.2 on 64-bit Suse Linuxi 1.1 with optimization level
-03.

We do not include the time for transferring the data from I@BU memory to GPU memory,
since sorting is often used as a subroutine for large-scBlé Gmputations.

For the performance analysis we used a commonly accepted distributions motivated and
described in [4].

Uniform. A uniformly distributed random input in the range 232 — 1].

Gaussian. A gaussian distributed random input approximated by gp#ach value to an average
of 4 random values.

Bucket Sorted. Forp € N, the input of sizen is split into p blocks, such that the first/p?
elements in each of them are random numberf)ja3! /p — 1], the second:/p? elements in
231 /p, 232 /p — 1], and so forth.

Staggered. Forp € N, the input of sizen is split into p blocks such that if the block index is
i < p/2 allitsn/p elements are set to a random numbelf i — 1)23! /p, (24)(23! /p — 1)].

Deterministic Duplicates. Forp € N, the input of sizen is split into p blocks, such that the
elements of the firgt/2 blocks are set ttog n, the elements of the secopd4 processors are set
to log(n/2), and so forth.



9 Slide 11: Experimental Evaluation, Uniform 32-bit integes

Since the majority of GPU sorting implementations are abbott32-bit integers we report sample
sort’s behavior on all distributions listed above. We imgthybrid sort results on floats, since it
is the only key type accepted by this implementation, andtrgng rates of other algorithms on
floats are similar to the ones on integer inputs.

Low length key type allows both implementations of radixtdoroutperform all algorithms
similar to the32-bit integer key-value pairs case. While sample sort detates the fastest and
still robust performance over all other approaches, extmptadix sorts. In particular, it is on
average more thahtimes faster than quicksort and hybrid sort for uniformriigttion. Due to the
uniformity assumption, and hence, a reduced computatmystlinvolved, bbsort is competitive,
but still outperformed by our implementation. On the othandh side, the performance of bbsort
as well as hybrid sort on Bucket and Staggered distribusagsficantly degrades when compared
to the uniform case. Moreover, on the Deterministic Dupésanput, bbsort becomes completely
innefficient, while hybrid sort crashes.

Sample sort is robust with respect to all tested distrimgtiand performs almost equally well
on all of them. It demonstrates a sorting rate close to cansta., scales almost linearly with the
input size. A higher level of parallelism, and hence, a bgttssibility of hiding memory latency
on large inputs dominate the logarithmic factor in the nongticomplexity.



10 Slide 12: Experimental Evaluation, Uniform key-value pars

Since the best comparison-based sorting algorithm, Tinestje sort, is designed for key-value
pairs only, we can fairly compare it to our sample sort onlytlois input type. On uniformly
distributed keys, our sample sort implementation is attl2a% faster, and achieves on average
a 68% higher performance than Thrust merge sort. We do not deflictistributions on key-
value pairs, but rather mention the worst case behaviormhgpiementation on sorted sequences.
Sample sort is at least as fast as Thrust merge sort, anis 8tilo better on average.

Similarly to radix sort on commodity CPUs, CUDPP radix sertonsiderably faster than the
comparison-based sample and merge sold®hit integer keys. However, on low level entropy
inputs, such as Deterministic Duplicates, even for suchlémgth key types, radix sort is outper-
formed by sample sort.

10



11 Slide 13: Experimental Evaluation, Uniform 64-bit integers

With the growth of the key length, radix sort’s dependencéharbinary key representation makes
Thrust radix sort (the only implementation acceptéragbit keys) not competitive to sample sort.
On uniformly distributed keys, our sample sort is at |&88t and on average times faster than
Thrust radix. On a sorted sequence, which is the input whemgpiementation performs worst,
its sorting rate does not deviate significantly from the amif case.

32-bit integer keys. Since the majority of GPU sorting implementations are ablsadrt32-bit
integers we report sample sort’s behavior on all distrdmsilisted above. We include hybrid sort
results on floats, since it is the only key type accepted Isjithplementation, and the sorting rates
of other algorithms on floats are similar to the ones on integmuts.

11



12 Slide 14: Future Trends Fermi architecture

Computational power increases by a factor of 2, but the mginandwidth doesn’t seem to have
significantimprovements, therefore multi-way approadcredikely to outperform two-way on the

new architectures.

12



References

[1]

D. Cederman and P. Tsigas. A Practical Quicksort Aldwnitfor Graphics Processors. In
Proc. European Symposium on Algorithms (ESA), volume 5193 ofLNCS, pages 246—258,
2008.

[2] S. Chen, J. Qin, Y. Xie, J. Zhao, and P.-A. Heng. A Fast dedible Sorting Algorithm with

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

CUDA. In ICA3PP, volume 5574 oL NCS pages 281-290, 2009.

N. K. Govindaraju, J. Gray, R. Kumar, and D. Manocha. GRtaBort: High Performance
Graphics Co-processor Sorting for Large Database Managenhe Proc. ACM S GMOD
Int’l Conference on Management of Data, pages 325—-336, 2006.

D. R. Helman, D. A. Bader, and J. JaJa. A RandomizedIRa&orting Algorithm with an
Experimental StudyJ. of Parallel and Distributed Computing, 52(1):1-23, 1998.

M. Matsumoto and T. Nishimura. Mersenne Twister: A 62BraBnsionally Equidistributed
Uniform Pseudo-Random Number GenerafdZM Transactionson Modeling and Computer
Smulation, 8(1):3—-30, 1998.

D. R. Musser. Introspective Sorting and Selection Altjons. Software: Practice and Expe-
rience, 27(8):983-993, 1997.

P. Sanders and S. Winkel. Super Scalar Sample SortPrdn. European Symposium on
Algorithms (ESA), volume 3221 oL NCS, pages 784—796. Springer, 2004.

N. Satish, M. Harris, and M. Garland. Designing Effici&drting Algorithms for Manycore
GPUs. InProc. Int’| Symposium on Parallel and Distributed Processing (IPDPS), 2009.

S. Sengupta, M. Harris, Y. Zhang, and J. D. Owens. Scamifves for GPU Computing.
In Proc. ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware, pages 97—
106, 2007.

J. Singler, P. Sanders, and F. Putze. MCSTL: The MutecStandard Template Library.
In Proc. Int’l Conference on Parallel Processing (Euro-Par), volume 4641 olLNCS pages
682-694, 2007.

E. Sintorn and U. Assarsson. Fast Parallel GPU-sotlaong a Hybrid Algorithm. J. of
Parallel and Distributed Computing, 68(10):1381-1388, 2008.

13



