
1 Slide 3: Introduction multi-way sorting algorithms

A general divide-and-conquer technique can be described inthree steps: the input is recursively
split intok tiles while the tile size exceeds a fixed sizeM , individual tiles are sorted independently
and merged into the final sorted sequence. Most divide-and-conquer algorithms are based either on
ak-way distribution or ak-way merge procedure. In the former case, the input is split into tiles that
are delimited byk ordered splitting elements. The sorted tiles form a sorted sequence, thus making
the merge step superfluous. As for ak-way merge procedure, the input is evenly divided into
logk n/M tiles, that are sorted andk-way merged in the last step. In contrast to two-way quicksort
or merge sort, multi-way approaches performlogk n/M scans through the data (in expectation for
k-way distribution).

This general pattern gives rise to several efficient manycore algorithms varying only in the way
they implement individual steps. For instance, in a multicore gcc sort routine [10], each core gets
an equal-sized part of the input (thusk is equal to the number of cores), sorts it using introsort [6],
and finally, cooperativelyk-way merges the intermediate results.

1



2 Slide 4: NVidia Tesla Architecture

Current NVidia GPUs feature up to30 streaming multiprocessors (SMs) each of which containing
8 scalar processors (SPs), i.e., up to240 physical cores. However, they require a minimum of
around5 000–10 000 threads to fully utilize hardware and hide memory latency. Asingle SM has
2048 32-bit registers, for a total of64 KB of register space and16 KB on-chip shared memory that
has very low latency and high bandwidth similar to L1 cache.

2



3 Slide 5: Computing Unified Device Architecture Model

The CUDA programming model provides the means for a developer to map a computing problem
to such a highly parallel processing architecture. A commondesign pattern is to decompose the
problem into many data-independent sub-problems that can be solved by groups of cooperative
parallel threads, referred to in CUDA asthread blocks. Such a two-level parallel decomposition
maps naturally to the SIMT architecture: a block virtualizes an SM processor and concurrent
threads within the block are scheduled for execution on the SPs of one SM.

A single CUDA computation is in fact similar to the SPMD (single-program multiple-data)
software model: a scalar sequential program, akernel, is executed by a set of concurrent threads,
that constitute a grid of blocks. Overall, a CUDA application is a sequential CPU,host, program
that launches kernels on a GPU,device, and specifies the number of blocks and threads per block
for each kernel call.

3



4 Slide 6: Performance Guidelines

To achieve peak performance, an efficient algorithm should take certain SIMT attributes into care-
ful consideration:

Conditional branching: threads within a warp are executed in an SIMD fashion, i.e., if threads
diverge on a conditional statement, both branches are executed one after another. Therefore, an
SIMT processor realizes its full efficiency when all warp threads agree on the same execution path.
Divergence between different warps, however, introduces no performance penalty;

Shared memory: SIMT multiprocessors have on-chip memory (currently up to16 KB) for low-
latency access to data shared by its cooperating threads. Shared memory is orders of magnitude
faster than the global device memory. Therefore, designingan algorithm that exploits fast memory
is often essential for higher performance;

Coalesced global memory operations: aligned load/store requests of individual threads of a
warp to the same memory block are coalesced into fewer memoryaccesses than to separate ones.
Hence, an algorithm that uses such access patterns is often capable of achieving higher memory
throughput.

4



5 Slide 7: Algorithm Overview

Sample sort is considered to be one of the most efficient comparison-based algorithms for dis-
tributed memory architectures. Its sequential version is probably best described in pseudocode.
The oversampling factora trades off the overhead for sorting the splitters and the accuracy of
partitioning.

The splitters partition input elements intok buckets delimited by successive splitters. Each
bucket can then be sorted recursively and their concatenation forms the sorted output. IfM is
the size of the input whenSmallSort is applied, the algorithm requiresO(logk n/M) k-way
distribution phases in expectation until the whole input issplit inton/M buckets. Using quicksort
as a small sorter leads to an expected execution time ofO(n log n).

5



6 Slide 8 High Level GPU Algorithm Design

In order to efficiently map a computational problem to a GPU architecture we need to decompose
it into data-independent subproblems that can be processedin parallel by blocks of concurrent
threads. Therefore, we divide the input intop = ⌈n/(t · ℓ)⌉ tiles of t · ℓ elements and assign one
block of t threads to each tile, thus each thread processesℓ elements sequentially. Even though one
thread per element would be a natural choice, such independent serial work allows a better balance
of the computational load and memory latency.

A high-level design of a sample-sort’s distribution phase,when the bucket size exceeds a fixed
sizeM , can be described in4 phases corresponding to individual GPU kernel launches,.

Phase 1. Choose splitters.

Phase 2. Each thread block computes the bucket indices for all elements in its tile, counts the
number of elements in each bucket and stores this per-blockk-entry histogram in global memory.

Phase 3. Perform a prefix sum over thek× p histogram tables stored in a column-major order to
compute global bucket offsets in the output, for instance the Thrust implementation [9].

Phase 4. Each thread block again computes the bucket indices for all elements in its tile, com-
putes their local offsets in the buckets and finally stores elements at their proper output positions
using the global offsets computed in the previous step.

At first glance it seems to be inefficient to do the same work in phases2 and4. However,
we found out that storing the bucket indices in global memory(as in [7]) was not faster than just
recomputing them, i.e., the computation is memory bandwidth bounded so that the added overhead
of n global memory accesses undoes the savings in computation.

6



7 Slide 9: Flavor of Implementation Details computing element
bucket indices

We take a random sampleS of a · k input elements using a simple GPU LCG random number
generator that takes its seed from the CPU Mersenne Twister [5]. Then we sort it, and place each
a-th element ofS in the array of splittersbt such that they form a complete binary search tree with
bt[1] = sk/2 as the root. The left child ofb[j] is placed at the position2j and the right one at2j + 1.

To find a bucket index for an element we adopt a technique that originally was used to prevent
branch mispredictions impeding instruction-level parallelism on commodity CPUs [7]. In our
case, it allows avoiding conditional branching of threads while traversing the search tree. Indeed,
a conditional increment in the loop is replaced by a predicated instruction. Therefore, threads
concurrently traversing the search tree do not diverge, thus avoiding serialization. Sincek is known
at compile time, the compiler can unroll the loop, which further improves the performance.

7



8 Slide 10: Experimental Evaluation

We report experimental results of our sample sort implementation on sequences of floats,32-bit
and64-bit integers and key-value pairs where both keys and valuesare32-bit integers. We compare
the performance of our algorithm to a number of existing GPU implementations including: state-
of-the-art Thrust and CUDPP radix sorts and Thrust merge sort [8], as well as quicksort [1], hybrid
sort [11] and bbsort [2]. Since most of the algorithms do not accept arbitrary key types, we omit
them for the inputs they were not implemented for. We have notincluded approaches based on
graphics APIs in our benchmark, bitonic sort in particular [3], since they are not competitive to the
CUDA-based implementations listed above.

Our experimental platform is an Intel Q66002.4 GHz quad-core machine with8 GB of mem-
ory. We used an NVidia Tesla C1060 that has30 Multiprocessors, each containing8 scalar proces-
sors, for a total of up to240 cores on chip. In comparison to commodity NVidia cards, the Tesla
C1060 has a larger memory of4 GB, that allows a better scalability evaluation. We compiled all
implementations using CUDA2.3 and gcc4.3.2 on64-bit Suse Linux11.1 with optimization level
-O3.

We do not include the time for transferring the data from hostCPU memory to GPU memory,
since sorting is often used as a subroutine for large-scale GPU computations.

For the performance analysis we used a commonly accepted setof distributions motivated and
described in [4].

Uniform. A uniformly distributed random input in the range[0, 232 − 1].

Gaussian. A gaussian distributed random input approximated by setting each value to an average
of 4 random values.

Bucket Sorted. For p ∈ N, the input of sizen is split into p blocks, such that the firstn/p2

elements in each of them are random numbers in[0, 231/p − 1], the secondn/p2 elements in
[231/p, 232/p − 1], and so forth.

Staggered. For p ∈ N, the input of sizen is split intop blocks such that if the block index is
i ≤ p/2 all its n/p elements are set to a random number in[(2i − 1)231/p, (2i)(231/p − 1)].

Deterministic Duplicates. For p ∈ N, the input of sizen is split into p blocks, such that the
elements of the firstp/2 blocks are set tolog n, the elements of the secondp/4 processors are set
to log(n/2), and so forth.

8



9 Slide 11: Experimental Evaluation, Uniform 32-bit integers

Since the majority of GPU sorting implementations are able to sort32-bit integers we report sample
sort’s behavior on all distributions listed above. We include hybrid sort results on floats, since it
is the only key type accepted by this implementation, and thesorting rates of other algorithms on
floats are similar to the ones on integer inputs.

Low length key type allows both implementations of radix sort to outperform all algorithms
similar to the32-bit integer key-value pairs case. While sample sort demonstates the fastest and
still robust performance over all other approaches, exceptfor radix sorts. In particular, it is on
average more than2 times faster than quicksort and hybrid sort for uniform distribution. Due to the
uniformity assumption, and hence, a reduced computationalcost involved, bbsort is competitive,
but still outperformed by our implementation. On the other hand side, the performance of bbsort
as well as hybrid sort on Bucket and Staggered distributionssignificantly degrades when compared
to the uniform case. Moreover, on the Deterministic Duplicates input, bbsort becomes completely
innefficient, while hybrid sort crashes.

Sample sort is robust with respect to all tested distributions and performs almost equally well
on all of them. It demonstrates a sorting rate close to constant, i.e., scales almost linearly with the
input size. A higher level of parallelism, and hence, a better possibility of hiding memory latency
on large inputs dominate the logarithmic factor in the runtime complexity.

9



10 Slide 12: Experimental Evaluation, Uniform key-value pairs

Since the best comparison-based sorting algorithm, Thrustmerge sort, is designed for key-value
pairs only, we can fairly compare it to our sample sort only onthis input type. On uniformly
distributed keys, our sample sort implementation is at least 25% faster, and achieves on average
a 68% higher performance than Thrust merge sort. We do not depictall distributions on key-
value pairs, but rather mention the worst case behavior of our implementation on sorted sequences.
Sample sort is at least as fast as Thrust merge sort, and stillis 30% better on average.

Similarly to radix sort on commodity CPUs, CUDPP radix sort is considerably faster than the
comparison-based sample and merge sort on32-bit integer keys. However, on low level entropy
inputs, such as Deterministic Duplicates, even for such lowlength key types, radix sort is outper-
formed by sample sort.

10



11 Slide 13: Experimental Evaluation, Uniform 64-bit integers

With the growth of the key length, radix sort’s dependence onthe binary key representation makes
Thrust radix sort (the only implementation accepting64-bit keys) not competitive to sample sort.
On uniformly distributed keys, our sample sort is at least63% and on average2 times faster than
Thrust radix. On a sorted sequence, which is the input when our implementation performs worst,
its sorting rate does not deviate significantly from the uniform case.

32-bit integer keys. Since the majority of GPU sorting implementations are able to sort32-bit
integers we report sample sort’s behavior on all distributions listed above. We include hybrid sort
results on floats, since it is the only key type accepted by this implementation, and the sorting rates
of other algorithms on floats are similar to the ones on integer inputs.

11



12 Slide 14: Future Trends Fermi architecture

Computational power increases by a factor of 2, but the memory bandwidth doesn’t seem to have
significant improvements, therefore multi-way approachesare likely to outperform two-way on the
new architectures.

12



References

[1] D. Cederman and P. Tsigas. A Practical Quicksort Algorithm for Graphics Processors. In
Proc. European Symposium on Algorithms (ESA), volume 5193 ofLNCS, pages 246–258,
2008.

[2] S. Chen, J. Qin, Y. Xie, J. Zhao, and P.-A. Heng. A Fast and Flexible Sorting Algorithm with
CUDA. In ICA3PP, volume 5574 ofLNCS, pages 281–290, 2009.

[3] N. K. Govindaraju, J. Gray, R. Kumar, and D. Manocha. GPUTeraSort: High Performance
Graphics Co-processor Sorting for Large Database Management. In Proc. ACM SIGMOD
Int’l Conference on Management of Data, pages 325–336, 2006.

[4] D. R. Helman, D. A. Bader, and J. JáJá. A Randomized Parallel Sorting Algorithm with an
Experimental Study.J. of Parallel and Distributed Computing, 52(1):1–23, 1998.

[5] M. Matsumoto and T. Nishimura. Mersenne Twister: A 623-Dimensionally Equidistributed
Uniform Pseudo-Random Number Generator.ACM Transactions on Modeling and Computer
Simulation, 8(1):3–30, 1998.

[6] D. R. Musser. Introspective Sorting and Selection Algorithms.Software: Practice and Expe-
rience, 27(8):983–993, 1997.

[7] P. Sanders and S. Winkel. Super Scalar Sample Sort. InProc. European Symposium on
Algorithms (ESA), volume 3221 ofLNCS, pages 784–796. Springer, 2004.

[8] N. Satish, M. Harris, and M. Garland. Designing EfficientSorting Algorithms for Manycore
GPUs. InProc. Int’l Symposium on Parallel and Distributed Processing (IPDPS), 2009.

[9] S. Sengupta, M. Harris, Y. Zhang, and J. D. Owens. Scan Primitives for GPU Computing.
In Proc. ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware, pages 97–
106, 2007.

[10] J. Singler, P. Sanders, and F. Putze. MCSTL: The Multi-core Standard Template Library.
In Proc. Int’l Conference on Parallel Processing (Euro-Par), volume 4641 ofLNCS, pages
682–694, 2007.

[11] E. Sintorn and U. Assarsson. Fast Parallel GPU-sortingUsing a Hybrid Algorithm. J. of
Parallel and Distributed Computing, 68(10):1381–1388, 2008.

13


