3

o 8 .4 8 &

INSTITUTE OMPUTING TECHNOLOGY CAS

High Performance Comparison-Based Sorting Algorithm
on Many-Core GPUs

Xiaochun Ye, Dongrui Fan Wel L|n Nan Yuan, and Paolo lenne

Key Laboratory of Computer System and Architecture
: ICT CAS China

Outline

e GPU computation model

e Our sorting algorithm
o A new bitonic-based merge sort, named Warpsort

e Experiment results
e conclusion

@muzmumm

COMPUTING TEEMNOLOGY CHNESE. MOALEMY (F

GPU computation model

e Massively multi-threaded, data-parallel many-core
architecture

e Important features:
o SIMT execution model
m Avoid branch divergence
o Warp-based scheduling
m implicit hardware synchronization among threads within a warp

o Access pattern
m Coalesced vs. non-coalesced

@m&?mum%

PNSTIUTE OF COMPUTING TEEMNOLOGY , CHINESE. NCALEMY OF SCIENCES

Why merge sort ?

e Similar case with external sorting

o Limited shared memory on chip vs. limited main
memory

e Sequential memory access
o Easy to meet coalesced requirement

@Mﬂimﬁmm

OMPUTING TEEMN CHINESE oADMY (

Why bitonic-based merge sort ?

e Massively fine-grained parallelism

o Because of the relatively high complexity, bitonic
network is not good at sorting large arrays

o Only used to sort small subsequences in our
Implementation

e Again, coalesced memory access requirement

@m%mumm

OMPUTING TEEMNX CHINESE oADMY (

Problems in bitonic network

e naive implementation Phase [0|

o Block-based bitonic
network

o One element per thread

e Some problems
in each stage
° ; thread

m n elements produce only
n /2 compare-and-swap
operations | P

m Form both ascending

pairs and descending

|
I

|

|
ol
|

|
-

—_— =t —

>

ad
s s s e aslen?

<

L B s | e— .
<

o Between stages

m synchronization . S .
Too many%’ran@h Ivergences and synchronization operations

PNSTIUTE OF COMPUTING TEEMNOLOGY , CHINESE. NCALEMY OF SCIENCES

@m&?mum%

What we use ?

e \Warp-based bitonic network

o each bitonic network is assigned to an independent warp,
instead of a block

m Barrier-free, avoid synchronization between stages

o threads in a warp perform 32 distinct compare-and-swap
operations with the same order

m Avoid branch divergences
m At least 128 elements per warp

e And further a complete comparison-based sorting
algorithm: GPU-Warpsort

@m&&mumm

OMPUTING TEEMNX CHINESE NCALEMY (OF SCENCE:

Ove rVieW Of G P U -Wa rp Divide input seq into small tiles,

Input

Step 1-

Step 2 -

Step 3 -

Step 4-

Qutput

I I I

bitonic sort by a warp

v
I I

merge by a warp merge by a warp

merge by a warp

split into independent subsequences

Y 4a A

merege by a warp merge by a warp merge by a warp

))

and each followed by a warp-
based bitonic sort

bitonic sort by a warp

Y

I I I

e Merge, until the parallelism is
| insufficient.

Split into small subsequences

Merge, and form the output

——

@mﬂmﬁmm

INSTIMTE OF COMPUTING TEEMNOUOGY , CHINESE MCALEMY (OF SCENCES

Step1: barrier-free bitonic sort

e divide the input array
Into equal-sized tiles

e Each tile is sorted by a
warp-based bitonic
network

o 128+ elements per tile to
avoid branch divergence

o No need for
___Ssyncthreads()

o Ascending pairs +
descending pairs

o Use max () and min () to
replace if-swap pairs

bitonicwarp 128 (key_t *keyin key.t *keyou}{
fhasedto logl23-1
fofi =2;i <128i*=2){
fdy=i/2j>0;)/ =N
Oks= position of preceding element in each pair
to form ascending order
(Keyirk0] >keyirfk0+H])
swlapy i kO] keyif kOH]);
lke position of preceding element in each pair
to form descending order
(Heyirkl] dkeyirfk1+H])
swlapyirkl] keyifk1+]);
}
}

fShecial case for the last phase
fofj =1282;)50;j/ 2)(
B« position of preceding eetm the thresd
first pair to form ascending order
(ReyifkO] >keyirfkO+])
swigyir{kO]keyir{kO+]);
k« position of preceding elermethe thresd
second pair to form ascending order
(Reyifkl]>keyirfkl+])
swigyirfk1]lkeyirfk1+]);

PNSTIUTE OF COMPUTING TEEMNOLOGY , CHINESE. NCALEMY OF SCIENCES

@m&?mum%

Step 2: bitonic-based merge sort

e t-element merge sort sawercal o[2] 4] 6] s 0] 2] 20

o Allocate a t-element buffer e tlelslr]olufale
in shared memory » ! :

o Load the t/2 smallest cnred mamory | .,,[,,[,]ml 3mw5 kl =
elements from seq A and B, | rapmand
respectively w0 2] 2] 3] a]s]e]7

o Merge Outpun No\then load the ng

- ARSI elements from B

Yes, then load the next

o Output the lower t/2
elements buf | 14| 12[1o| sT 4 [5] 6 [ﬂ
O Load the neXt t/2 Sma”eSt barriefree bor;ic merge nelwo]rk
elements from A or B]
bur’15|13|11|9 a[s|e6] 7]

e { =8 in this example =

barriefree honic merge nelw?ork

PNSTIUTE OF COMPUTING TEEMNOLOGY , CHINESE. NCALEMY OF SCIENCES

@mu%mum'za

Step 3: split into small tiles

e Problem of merge sort
o the number of pairs decreases geometrically
o Can not fit this massively parallel platform

e Method

o Divide the large seqs into independent small tiles
which satisfy:

tH3leDsequencexibsubsequenceyjab
ROHps f < <

@m&&mumm

OMPUTING TEEMNX CHINESE oADMY (

Step 3: split into small tiles (cont.)

e How to get the splitters?
o Sample the input sequence randomly

Input sequence

-_'_____-:'-"r.._ﬁ; "-;./_"__-__ x-::—-______,_
Sample sequence ﬂ ﬁ

Sorted sample sequence

Splitters

@muzmumm

INSTUIMUTE OF COMPUTING TEEMNOLOGY , CHINESE. MCALEMY OF SCIENCES

Step 4: final merge sort

e Subsequences (0,/), (1,/),..., (/-1,i) are merged into S,

° Then,SO, 87,..., S, are assembled into a totally sorted
array

00 | o1 | 02 | 03 052 | 0sd

0] 11| 1,2 | 13 1s2 | 15
/

14,0 | 14,1 [14.2] 1-13 11,52 [1,54

@muzmumm

COMPUTING TEEMNOLOGY , CHINESE. MOALEMY (F

Experimental setup

e Host
o AMD Opteron880 @ 2.4 GHz, 2GB RAM

o GPU
o 9800GTX+, 512 MB

e Input sequence
o Key-only and key-value configurations
m 32-bit keys and values
o Sequence size: from 1M to 16M elements

o Distributions
m Zero, Sorted, Uniform, Bucket, and Gaussian

@mu%mum'za

PNSTIUTE OF COMPUTING TEEMNOLOGY , CHINESE. NCALEMY OF SCIENCES

Performance comparison

e Mergesort

o Fastest comparison-based ;
sorting algorithm on GPU i
(Satish, IPDPS’09)

o Implementations already
compared by Satish are not

included .
e Quicksort Cep T - ==

o Cederman, ESA'08 L s
e Radixsort 222: e

o Fastest sorting algorithm on wf e mergesor

GPU (Satish, IPDPS’09) T w e
e Warpsort

o Our implementation

PNSTIUTE OF COMPUTING TEEMNOLOGY , CHINESE. NCALEMY OF SCIENCES

@mu%mum'za

Performance results

e Key-only
o 70% higher performance than quicksort
e Key-value

o 20%+ higher performance than mergesort
o 30%+ for large sequences (>4M)

@mazmumm

OMPUTING TEEMN CHINESE oADMY (BNCE

Results under different distributions

e Uniform, Bucket, and
Gaussian distribution

aImOSt get the Same dif—Rale__zeto —a—Raze__unirom—Ra:e__gaussm-Rale__buckem—kale__s%xe.
performance //\\ E
e Zero distribution is the :..J i -
fastest “
e Not excel on Sorted w
distribution e e o e

o Load imbalance

@m&?mum%

PNSTIUTE OF COMPUTING TEEMNOLOGY , CHINESE. NCALEMY OF SCIENCES

Conclusion

e We present an efficient comparison-based sorting algorithm for
many-core GPUs
o carefully map the tasks to GPU architecture
m Use warp-based bitonic network to eliminate barriers
o provide sufficient homogeneous parallel operations for each thread
m avoid thread idling or thread divergence

o totally coalesced global memory accesses when fetching and
storing the sequence elements

e The results demonstrate up to 30% higher performance
o Compared with previous optimized comparison-based algorithms

@mﬂmum‘x‘:a

PNSTIUTE OF COMPUTING TEEMNOLOGY , CHINESE. NCALEMY OF SCIENCES

Thanks

@Mﬂifwiitui&

ISTIMUTE OF COMPUTING TEEMNOLOGY CHINESE. MCALEMY OF SCIENCES

