
National Center for Supercomputing Applications
University of Illinois at Urbana-Champaign

Direct Self-Consistent Field 
Computations on GPU Clusters

Guochun Shi,
Volodymyr Kindratenko

National Center for Supercomputing 
Applications

University of Illinois at Urbana-
Champaign

Ivan Ufimtsev,
Todd Martinez

Department of Chemistry

Stanford University



Presentation Outline

GPU computing

 NCSA’s Lincoln GPU cluster

SCF theory in Quantum Chemistry

Implementation on a GPU cluster

Kernels for J and K matrices

Parallelization strategy for GPU cluster

Performance

Conclusions and future work

IPDPS 200



Why GPUs?

5800 5950 Ultra
6800 Ultra

7800 GTX

IPDPS 200

GPU Performance Trends



NVIDIA Tesla T10 GPU Architecture

T10 architecture

240 streaming processors 
arranged as 30 streaming 
multiprocessors 

At 1.3 GHz this provides

● 1 TFLOP SP

● 86.4 GFLOP DP

512-bit interface to off-chip 
GDDR3 memory

● 102 GB/s bandwidth

TPC 1

Geometry controller

SMC

SM

Shared 
memory

SFU SFU

SP SP

SP SP

SP SP

SP SP

C cache

MT issue

I cache

SM

Shared 
memory

SFU SFU

SP SP

SP SP

SP SP

SP SP

C cache

MT issue

I cache

SM

Shared 
memory

SFU SFU

SP SP

SP SP

SP SP

SP SP

C cache

MT issue

I cache

Texture units

Texture L1

TPC 10

Geometry controller

SMC

SM

Shared 
memory

SFU SFU

SP SP

SP SP

SP SP

SP SP

C cache

MT issue

I cache

SM

Shared 
memory

SFU SFU

SP SP

SP SP

SP SP

SP SP

C cache

MT issue

I cache

SM

Shared 
memory

SFU SFU

SP SP

SP SP

SP SP

SP SP

C cache

MT issue

I cache

Texture units

Texture L1

Thread execution managerInput assemblerPCIe interface

L2ROPL2 ROP

512-bit memory interconnect

DRAM DRAM DRAM DRAM DRAM DRAM DRAM DRAM

IPDPS 200



Intel 64 Tesla Linux Cluster Lincoln

Dell PowerEdge 1955 server

Intel 64 (Harpertown) 2.33 GHz dual 
socket quad core

16 GB DDR2

Infiniband SDR

Tesla S1070 1U GPU 
Computing Server

1.3 GHz Tesla T10 processors

4x4 GB GDDR3 SDRAM

Cluster

Servers: 192

Accelerator Units: 96

Two Compute Nodes

Dell PowerEdge 
1955 server

IB

Tesla S1070

T10 T10

PCIe interface

DRAM DRAM

T10 T10

PCIe interface

DRAM DRAM

Dell PowerEdge 
1955 server

PCIe x8 PCIe x8

SDR IB SDR IB

IPDPS 200



HPL Benchmark for 
Lincoln

0

2

4

6

8

10

12

0

2

4

6

8

10

12

system size

ac
hi

ev
ed

 G
F

L
O

P
S

IPDPS 200

We used Massimiliano Fatica(nvidia)’s  GPU enabled HPL package.



Why do we need to deal with…

Energy (H  =  E ):

     Quantifies intra/intermolecular interactions

     Drives chemistry, little interesting happens on flat surface

Geometry optimization ( R E = 0)

     Searches for stable atomic arrangements (molecular shapes)

Molecular dynamics (∂2R/ ∂t2 = -1/M R E)

     The chemistry itself (at some, sometimes crude, approximation)

     Studies system at atomistic time, and length scales 

Quantum Chemistry

IPDPS 200



Exact energy is a hard problem

−
1

2

∂2

∂xi
2

+
∂2

∂yi
2

+
∂2

∂zi
2





i

∑ −
ZA

ri − RAi,A
∑ +

1

ri − rji, j
∑












Ψ ri( )= EΨ ri( )

Ψ ri( )= ?

E = ?

IPDPS 200



Hartree-Fock approximation is one of the simplest

Ψ = A ψ 1 r1( )ψ 2 r2( )...ψ N rN( ) 

  is an antisymmetrized product of N 1-electron orbitals 

ψ i r( )= Cijϕ j r( )
j =1

K

∑
Expand  over predefined basis set  

Ψ ↔ Cij = ?

IPDPS 200



Hartree-Fock Self Consistent Field (SCF) procedure

F C( )C = ESC

Fk +1 C( )= F Ck( )
Fk +1Ck +1 = ESCk +1

Repeat until Ck+1 more or less equals Ck

IPDPS 200



Hartree-Fock equations

F C( )C = ESC

• All matrices are of N N size (N ~ 1,000 … 10,000)
• N3 operations to solve HF equations (need to deal with diagonalization)
• N4 operations to get F

Fij C( )= H ij
core + Jij C( )−

1

2
Kij C( )

Jij = [ij | kl]Pkl C( )
k ,l
∑

Kij = [ik | jl]Pkl C( )
k ,l
∑

[ij | kl] = ϕ i r1( )ϕ j r1( ) 1

r1 − r2

ϕk r2( )ϕ l r2( )dr1dr2∫∫

IPDPS 200



2e integral grid

SIMD warp

Most negligibly small 
integrals will be calculated

SIMD warp

Only significant integrals 
will be calculated

[i
j|

|kl]

[ij | kl] ≤ [ij | ij] [kl | kl] ≥ 10−11
leaves only N2 out of N4 integrals

[ij | kl] = ϕ i r1( )ϕ j r1( ) 1

r1 − r2

ϕk r2( )ϕ l r2( )dr1dr2∫∫

IPDPS 200

Kernel In GPU



Kernel in GPU: J-matrix implementation

Jij = [ij | kl]Pkl
k ,l
∑

[ij | ij]

[kl | kl]

[ij | kl] ≤ [ij | ij] [kl | kl]

IPDPS 200



Kernels in GPU: K-matrix implementation

Kij = [ik | jl]Pkl
k ,l
∑

[ik | ik]

[ jl | jl]

IPDPS 200



Singe node execution time 
breakdown

0

2

4

6

8

10

12

runtime (seconds)

0

2

4

6

8

10

12

runtime (seconds)

• The J and K matrices computation and Linear Algebra (LA) 
computation dominate the overall execution time

• Pair quantity computations can be significant

IPDPS 200



GPU cluster parallelization 
strategy

Each GPU has a global id

nodeid  * num_gpu_per_node + local_gpu_index

J/K matrices work distribution

Computations for elements in J and K matrices are not 
even. 

Sort pre-computed pair quantities and choose every one 
element in N to compute for each GPU

LA using intel MKL

IPDPS 200



pre-compute pair-wise quantities

compute J and K(Eq. 8, 9)

form Focksub-matrices (Eq. 7)

gather complete Fockmatrix F

scatter F

compute matrix C(Eq. 5)

gather and broadcast P

Converge?

Guess initial molecular orbital coefficients matrix C
and compute density matrix P(Eq.10)

done

start

pre
-

compute
Compute Jand 

K
gather 

Fock
matrix

Distribute
Fock matrix

Solve
eigenvalue problem

final gather

1

2

3

4

5

6

yes

no

master MPI processes, 
multiple POSIX threads

master MPI processes,
multiple POSIX threads,

GPUs

master MPI processes,
rank 0 MPI process

all MPI processes

all MPI processes

all MPI processes,
rank 0 MPI process

Parallelization strategy (II)

• Start as MPI program, each node 
has as many MPI processes as 
CPU cores

• One MPI process per node is 
designated as “master”

• The master MPI processes create 
threads for controlling GPUs as 
well as CPU work threads

• MPI processes/GPU management 
threads/CPU work threads are 
awaken or put to sleep as needed

IPDPS 200



node 
0

Computing J and K matrices on GPUs

Reduction of J and K matrices, form the Fock 
matrix

Pair-quantity computing on CPU
Using  density  matrices P

Distribute the Fock matrix, do linear algebra, 
 compute matrix C and P, gather P 

Broadcast P

node 
1

node 
2

node 
3

MPI process

CPU work thread

CPU thread for 
managing  GPU 
kernels

Fock 
matrix

Distr-ed fork matrix

Distr-ed P matrix

P  
matrix

Partial J and K

Generated guess matrix 
 C and compute  matrix 
P 

IPDPS 200



Performance: load balancing

0

2

4

6

8

10

12

Unbalanced K matrix computation

Node Index

C
om

pu
ta

ti
on

 ti
m

e 
(s

ec
on

ds
)

0

0.5

1

1.5

2

2.5

3

3.5

4

balanced J matrix Computation

Node Index

C
om

pu
ta

ti
on

 ti
m

e 
(s

ec
on

ds
)

0

5

10

15

20

25

30

balanced K matrix Computation

Node Index

C
om

pu
ta

ti
on

 ti
m

e 
(s

ec
on

ds
)

• Sorting for pair quantity computations 
and work selection strategy makes the 
computation on GPUs well balanced, 
reducing performance degradation

IPDPS 200



Atoms Electrons Orbitals S shells P shells

Olestra 453 1366 2131 1081 350

BPTI 875 3400 4893 2202 897

CspA 1732 6290 8753 4220 1511

Performance

0

2

4

6

8

10

12

Olestra

0

2

4

6

8

10

12

BPTI

0

2

4

6

8

10

12

CspA

# of nodes

R
u

n
tim

e
 (

s)

 Using 321g basis set

IPDPS 200



Scalability of J, K and LA

0

2

4

6

8

10

12

Olestra

0

2

4

6

8

10

12

BPTI

0

2

4

6

8

10

12

CspA

• J and K matrices computation can scale well to 128 nodes

• Linear Algebra scales only up to 16 nodes even for CsPA molecule
  

number of nodes

IPDPS 200



0

2

4

6

8

10

12

# of cluster nodes

ti
m

e
 p

e
r 

it
e

ra
ti

on
 (

se
cs

)

Performance: Linear Algebra breakdown 

• Diagonization scales the worst, dgemm is also important

• A fast, scalable GPU based SCALAPACK is needed
• Magma from UTK?
• Cula?

IPDPS 200



Results: Olestra molecule

Olestra molecule consisting of 453 atoms  (a small example model used of 
testing the developed software) can be computed by the state-of-the-art 
quantum chemistry software package GAMESS running on an Intel Pentium D 
3 GHz processor in over 12,408 seconds whereas our 8-node GPU cluster  
implementation performs the same computation in just over 5 seconds, a 
2,452× speedup. 

IPDPS 200



Example: CspA molecule

For larger models, one SCF iteration for Cold shock protein A (CspA) molecule 
consisting of 1,732 atoms can be done in 88 seconds on a 16 node GPU 
cluster.

IPDPS 200



Conclusions and future work

GPU computing brings Quantum Chemistry computing 
to a new level

Parallelization enables computing of large molecules in 
shorter time

J and K matrices show good scalability

Linear Algebra can only scale up to 16 nodes

Linear Algebra becomes a major bottleneck

A linear algebra package using GPUs with good 
scalability is needed

● Matrix multiplication and eigenvalue solver

Only S and P orbitals are supported at this moment

Alexey Titov (NCSA) is working on D orbitals

IPDPS 200



Acknowledgement

This work was supported by the National Science 
Foundation grant CHE-06-26354. 

IPDPS 200


