Overlay networks maximizing throughput

Olivier Beaumont，Lionel Eyraud－Dubois，Shailesh Kumar Agrawal

Cepage team，LaBRI，Bordeaux，France
IPDPS
April 20， 2010

Outline

(1) Introduction

(2) Complexity

3 Successive algorithms

4. Simulations

(5) Conclusions

Introduction

In this talk: broadcast/streaming operation

- One source node holds (or generates) a message
- All nodes must receive the complete message
- Steady-state: quantity of data per time unit
- Goal: optimize throughput

Communication model

Explore the Bounded Multi Port model

- P2P setting, Application-Level: no a priori communication network
- Simultaneous communications, with a per-node bandwidth bound
- Internet-like: no contention inside the network
- Steady-state approach
- Goal of algorithms: build an (efficient) overlay
- Keep things reasonable: degree constraint

Communication model

Explore the Bounded Multi Port model

- P2P setting, Application-Level: no a priori communication network
- Simultaneous communications, with a per-node bandwidth bound
- Internet-like: no contention inside the network
- Steady-state approach
- Goal of algorithms: build an (efficient) overlay
- Keep things reasonable: degree constraint

An example

An example

Best tree: $T=1$

An example

Best DAG: $T=1.5$

An example

Optimal: $T=2$

Precise model

An instance

- n nodes, with output bandwidth b_{i} and maximal out-degree d_{i}
- node \mathcal{N}_{0} is the master node that holds the data

A solution (Trees)

- A weighted set of spanning trees $\left(w_{k}, T_{k}\right)$
- $\forall j, \quad \sum_{k} \sum_{i} \chi_{k}\left(\mathcal{N}_{j}, \mathcal{N}_{i}\right) w_{k} \leq b_{j} \quad$ (capacity constraint at node j)
- $\forall j, \quad \sum_{i} \max _{k} \chi_{k}\left(\mathcal{N}_{j}, \mathcal{N}_{i}\right) \leq d_{j} \quad$ (degree constraint at node j)
- Maximize $T=\sum_{k} w_{k}$

Precise model

An instance

- n nodes, with output bandwidth b_{i} and maximal out-degree d_{i}
- node \mathcal{N}_{0} is the master node that holds the data

A solution (Flows)

- Flow f_{j}^{i} from node \mathcal{N}_{j} to \mathcal{N}_{i}
- $\forall j, \quad\left|\left\{i, f_{j}^{i}>0\right\}\right| \leq d_{j}$
- $\forall j, \quad \sum_{i} f_{j}^{i} \leq b_{j}$
degree constraint at \mathcal{N}_{j} capacity constraint at \mathcal{N}_{j}
- Maximize $T=\min _{j} \operatorname{mincut}\left(\mathcal{N}_{0}, \mathcal{N}_{j}\right)$

Outline

(1) Introduction

(2) Complexity

3 Successive algorithms

4. Simulations

(5) Conclusions

NP-Hardness

3-Partition

- $3 p$ integers a_{i} such that $\sum_{i} a_{i}=p T$
- Partition into p sets S_{l} such that $\sum_{i \in S_{l}} a_{i}=T$

NP-Hardness

$$
b_{0}=b_{1}=2 T
$$

3-Partition

- $3 p$ integers a_{i} such that $\sum_{i} a_{i}=p T$
- Partition into p sets S_{l} such that $\sum_{i \in S_{l}} a_{i}=T$

Reduction

- p "server" nodes, $b_{j}=2 T$ and $d_{j}=4$
- $3 p$ "client" nodes, $b_{j+p}=T-a_{j}$ and $d_{j+p}=1$
- 1 "terminal" node, $b_{4 p}=0, d_{4 p}=0$

Outline

(1) Introduction

(2) Complexity
(3) Successive algorithms

- Acyclic Algorithm
- With cycles

4 Simulations

(5) Conclusions

Upper bound

If \mathcal{S} has throughput T

- Node \mathcal{N}_{i} uses at most $X_{i}=\min \left(b_{i}, T d_{i}\right)$
- Total received rate: $n T$
- Thus $\sum_{i=0}^{n} \min \left(b_{i}, T d_{i}\right) \geq n T$
- Of course, $T \leq b_{0}$

Our algorithms

- Inputs: an instance, and a goal throughput T
- Output: a solution with resource augmentation (additional connections allowed)

ACYCLIC algorithm

If $\sum_{i=0}^{n-1} \min \left(b_{i}, T d_{i}\right) \geq n T$

- Order nodes by capacity : $X_{1} \geq X_{2} \geq \cdots \geq X_{n}$
- Each node k sends throughput T to as many nodes as possible, in consecutive order

ACYCLIC algorithm

If $\sum_{i=0}^{n-1} \min \left(b_{i}, T d_{i}\right) \geq n T$

- Order nodes by capacity : $X_{1} \geq X_{2} \geq \cdots \geq X_{n}$
- Each node k sends throughput T to as many nodes as possible, in consecutive order

ACYCLIC algorithm

If $\sum_{i=0}^{n-1} \min \left(b_{i}, T d_{i}\right) \geq n T$

- Order nodes by capacity : $X_{1} \geq X_{2} \geq \cdots \geq X_{n}$
- Each node k sends throughput T to as many nodes as possible, in consecutive order

ACYCLIC algorithm

If $\sum_{i=0}^{n-1} \min \left(b_{i}, T d_{i}\right) \geq n T$

- Order nodes by capacity : $X_{1} \geq X_{2} \geq \cdots \geq X_{n}$
- Each node k sends throughput T to as many nodes as possible, in consecutive order

ACYCLIC algorithm

If $\sum_{i=0}^{n-1} \min \left(b_{i}, T d_{i}\right) \geq n T$

- Order nodes by capacity : $X_{1} \geq X_{2} \geq \cdots \geq X_{n}$
- Each node k sends throughput T to as many nodes as possible, in consecutive order

ACYCLIC algorithm

If $\sum_{i=0}^{n-1} \min \left(b_{i}, T d_{i}\right) \geq n T$

- Order nodes by capacity : $X_{1} \geq X_{2} \geq \cdots \geq X_{n}$
- Each node k sends throughput T to as many nodes as possible, in consecutive order

Provides a valid solution

- $b_{0} \geq T$
- Sort by $X_{i} \Longrightarrow \forall k, \sum_{i=0}^{k} X_{i} \geq(k+1) T$
- Since $X_{k} \leq T d_{k}$, the outdegree of \mathcal{N}_{k} is at most $d_{k}+1$

General case: $\sum_{i=0}^{n} X_{i} \geq n T$

- Acyclic algorithm until k_{0} such that $\sum_{i=0}^{k_{0}} X_{i}<\left(k_{0}+1\right) T$

General case: $\sum_{i=0}^{n} X_{i} \geq n T$

- Acyclic algorithm until k_{0} such that $\sum_{i=0}^{k_{0}} X_{i}<\left(k_{0}+1\right) T$

General case: $\sum_{i=0}^{n} X_{i} \geq n T$

- Acyclic algorithm until k_{0} such that $\sum_{i=0}^{k_{0}} X_{i}<\left(k_{0}+1\right) T$

General case: $\sum_{i=0}^{n} X_{i} \geq n T$

- Acyclic algorithm until k_{0} such that $\sum_{i=0}^{k_{0}} X_{i}<\left(k_{0}+1\right) T$

General case: $\sum_{i=0}^{n} X_{i} \geq n T$

- Acyclic algorithm until k_{0} such that $\sum_{i=0}^{k_{0}} X_{i}<\left(k_{0}+1\right) T$

General case: $\sum_{i=0}^{n} X_{i} \geq n T$

- Acyclic algorithm until k_{0} such that $\sum_{i=0}^{k_{0}} X_{i}<\left(k_{0}+1\right) T$
- Recursively build partial solutions in which
- All nodes up to \mathcal{N}_{k} are served
- Only node \mathcal{N}_{k} has remaining bandwidth

Notations:

Recursion: initial case

Remind

- $M_{k}+R_{k}=X_{k}$
- $R_{k}+M_{k+1}=T$
- $f_{u}^{v} \geq M_{k_{0}}$

Recursion: initial case

Remind

$\begin{array}{ll}\text { - } & M_{k}+R_{k}=X_{k} \\ \text { - } & R_{k}+M_{k+1}=T\end{array}$

- $f_{u}^{v} \geq M_{k_{0}}$
- $\beta=\frac{M_{k_{0}+1}}{T} M_{k_{0}}$
- $\alpha=\frac{M_{k_{0}+1}}{T}\left(T-M_{k_{0}}\right)$
- $\alpha+\beta=M_{k_{0}+1}$
- $f_{k_{0}}^{k_{0}+1}+f_{k_{0}+1}^{k_{0}}=T$

Recursion: general case

Remind

$$
\begin{array}{ll}
\text { - } & M_{k}+R_{k}=X_{k} \\
\text { - } & R_{k}+M_{k+1}=T
\end{array}
$$

$$
f_{k}^{k-1}+f_{k-1}^{k}=T
$$

$$
k+1
$$

Recursion: general case

Remind

- $M_{k}+R_{k}=X_{k}$
- $R_{k}+M_{k+1}=T$
- $f_{k}^{k-1}+f_{k-1}^{k}=T$
- $\beta=\frac{M_{k+1}}{T} f_{k}^{k-1}$
- $\alpha=\frac{M_{k+1}}{T} f_{k-1}^{k}$
- $\alpha+\beta=M_{k+1}$
- $f_{k}^{k+1}+f_{k+1}^{k}=T$

Recursion: result

Final outdegree of $\mathcal{N}_{i}: o_{i} \leq \max \left(d_{i}+2,4\right)$

- Acyclic solution: $o_{i} \leq d_{i}+1$
- Degree of \mathcal{N}_{u} and of one node in the set is increased by 1
- Step k : o_{k} and o_{k-1} are increased by 1

Outline

(1) Introduction

(2) Complexity

3 Successive algorithms

(4) Simulations

(5) Conclusions

Comparison of different solutions

Unconstrained solution

Best achievable throughput without degree constraints: $\frac{\sum_{i} b_{i}}{n}$

Best Tree

In a tree of throughput T, flow through all edges must be T. Counting the edges yield $\sum_{i} \min \left(d_{i},\left[\frac{b_{i}}{T}\right\rfloor\right) \geq n$.

Best Acyclic

Computed by the Acyclic algorithm

Cyclic

Throughput when adding cycles

Results: comparisons to Cyclic

Ratio to Cycle

Results: Cyclic vs Unconstrained

Cycle ratio against Optimal

Outline

(1) Introduction

(2) Complexity

3 Successive algorithms

(4) Simulations

(5) Conclusions

Summary

- Theoretical study of the problem: optimal resource augmentation algorithm
- In practice:
a low degree is enough to reach a high throughput an acyclic solution is very reasonable
once the overlay is computed, there exist distributed algorithms to perform the broadcast

Going further

- Worst-case approximation ratio of ACYCLIC ?
- Study the robustness of our algorithms
- Design on-line and/or distributed versions

