
Motivation

Desktop accelerators (like GPUs) form

a powerful heterogeneous platform in

conjunction with multi-core CPUs. To

improve application performance on

these heterogeneous platforms, load-

balancing plays an important role to
distribute workload. And even more

important is to consider online

parameters that cannot be known a

priori for system scheduling.

A Computational Fluid Dynamics (CFD)

application, developed at the

Fraunhofer IGD, is used to exemplify

the implementation of iterative SLE

(Systems of Linear Equations) solvers

and the need of a hybrid CPU-GPU

approach to optimize performance.

Towards Dynamic Reconfigurable Load-Balancing
for Hybrid Desktop Platforms
Alécio P. D. Binotto (abinotto@inf.ufrgs.br) – Carlos E. Pereira – Dieter W. Fellner

Innovation

The approach

abstracts the Pus

using the OpenCL API as the platform independent programming model. It has the

proposal to extend OpenCL with a module that schedule and balance the workload

over the CPU and GPU for the specific case study in a high level. Starting with an initial

scheduling configuration just when the application starts, an online profiler monitors
and stores tasks’ execution times and platform conditions. Since the tasks are non-

deterministic, during application execution, a reconfigurable dynamic scheduling is

performed considering changes on runtime conditions. Figure above depicts the

approach; and bellow, the tow-phase scheduling approach.

First Assignment: the first guess faces a multidimensional scheduling problem with

NP-hard complexity and become more complex when dealing with more than two PUs

and several tasks. To optimize, this assignment is based on heuristics taking into

account the performance benchmark described on the right. The first scheduling is

performed in a static-code way, but dynamically just after the application starts

considering the domain size and the premise that the PUs are idle, defining a rule

based on the break-even point values presented on the next section. However, this

strategy can lead to a PU overflow, i.e., tasks being scheduled to the same PU,

showing the need for a context-aware adaptation.

Dynamic Reconfiguration: After the first assignment, information provided by profiling

is considered. Based on estimated costs, dynamic parameters, and awareness of

runtime conditions, a new task can be reconfigured to other PU just if the estimated

time to be executed in the new PU is less than the time in the current PU.

Preliminary Results

Specially, 3 iterative methods for solving

SLEs are analyzed: Jacobi, red-black

Gauss-Seidel (GS), Conjugate Gradient

(CG). The break-even points over the

PUs (quad-core CPU, 8800GT GPU,

and GTX285 GPU) used in the first
assignment of the scheduling are

presented as first results.

The figures bellow show the

performance of the solvers on the most

powerful used PU, the GTX285 GPU.

For a small problem size, GS and

Jacobi are faster; and for large

problems, it is the CG. On the right, a

comparison of the CG over the PUs.

For problems till 2K unknowns, the CPU

has better performance than GPUs.

Conclusions and Remaining Challenges

Based on the performance evaluation, it was

verified the need of strategies for dynamic

scheduling, improving OpenCL. We propose

a method for dynamic load-balancing over

CPU and GPU, applied to solvers for SLEs.

As remaining challenges, to develop the
load-balance reconfiguration phase on the

presented case study; and to analyze the

performance of the application without the

proposed method to evaluate the strategy

overhead.

24th IEEE International Parallel and Distributed Processing Symposium
PhD Forum

0

10

20

30

40

50

60

70

0 2000 4000 6000 8000 10000 12000

Unknowns

T
im

e
 (

m
s)

PCG on CPU

Conjugate Gradient on 8800

Conjugate Gradient on GTX 285

0

500

1000

1500

2000

2500

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Unknowns x 1000

T
im

e
 (

m
s)

Conjugate Gradient on 8800

Conjugate Gradient on 8800 new

Conjugate Gradient on GTX 285

Conjugate Gradient on GTX 285 new

0

100

200

300

400

500

600

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Unknowns x 1000

T
im

e
 (

m
s)

Single GPU

Average two GPUs

The GPU implementation was made

using CUDA and optimized for memory

coalescing. Particularly, the figure on the

right side, above, compares the CG

without and with (new) our strategy for

enabling memory coalescing.

The CG was also used for comparing
performances using multiple GPUs. There

is a need of 2M unknowns for using two

GPUs. With less elements, it results on an

increasing of communication. The multi-

GPU approach demonstrates that the

speedup depends on the problem size

and the achieved speedup was 1.7 for 8M

unknowns.

Importance

This PhD research follows the state-of-

the-art as several scientific applications

can now be executed on multi-core

desktop platforms. To our knowledge,
there is a need for research oriented to

support load-balancing over a CPU-GPU

(or CPU-accelerators) platform. The work

shows its relevance analyzing not just

platform characteristics, but also the

platform context execution scenario.

0

5

10

15

20

25

30

35

40

45

50

0 50 100 150 200 250 300 350 400 450 500

Unknowns x 1000

T
im

e
 (

m
s)

Conjugate Gradient on GTX 285

Jacobi on GTX 285

Gauss Seidel on GTX 285

0

100

200

300

400

500

600

700

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Unknowns x 1000

T
im

e
 (

m
s)

Conjugate Gradient on GTX 285

Jacobi on GTX 285

Gauss Seidel on GTX 285

Acknowledgments
Thanks for Daniel Weber and Christian Daniel for their
support. A. Binotto thanks the support given by DAAD
and Alßan, scholarship no. E07D402961BR.

