Performance Impact of Resource Contention in Multicore Systems

R. Hood, H. Jin, P. Mehrotra, J. Chang, J. Djomehri, S. Gavali, D. Jespersen, K. Taylor, R. Biswas

Commodity Multicore Chips in NASA HEC

- 2004: Columbia
 - Itanium2 based; dual-core in 2007
 - Shared-memory across 512+ cores
 - 2GB / core

- 2008: Pleiades
 - Harpertown-based (UMA architecture)
 - Shared memory limited to 8 cores
 - Mostly 1GB / core; some runs at 4ppn
- 2009: Pleiades Enhancement
 - Nehalem-based (NUMA architecture)
 - 8 cores / node
 - Improved memory bandwidth
 - 3GB / core

2

Background: Explaining Superlinear Scaling

Strong scaling of OVERFLOW on a Xeon (Harpertown) cluster

Number of MPI Ranks	8ppn	4ppn
16	16.24 -	→ 7.29
32	♦ 6.96	3.40
64	3.09	1.75
128	1.49	0.91
256	0.74	0.47

superlinear

- Our traditional explanation:
 - With twice as many ranks, each rank has ~half as much data
 - Easier to fit that smaller working set into cache
- Still superlinear when run "spread out" to use only half the cores
 - Work/rank constant, but resources doubled
 - Is cache still the explanation?
- In general, what sort of resource contention is there?

Sharing in Multicore Node Architectures

Isolating Resource Contention

- Both use 4 cores per node
- Communication patterns the same
- They place equal loads on:
 - FSB
 - Memory Controller
- Difference is in sharing of L2
- Compare timings of runs using these two configurations
 - Can calculate how much more time it takes when L2 shared
 - e.g. "there is a 17% penalty for sharing L2"
- Other configuration pairings can isolate FSB, memory controller

Compare configurations c_1 and c_2 of MPI ranks assigned to cores on a Harpertown node

Differential Performance Analysis

- Compare timings of runs of:
 - $-c_1$ a base configuration, and
 - $-c_2$ a configuration with increased sharing of some resource
- Compute the contention penalty, P, as follows:

 $P(c_1 \rightarrow c_2) = \frac{T(c_2) - T(c_1)}{T(c_1)}, \text{ where } T(c) \text{ is time for configuration } c$

- Guidelines:
 - Isolate effect of sharing a specific resource by comparing two configurations that differ only in level of sharing of that resource
 - Minimize other potential sources of performance differences
 - Run exactly the same code on each configuration tested
 - Use a fixed number of MPI ranks in each run

Configurations for UMA-Based Nodes

S

С

- Interested in varying: •
 - Number of sockets / node used
 - Number of caches / socket used ____
 - Number of active MPI ranks / cache R
- Label each configuration with a triple: (S, C, R)
- For our UMA-based nodes: S,C,R = {1, 2}

SCR 111 \square 211 $\Box\Box\Box$ 121 пп 112 221 212 122 222

Node Configurations

For NUMA-based nodes: $S = \{1,2\}, C = \{1\}, R = \{1,2,3,4\}$

However, we use the UMA labeling for convenience

Contention Groups

Configuration pairs to compare to isolate resource contention:

National Aeronautics and Space Administration

8

Experimental Approach

Run a collection of benchmarks and applications

- HPC Challenge Benchmarks (DGEMM, Stream, PTRANS)
 OVERFLOW overset grid CFD
 MITgcm atmosphere-ocean-climate code
 Cart3D CFD with unstructured set of Cartesian meshes
 NCC unstructured-grid CFD
- Using InfiniBand-connected platforms that are based on multicore chips
 - UMA: Intel Clovertown-based SGI Altix cluster (hypercube)
 Intel Harpertown-based SGI Altix cluster (hypercube)
 - NUMA: AMD Barcelona-based cluster (fat tree switch)
 Intel Nehalem-based SGI Altix cluster (hypercube)
- Each application uses a fixed MPI rank count of 16 or larger
- Use placement tools to control process-core binding
- Take medians from multiple runs
 - Methodology results with ±1–2% contribution to penalty

Max Penalty for Sharing Resource	ST_Triad	PTRANS	MITgcm	Cart3D
Clovertown				
○ L2 cache	1 – 3%	0 – 1%	13 – 16%	-1%
○ Front-side bus	44 – 56%	1 – 26%	14 – 41%	3 – 9%
 Memory controller 	22 – 24%	7 – 21%	10 – 27%	1 – 12%
Harpertown				
○ L2 cache	5%	-1%	24%	2-4%
○ Front-side bus	81 – 88%	28 – 44%	50 - 71%	22 – 41%
 Memory controller 	-2 - 3%	-4 – 9%	5-6%	0 – 5%
Barcelona				
 L3 + memory controller 	22 - 69%	6-21%	27 – 79%	7 – 14%
○ HT3	2 – 7%	2 – 18%	0 – 1%	-2 - 1%
Nehalem				
 L3 + memory controller 	50 - 95%	6-9%	24 - 67%	4 – 17%
o QPI	-1 - 3%	-9 - 35%	2-6%	1 – 6%

National Aeronautics and Space Administration

IPDPS 2010

Max Penalty for Sharing Resource	ST_Triad	PTRANS	MITgcm	Cart3D	
Clovertown					
o L2 cache	1 – 3%	0 – 1%	13 – 16%	-1%	
○ Front-side bus	44 – 56%	1 – 26%	14 – 41%	3 – 9%	
 Memory controller 	22 – 24%	7 – 21%	10 – 27%	1 – 12%	
Harpertown					
o L2 cache	5%	-1%	24%	2-4%	
○ Front-side bus	◦ Front-side bus 81 – 88% 28 – 44% 50 – 71%				
^{○ M} Why the range of penalty	^{o M} Why the range of penalty values?				
 Each penalty calculated using 2 or 4 pairs of 					
◦ ∟ configurations	 Configurations 				
o ⊢ • High side is (generally	-2 - 1%				
	ersus		41%	4 – 17%	
	→⊔⊔⊔∟		- 1 /0	1-6%	

Max Penalty for Sharing	Resource	ST_Triad	PTRANS	MITgcm	Cart3D
Clovertown					
○ L2 cache		1 – 3%	0 – 1%	13 – 16%	-1%
○ Front-side bus		44 – 56%	1 – 26%	14 – 41%	3 – 9%
 Memory controller 	A tale of ty	wo applicatio	ons –	10 – 27%	1 – 12%
Harpertown	MITgcm	n: Substantia	al penalties		
o L2 cache		for socket's memory		24%	2-4%
○ Front-side bus	channel and for cache Cart3D: Designed & tuned to make effective use of		50 - 71%	22 – 41%	
 Memory controller 			5-6%	0-5%	
Barcelona		cache			
 L3 + memory cont 	roller	22 – 69%	6-21%	27 – 79%	7 – 14%
○ HT3		2 – 7%	2 – 18%	0 – 1%	-2 - 1%
Nehalem					
 L3 + memory cont 	roller	50 – 95%	6 – 9%	24 - 67%	4 – 17%
o QPI		-1 - 3%	-9 - 35%	2-6%	1 – 6%

National Aeronautics and Space Administration

IPDPS 2010 12

Max Penalty for Sharing Resource	ST_Triad	PTRANS	MITgcm	Cart3D
Clovertown				
○ L2 cache	1 – 3%	0 – 1%	13 – 16%	-1%
○ Front-side bus	44 – 56%	1 – 26%	14 – 41%	3 – 9%
o Memory controller	22 – 24%	7 – 21%	10 – 27%	1 – 12%
Harpertown				
○ L2 cache	5%	-1%	> 24%	2-4%
FI Why would the L2 penalty go up?			50-71%	<u>22 – 41%</u>
 M Clovertown L2: 4MB 		5-6%	0 – 5%	
Harpertown L2:	6MB			
 Apparently 4MB not enough but 6MB is 		∕IB is	27 – 79%	7 – 14%
○ H • Small penalty for Clove	ertown from	comparing	0 – 1%	-2 - 1%
poor performance to poor performance				
 L3 + memory controller 	50 – 95%	6 – 9%	24 – 67%	4 – 17%
o QPI	-1 - 3%	-9 - 35%	2-6%	1 – 6%

National Aeronautics and Space Administration

IPDPS 2010 13

Max Penalty for Sharing Resource	ST_Triad	PTRANS	MITgcm	Cart3D	
Clovertown					
o L2 cache	1 – 3%	0 – 1%	13 – 16%	-1%	
○ Front-side bus	44 – 56%	1 – 26%	14 – 41%	3 – 9%	
 Memory controller 	22 – 24%	7 – 21%	10 – 27%	1 – 12%	
Harpertown					
o L2 cache	5%	-1%	24%	2-4%	
○ Front-side bus	81 – 88%	28 – 44%	50 - 71%	22 – 41%	
• Memory controller	-2 - 3%	-4 - 9%	5-6%	0 – 5%	
Barcelona		Why is the	re an HT3 / (QPI penalty	
○ L3 + memory controller	22 - 69%	for Stream on NUMA?			
○ HT3	2 - 7%	 Snooping 	g for cache o	coherency?	
Nehalem		Nehalem	n QPI has sn	oop filtering	
○ L3 + memory controller	50 - 95 %	6 – 9%	24 – 67%	4 – 17%	
o QPI	-1 3%	-9 – 35%	2 – 6%	1 – 6%	

Max Penalty for Sharing Resource	ST_Triad	PTRANS	MITgcm	Cart3D
Clovertown				
o L2 cache	1 – 3%	0 – 1%	13 – 16%	-1%
○ Front-side bus	44 – 56%	1 – 26%	14 – 41%	3 – 9%
 Memory controller 	22 – 24%	7 – 21%	10 – 27%	1 – 12%
Harpertown				
o L2 cache	5%	-1%	24%	2-4%
○ Front-side bus	81 – 88%	28 - 44%	50 - 71%	22 - 41%
 Memory controller 	-2 - 3%	-4 - 9%	5-6%	0 – 5%
Baroelona				
 L3 + me Architectural obser HT3 Cloverto 	7 – 14% -2 – 1%			
Clear reduction i				
 L3 + me FSB becomes more of a bottleneck 				4 – 17%
o QPI	-1 – 3%	-9 – 35%	2-6%	1 – 6%

Max Penalty for Sharing	Resource	ST_Triad	PTRANS	MITgcm	Cart3D
Clovertown					
○ L2 cache		1-3% 0-1%		13 – 16%	-1%
○ Front-side bus		11 560/	1 260/	14 – 41%	3 – 9%
 Memory controller 	Architecti	ural observat	IONS:	10 – 27%	1 – 12%
Harpertown	 FSB contention moves to L3 + memory controller 				
o L2 cache			24%	2-4%	
○ Front-side bus	Except in a few cases, little		50 – 71%	22 – 41%	
 Memory controller 	impact	on HT3 / QF		5-6%	0 – 5%
Barcelona					
○ L3 + memory contr	oller	22 – 69%	6-21%	27 – 79%	7 – 14%
○ HT3		2-7% 2-18%		0 – 1%	-2 - 1%
Nehalem					
○ L3 + memory contr	roller 50 – 95% 6 – 9%		24 - 67%	4 – 17%	
o QPI		-1 - 3%	-9 - 35%	2-6%	1 – 6%

National Aeronautics and Space Administration

IPDPS 2010 16

Max Penalty for Sharing Resource	ST_Triad	PTRANS	MITgcm	Cart3D
Clovertown				
- o L2 cache	1 – 3%	0 – 1%	13 – 16%	-1%
○ Front-side bus	44 – 56%	1 – 26%	14-41%	3 – 9%
• Memory controller	22 – 24%	7 – 21%	10 – 27%	1 – 12%
Har, Why an HT3 / QPI penalty?				
Memory accesses should	d be local to s	ocket	24%	2 – 4%
Recall: communication d	ifferences, too)	50 – 71%	22 – 41%
HT3 / QPI configura	tion pairs:		5 - 6%	0 – 5%
	\rightarrow			
can also have impact on Ul penalty calculation	MA memory c	ontroller	27 – 79%	7 – 14%
• HT3	2 – 7%	2 – 18%	0 – 1%	-2 - 1%
Nehalem				
 L3 + memory controller 	50 – 95%	6 – 9%	24 – 67%	4 – 17%
○ QPI	-1 - 3%	-9 – 35%	2-6%	1 – 6%
ational Aeronautics and Space Administration				IPDPS 2010

Effect of Communication on Penalties

NASA

Penalty of total execution time was defined as:

$$P(c_1 \to c_2) = \frac{T(c_2) - T(c_1)}{T(c_1)}$$

Time breaks down as: $T(c) = T_{comp} + T_{comm}$

• Break penalty down to computation & communication parts: $P(c_1 \rightarrow c_2) = P_{com} + P_{com}$

$$P_{comp} = \frac{T(comp_2) - T(comp_1)}{T(c_1)}$$
$$P_{comm} = \frac{T(comm_2) - T(comm_1)}{T(c_1)}$$

Computation & Communication in MITgcm (Clovertown) & PTRANS (Nehalem)

- Instrumented PTRANS to separate communication time
 - MITgcm already does this
- Calculated P_{comp} and P_{comm} as just discussed
 - MITgcm on Clovertown
 - Memory controller penalties from communication small
 - PTRANS on Nehalem
 - QPI penalties almost entirely due to communication
- Future work: use multiple instances of program
 - Double pressure on last level of memory hierarchy
 - No change to inter-node communication patterns

Conclusions

- New: a technique for quantifying effects of resource contention
 - Based on *differential performance analysis*
 - Determine impact due to sharing of specific resources
 e.g. L2, FSB, memory controller, HT3 / QPI
 - Tested technique on 4 multicore-based platforms, with 3 benchmarks and 4 applications
- Experimental observations
 - Dominant contention factor: memory bandwidth to socket
 Up to 95% for StreamTriad on Nehalem
 - Clovertown
 → Harpertown: moved MC contention to FSB
 - UMA → NUMA: socket memory bandwidth still big bottleneck
- Approach aids understanding of both applications & architectures

OVERFLOW's "superlinear" behavior 4ppn → 8ppn?
 L2: 40% FSB: 54% MC: 3%