Overlay networks maximizing throughput

Olivier Beaumont, Lionel Eyraud-Dubois, Shailesh Kumar Agrawal

Cepage team, LaBRI, Bordeaux, France

IPDPS April 20, 2010

Outline

Introduction 1

Ξ.

In this talk: broadcast/streaming operation

- One source node holds (or generates) a message
- All nodes must receive the complete message
- Steady-state: quantity of data per time unit
- Goal: optimize throughput

Communication model

Explore the Bounded Multi Port model

- P2P setting, Application-Level: no a priori communication network
- Simultaneous communications, with a per-node bandwidth bound
- Internet-like: no contention inside the network
- Steady-state approach
- Goal of algorithms: build an (efficient) overlay
- Keep things reasonable: degree constraint

Communication model

Explore the Bounded Multi Port model

- P2P setting, Application-Level: no a priori communication network
- Simultaneous communications, with a per-node bandwidth bound
- Internet-like: no contention inside the network
- Steady-state approach
- Goal of algorithms: build an (efficient) overlay
- Keep things reasonable: degree constraint

An example

₹ **____**9<@

An example

Best tree: T = 1

An example

Best DAG: T = 1.5

₹.

An example

Optimal: T = 2

An instance

- n nodes, with output bandwidth b_i and maximal out-degree d_i
- $\bullet\,$ node \mathcal{N}_0 is the master node that holds the data

A solution (Trees)

- A weighted set of spanning trees (w_k, T_k)
- $\forall j, \sum_k \sum_i \chi_k(\mathcal{N}_j, \mathcal{N}_i) w_k \leq b_j$ (capacity constraint at node j)
- $\forall j, \quad \sum_i \max_k \chi_k(\mathcal{N}_j, \mathcal{N}_i) \le d_j$ (degree constraint at node j)

• Maximize
$$T = \sum_k w_k$$

An instance

- n nodes, with output bandwidth b_i and maximal out-degree d_i
- $\bullet\,$ node \mathcal{N}_0 is the master node that holds the data

A solution (Flows)

• Flow f_j^i from node \mathcal{N}_j to \mathcal{N}_i

•
$$\forall j, \quad \left|\left\{i, f_j^i > 0\right\}\right| \le d$$

• $\forall j, \quad \sum_i f_j^i \le b_j$

degree constraint at \mathcal{N}_j

capacity constraint at \mathcal{N}_j

• Maximize $T = \min_j \operatorname{mincut}(\mathcal{N}_0, \mathcal{N}_j)$

・ 何 ト ・ ヨ ト ・ ヨ ト

Outline

2 Complexity

Complexity

NP-Hardness

3-Partition

- 3p integers a_i such that $\sum_i a_i = pT$
- Partition into p sets S_l such that $\sum_{i \in S_l} a_i = T$

э

Complexity

NP-Hardness

3-Partition

- 3p integers a_i such that $\sum_i a_i = pT$
- Partition into p sets S_l such that $\sum_{i\in S_l}a_i=T$

Reduction

- p "server" nodes, $b_j = 2T$ and $d_j = 4$
- 3p "client" nodes, $b_{j+p} = T a_j$ and $d_{j+p} = 1$

• 1 "terminal" node,
$$b_{4p} = 0$$
, $d_{4p} = 0$

Outline

3 Successive algorithms Acyclic Algorithm

With cycles

2

Upper bound

If ${\mathcal S}$ has throughput T

- Node \mathcal{N}_i uses at most $X_i = \min(b_i, Td_i)$
- Total received rate: nT

• Thus
$$\sum_{i=0}^{n} \min(b_i, Td_i) \ge nT$$

• Of course, $T \leq b_0$

Our algorithms

- \bullet Inputs: an instance, and a goal throughput T
- Output: a solution with resource augmentation (additional connections allowed)

・ 同 ト ・ ヨ ト ・ ヨ ト

If $\sum_{i=0}^{n-1} \min(b_i, Td_i) \ge nT$

- Order nodes by capacity : $X_1 \ge X_2 \ge \cdots \ge X_n$
- Each node k sends throughput T to as many nodes as possible, in consecutive order

If $\sum_{i=0}^{n-1} \min(b_i, Td_i) \ge nT$

- Order nodes by capacity : $X_1 \ge X_2 \ge \cdots \ge X_n$
- Each node k sends throughput T to as many nodes as possible, in consecutive order

・ 同 ト ・ ヨ ト ・ ヨ ト ・

If $\sum_{i=0}^{n-1} \min(b_i, Td_i) \ge nT$

- Order nodes by capacity : $X_1 \ge X_2 \ge \cdots \ge X_n$
- Each node k sends throughput T to as many nodes as possible, in consecutive order

・ 同 ト ・ ヨ ト ・ ヨ ト ・

If $\sum_{i=0}^{n-1} \min(b_i, Td_i) \ge nT$

- Order nodes by capacity : $X_1 \ge X_2 \ge \cdots \ge X_n$
- Each node k sends throughput T to as many nodes as possible, in consecutive order

・ 同 ト ・ ヨ ト ・ ヨ ト ・

If $\sum_{i=0}^{n-1} \min(b_i, Td_i) \ge nT$

- Order nodes by capacity : $X_1 \ge X_2 \ge \cdots \ge X_n$
- Each node k sends throughput T to as many nodes as possible, in consecutive order

・ 同 ト ・ ヨ ト ・ ヨ ト

э

If $\sum_{i=0}^{n-1} \min(b_i, Td_i) \ge nT$

- Order nodes by capacity : $X_1 \ge X_2 \ge \cdots \ge X_n$
- Each node k sends throughput T to as many nodes as possible, in consecutive order

Provides a valid solution

- $b_0 \ge T$
- Sort by $X_i \implies \forall k, \sum_{i=0}^k X_i \ge (k+1)T$
- Since $X_k \leq Td_k$, the outdegree of \mathcal{N}_k is at most $d_k + 1$

イロト イロト イヨト イヨト 三日

- Acyclic algorithm until k_0 such that $\sum_{i=0}^{k_0} X_i < (k_0+1)T$
- Recursively build partial solutions in which
 - All nodes up to \mathcal{N}_k are served
 - Only node \mathcal{N}_k has remaining bandwidth

Notations:

With cycles

Recursion: initial case

With cycles

Recursion: initial case

Remind

•
$$M_k + R_k = X_k$$

$$\bullet \ R_k + M_{k+1} = T$$

•
$$f_u^v \ge M_{k_0}$$

•
$$\beta = \frac{M_{k_0+1}}{T} M_{k_0}$$

•
$$\alpha = \frac{M_{k_0+1}}{T} (T - M_{k_0})$$

•
$$\alpha + \beta = M_{k_0+1}$$

• $f_{k_0}^{k_0+1} + f_{k_0+1}^{k_0} = T$

- 4 回 ト 4 三 ト 4 三 ト

With cycles

Recursion: general case

Remind

•
$$M_k + R_k = X_k$$

$$\bullet \ R_k + M_{k+1} = T$$

•
$$f_k^{k-1} + f_{k-1}^k = T$$

Recursion: general case

Remind

•
$$M_k + R_k = X_k$$

$$\bullet \ R_k + M_{k+1} = T$$

•
$$f_k^{k-1} + f_{k-1}^k = T$$

• $\beta = \frac{M_{k+1}}{T} f_k^{k-1}$
• $\alpha = \frac{M_{k+1}}{T} f_{k-1}^k$

•
$$\alpha + \beta = M_{k+1}$$

• $f_k^{k+1} + f_{k+1}^k = T$

Recursion: result

Final outdegree of \mathcal{N}_i : $o_i \leq \max(d_i + 2, 4)$

- Acyclic solution: $o_i \leq d_i + 1$
- Degree of \mathcal{N}_u and of one node in the set is increased by 1
- Step k: o_k and o_{k-1} are increased by 1

A B M A B M

э

Outline

- ④ Simulations

Simulations

Comparison of different solutions

Unconstrained solution

Best achievable throughput without degree constraints: $\sum_{i} b_{i}$

Best Tree

In a tree of throughput T, flow through all edges must be T. Counting the edges yield $\sum_{i} \min(d_i, \left| \frac{b_i}{T} \right|) \ge n$.

Best Acyclic

Computed by the ACYCLIC algorithm

Cyclic

Throughput when adding cycles

Simulations

Results: comparisons to Cyclic

Ratio to Cycle

A B A A B A

3

< 🗇 🕨

Simulations

Results: Cyclic vs Unconstrained

Outline

Summary

- Theoretical study of the problem: optimal resource augmentation algorithm
- In practice:
 - a low degree is enough to reach a high throughput
 - an acyclic solution is very reasonable
 - once the overlay is computed, there exist distributed algorithms to perform the broadcast

Going further

- Worst-case approximation ratio of ACYCLIC ?
- Study the robustness of our algorithms
- Design on-line and/or distributed versions

э