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Why GPUs?

GPU Performance Trends
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NVIDIA Tesla T10 GPU Architecture
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Intel 64 Tesla Linux Cluster Li
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HPL Benchmark for
Lincoln
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We used Massimiliano Fatica(nvidia)’s GPU enabled HPL package.




Quantum Chemistry

Why do we need to deal with...

Energy(H =E=):
Quantifies intra/intermolecular interactions
Drives chemistry, little interesting happens on flat surface

Geometry optimization ( RE =0)
Searches for stable atomic arrangements (molecular shapes)

Molecular dynamics (02R/ dt2 = -1/M = RE)
The chemistry itself (at some, sometimes crude, approximation)

Studies system at atomistic time, and length scales




Exact energy is a hard problem




Hartree-Fock approximation is one of the simplest

IS an antisymmetrized product of N 1-electron orbitals

Expand over predefined basis set




Hartree-Fock Self Consistent Field (SCF) procedure

Repeat until Ck+1 more or less equals Ck




Hartree-Fock equations

* All matrices are of N N size (N ~ 1,000 ... 10,000)
N3 operations to solve HF equations (need to deal with diagonalization)
* N4 operations to get F
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Kernel In GPU

leaves only N2 out of N4 integrals




Kernel in GPU: J-matrix implementation
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Kernels in GPU: K-matrix implementation
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Singe node execution time
breakdown

12 12 -

10 10 -

8- 8-

runtime (seconds) 6 - runtime (seconds) 6 -

4 4

2- ’-

0 0

The J and K matrices computation and Linear Algebra (LA)
computation dominate the overall execution time

Pair quantity computations can be significant




GPU cluster parallelization

Each GPU has a glob%itiﬁategy

nodeid * num gpu per node + local gpu index
J/K matrices work distribution

Computations for elements in J and K matrices are not
even.

Sort pre-computed pair quantities and choose every one
element in N to compute for each GPU

LA using inte]l MKL




Parallelization strategy (ll)
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Performance: load balancing
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Performance
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Scalability of J, Kand LA
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J and K matrices computation can scale well to 128 nodes

Linear Algebra scales only up to 16 nodes even for CsPA molecule




Performance: Linear Algebra breakdown
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Diagonization scales the worst, dgemm is also important

A fast, scalable GPU based SCALAPACK is needed
Magma from UTK?
Cula?




Results: Olestra molecule

Olestra molecule consisting of 453 atoms (a small example model used of
testing the developed software) can be computed by the state-of-the-art
quantum chemistry software package GAMESS running on an Intel Pentium D
3 GHz processor in over 12,408 seconds whereas our 8-node GPU cluster
implementation performs the same computation in just over 5 seconds, a
2,452% speedup.




Example: CspA molecule

For larger models, one SCF iteration for Cold shock protein A (CspA) molecule
consisting of 1,732 atoms can be done in 88 seconds on a 16 node GPU
cluster.




Conclusions and future work

GPU computing brings Quantum Chemistry computing
to a new level

Parallelization enables computing of large molecules 1n
shorter time

J and K matrices show good scalability
Linear Algebra can only scale up to 16 nodes
Linear Algebra becomes a major bottleneck

A linear algebra package using GPUs with good
scalability is needed

* Matrix multiplication and eigenvalue solver
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