
High Performance Comparison-Based Sorting Algorithm
on Many-Core GPUs

Xiaochun Ye, Dongrui Fan, Wei Lin, Nan Yuan, and Paolo Ienne

Key Laboratory of Computer System and Architecture
ICT, CAS, China

Outline
GPU computation model
Our sorting algorithm

A new bitonic-based merge sort, named Warpsort
Experiment results
conclusion

GPU computation model
Massively multi-threaded, data-parallel many-core
architecture
Important features:

SIMT execution model
Avoid branch divergence

Warp-based scheduling
implicit hardware synchronization among threads within a warp

Access pattern
Coalesced vs. non-coalesced

Why merge sort ?
Similar case with external sorting

Limited shared memory on chip vs. limited main
memory

Sequential memory access
Easy to meet coalesced requirement

Why bitonic-based merge sort ?
Massively fine-grained parallelism

Because of the relatively high complexity, bitonic
network is not good at sorting large arrays
Only used to sort small subsequences in our
implementation

Again, coalesced memory access requirement

Problems in bitonic network
naïve implementation

Block-based bitonic
network
One element per thread

Some problems
in each stage

n elements produce only
n /2 compare-and-swap
operations
Form both ascending
pairs and descending
pairs

Between stages
synchronization

block

thread

Too many branch divergences and synchronization operations

What we use ?
Warp-based bitonic network

each bitonic network is assigned to an independent warp,
instead of a block

Barrier-free, avoid synchronization between stages
threads in a warp perform 32 distinct compare-and-swap
operations with the same order

Avoid branch divergences
At least 128 elements per warp

And further a complete comparison-based sorting
algorithm: GPU-Warpsort

Overview of GPU-WarpsortDivide input seq into small tiles,
and each followed by a warp-

based bitonic sort

Merge, until the parallelism is
insufficient.

Split into small subsequences

Merge, and form the output

Step1: barrier-free bitonic sort
divide the input array
into equal-sized tiles
Each tile is sorted by a
warp-based bitonic
network

128+ elements per tile to
avoid branch divergence
No need for
__syncthreads()
Ascending pairs +
descending pairs
Use max () and min () to
replace if-swap pairs

Step 2: bitonic-based merge sort
t -element merge sort

Allocate a t -element buffer
in shared memory
Load the t /2 smallest
elements from seq A and B ,
respectively
Merge
Output the lower t /2
elements
Load the next t /2 smallest
elements from A or B

t = 8 in this example

Step 3: split into small tiles
Problem of merge sort

the number of pairs decreases geometrically
Can not fit this massively parallel platform

Method
Divide the large seqs into independent small tiles
which satisfy:

Step 3: split into small tiles (cont.)
How to get the splitters?

Sample the input sequence randomly

Step 4: final merge sort
Subsequences (0,i), (1,i),…, (l -1,i) are merged into Si
Then,S0, S1,…, Sl are assembled into a totally sorted
array

Experimental setup
Host

AMD Opteron880 @ 2.4 GHz, 2GB RAM
GPU

9800GTX+, 512 MB
Input sequence

Key-only and key-value configurations
32-bit keys and values

Sequence size: from 1M to 16M elements
Distributions

Zero, Sorted, Uniform, Bucket, and Gaussian

Performance comparison
Mergesort

Fastest comparison-based
sorting algorithm on GPU
(Satish, IPDPS’09)
Implementations already
compared by Satish are not
included

Quicksort
Cederman, ESA’08

Radixsort
Fastest sorting algorithm on
GPU (Satish, IPDPS’09)

Warpsort
Our implementation

Performance results
Key-only

70% higher performance than quicksort
Key-value

20%+ higher performance than mergesort
30%+ for large sequences (>4M)

Results under different distributions
Uniform, Bucket, and
Gaussian distribution
almost get the same
performance
Zero distribution is the
fastest
Not excel on Sorted
distribution

Load imbalance

Conclusion
We present an efficient comparison-based sorting algorithm for
many-core GPUs

carefully map the tasks to GPU architecture
Use warp-based bitonic network to eliminate barriers

provide sufficient homogeneous parallel operations for each thread
avoid thread idling or thread divergence

totally coalesced global memory accesses when fetching and
storing the sequence elements

The results demonstrate up to 30% higher performance
Compared with previous optimized comparison-based algorithms

Thanks

