Overlay networks maximizing throughput

Olivier Beaumont, Lionel Eyraud-Dubois, Shailesh Kumar Agrawal

Cepage team, LaBRI, Bordeaux, France

IPDPS
April 20, 2010
Outline

1. Introduction
2. Complexity
3. Successive algorithms
4. Simulations
5. Conclusions
In this talk: broadcast/streaming operation

- One source node holds (or generates) a message
- All nodes must receive the complete message
- Steady-state: quantity of data per time unit
- Goal: optimize throughput
Communication model

Explore the Bounded Multi Port model

- P2P setting, Application-Level: no \textit{a priori} communication network
- Simultaneous communications, with a per-node bandwidth bound
- Internet-like: no contention inside the network
- Steady-state approach

- Goal of algorithms: build an (efficient) overlay
- Keep things reasonable: degree constraint
Explore the Bounded Multi Port model

- P2P setting, Application-Level: no \textit{a priori} communication network
- Simultaneous communications, with a per-node bandwidth bound
- Internet-like: no contention inside the network
- Steady-state approach

- Goal of algorithms: build an (efficient) overlay
- Keep things reasonable: degree constraint
An example

\[b_0 = 2 \]

\[N_0 \]

\[b_1 = 1 \]

\[N_1 \]

\[b_2 = 1 \]

\[N_2 \]
An example

Best tree: $T = 1$
Best DAG: $T = 1.5$
Optimal: $T = 2$
Precise model

An instance
- n nodes, with output bandwidth b_i and maximal out-degree d_i
- node N_0 is the master node that holds the data

A solution (Trees)
- A weighted set of spanning trees (w_k, T_k)
- $\forall j, \sum_k \sum_i \chi_k(N_j, N_i)w_k \leq b_j$ (capacity constraint at node j)
- $\forall j, \sum_i \max_k \chi_k(N_j, N_i) \leq d_j$ (degree constraint at node j)
- Maximize $T = \sum_k w_k$
Precise model

An instance
- n nodes, with output bandwidth b_i and maximal out-degree d_i
- node N_0 is the master node that holds the data

A solution (Flows)
- Flow f_{j}^{i} from node N_j to N_i
- $\forall j$, $\left|\{i, f_{j}^{i} > 0\}\right| \leq d_j$ degree constraint at N_j
- $\forall j$, $\sum_i f_{j}^{i} \leq b_j$ capacity constraint at N_j
- Maximize $T = \min_j \text{mincut}(N_0, N_j)$
NP-Hardness

3-Partition

- 3p integers a_i such that $\sum_i a_i = pT$
- Partition into p sets S_l such that $\sum_{i \in S_l} a_i = T$
NP-Hardness

3-Partition

- 3\(p\) integers \(a_i\) such that \(\sum_{i} a_i = pT\)
- Partition into \(p\) sets \(S_l\) such that \(\sum_{i \in S_l} a_i = T\)

Reduction

- \(p\) "server" nodes, \(b_j = 2T\) and \(d_j = 4\)
- 3\(p\) "client" nodes, \(b_{j+p} = T - a_j\) and \(d_{j+p} = 1\)
- 1 "terminal" node, \(b_{4p} = 0\), \(d_{4p} = 0\)
Outline

1 Introduction

2 Complexity

3 Successive algorithms
 - Acyclic Algorithm
 - With cycles

4 Simulations

5 Conclusions
Upper bound

If S has throughput T

- Node N_i uses at most $X_i = \min(b_i, Td_i)$
- Total received rate: nT
- Thus $\sum_{i=0}^{n} \min(b_i, Td_i) \geq nT$
- Of course, $T \leq b_0$

Our algorithms

- Inputs: an instance, and a goal throughput T
- Output: a solution with resource augmentation (additional connections allowed)
Acyclic algorithm

If $\sum_{i=0}^{n-1} \min(b_i, Td_i) \geq nT$

- Order nodes by capacity: $X_1 \geq X_2 \geq \cdots \geq X_n$
- Each node k sends throughput T to as many nodes as possible, in consecutive order

\[\mathcal{N}_0 \quad \mathcal{N}_1 \quad \mathcal{N}_2 \quad \mathcal{N}_3 \quad \mathcal{N}_4 \quad \mathcal{N}_5 \]
Acyclic algorithm

If $\sum_{i=0}^{n-1} \min(b_i, Td_i) \geq nT$

- Order nodes by capacity: $X_1 \geq X_2 \geq \cdots \geq X_n$
- Each node k sends throughput T to as many nodes as possible, in consecutive order

Ordering of nodes and throughput distribution:

\mathcal{N}_0 \mathcal{N}_1 \mathcal{N}_2 \mathcal{N}_3 \mathcal{N}_4 \mathcal{N}_5
Acyclic algorithm

If \(\sum_{i=0}^{n-1} \min(b_i, Td_i) \geq nT \)

- Order nodes by capacity: \(X_1 \geq X_2 \geq \cdots \geq X_n \)
- Each node \(k \) sends throughput \(T \) to as many nodes as possible, in consecutive order

![Diagram showing node order and throughput distribution](image-url)
If $\sum_{i=0}^{n-1} \min(b_i, Td_i) \geq nT$

- Order nodes by capacity: $X_1 \geq X_2 \geq \cdots \geq X_n$
- Each node k sends throughput T to as many nodes as possible, in consecutive order

\[L. \ Eyraud-Dubois \ (LaBRI, \ Bordeaux) \]
Acyclic Algorithm

If $\sum_{i=0}^{n-1} \min(b_i, Td_i) \geq nT$

- Order nodes by capacity: $X_1 \geq X_2 \geq \cdots \geq X_n$
- Each node k sends throughput T to as many nodes as possible, in consecutive order

![Diagram showing the flow of nodes and throughput sending](image)
ACYCLIC algorithm

If \(\sum_{i=0}^{n-1} \min(b_i, Td_i) \geq nT \)

- Order nodes by capacity: \(X_1 \geq X_2 \geq \cdots \geq X_n \)
- Each node \(k \) sends throughput \(T \) to as many nodes as possible, in consecutive order

Provides a valid solution

- \(b_0 \geq T \)
- Sort by \(X_i \) \(\implies \forall k, \sum_{i=0}^{k} X_i \geq (k + 1)T \)
- Since \(X_k \leq Td_k \), the outdegree of \(N_k \) is at most \(d_k + 1 \)
Successive algorithms

With cycles

General case: \(\sum_{i=0}^{n} X_i \geq nT \)

- Acyclic algorithm until \(k_0 \) such that \(\sum_{i=0}^{k_0} X_i < (k_0 + 1)T \)
General case: \[\sum_{i=0}^{n} X_i \geq nT \]

- Acyclic algorithm until \(k_0 \) such that \(\sum_{i=0}^{k_0} X_i < (k_0 + 1)T \)
Successive algorithms

General case: $\sum_{i=0}^{n} X_i \geq nT$

- Acyclic algorithm until k_0 such that $\sum_{i=0}^{k_0} X_i < (k_0 + 1)T$
Successive algorithms With cycles

General case: \[\sum_{i=0}^{n} X_i \geq nT \]

- Acyclic algorithm until \(k_0 \) such that \(\sum_{i=0}^{k_0} X_i < (k_0 + 1)T \)
General case: \(\sum_{i=0}^{n} X_i \geq nT \)

- Acyclic algorithm until \(k_0 \) such that \(\sum_{i=0}^{k_0} X_i < (k_0 + 1)T \)
General case: \[\sum_{i=0}^{n} X_i \geq nT \]

- Acyclic algorithm until \(k_0 \) such that \(\sum_{i=0}^{k_0} X_i < (k_0 + 1)T \)
- Recursively build partial solutions in which
 - All nodes up to \(N_k \) are served
 - Only node \(N_k \) has remaining bandwidth

Notations:

- \(M_k = kT - \sum_{i=0}^{k-1} X_i \)
- \(M_k + R_k = X_k \)
- \(M_{k+1} = T - R_k \)

L. Eyraud-Dubois (LaBRI, Bordeaux)
Recursion: initial case

Set of nodes

\[T - M_{k_0} \]

\[f^v_u \]

Set of nodes

\[k_0 \]

\[k_0 + 1 \]

Remind

1. \[M_k + R_k = X_k \]
2. \[R_k + M_{k+1} = T \]
3. \[f^v_u \geq M_{k_0} \]
Recursion: initial case

Set of nodes

\[k_0 \]
\[k_0 + 1 \]

\[f_{u} - M_{k_0} \]
\[f_{u} \geq M_{k_0} \]
\[R_{k_0} + \beta \]
\[\beta = \frac{M_{k_0+1}}{T} M_{k_0} \]
\[\alpha = \frac{M_{k_0+1}}{T} \left(T - M_{k_0} \right) \]
\[f_{k_0+1} + f_{k_0} ^{k_0+1} = T \]

\[T - M_{k_0} - \alpha \]
\[M_{k_0} - \beta \]

\[\alpha \]
\[\beta \]

\[u \]

\[v \]

\[M_{k} + R_{k} = X_{k} \]
\[R_{k} + M_{k+1} = T \]

Remind
Recursion: general case

\[f_k(k-1) = T - f_{k-1} \]

\[f_k(k) = T - f_k(k-1) \]

\[\alpha = M_{k+1} + f_k(k) \]

\[\beta = M_{k+1} + f_{k-1}^k \]

\[\alpha + \beta = M_{k+1} + f_k(k) + f_{k-1}^k = T \]

\[R_k + M_{k+1} = T \]

\[M_k + R_k = X_k \]
Recursion: general case

\[
\begin{align*}
T - f_{k-1}^k & = f_k^k - \alpha \\
T - f_{k-1}^k & = R_k + \beta \\
R_{k+1} & = f_{k-1}^k + f_k^k
\end{align*}
\]

Remind

\[
\begin{align*}
M_k + R_k & = X_k \\
R_k + M_{k+1} & = T
\end{align*}
\]

\[
\begin{align*}
f_{k-1}^k + f_k^k & = T \\
\beta & = \frac{M_{k+1}}{T} f_k^k \\
\alpha & = \frac{M_{k+1}}{T} f_{k-1}^k \\
\alpha + \beta & = M_{k+1} \\
f_{k+1}^k + f_k^{k+1} & = T
\end{align*}
\]
Recursion: result

Final outdegree of \mathcal{N}_i: $o_i \leq \max(d_i + 2, 4)$

- Acyclic solution: $o_i \leq d_i + 1$
- Degree of \mathcal{N}_u and of one node in the set is increased by 1
- Step k: o_k and o_{k-1} are increased by 1
Outline

1. Introduction
2. Complexity
3. Successive algorithms
4. Simulations
5. Conclusions
Comparison of different solutions

Unconstrained solution

Best achievable throughput without degree constraints: \(\frac{\sum_i b_i}{n} \)

Best Tree

In a tree of throughput \(T \), flow through all edges must be \(T \). Counting the edges yield \(\sum_i \min(d_i, \left\lfloor \frac{b_i}{T} \right\rfloor) \geq n \).

Best Acyclic

Computed by the ACYCLIC algorithm

Cyclic

Throughput when adding cycles
Simulations

Results: comparisons to Cyclic

Overlay networks maximizing throughput 18/21
Results: Cyclic vs Unconstrained

Cycle ratio against Optimal

Throughput ratio vs Output degree for different values of N (N=10, N=100, N=1000).
Summary

- Theoretical study of the problem: optimal resource augmentation algorithm
- In practice:
 - a low degree is enough to reach a high throughput
 - an acyclic solution is very reasonable
 - once the overlay is computed, there exist distributed algorithms to perform the broadcast

Going further

- Worst-case approximation ratio of ACYCLIC?
- Study the robustness of our algorithms
- Design on-line and/or distributed versions