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FGPA-Based Acceleration

� In-socket acceleration platforms

� FPGA and CPU on same motherboard

� Xtremedata, Nallatech, SGI RASC

� How to program them?
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� How to program them?

� HDL is for experts

� Behavioural synthesis is limited

Can we provide a more familiar programming model?
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Potential Solution: Soft Processor

� Advantages of soft processors:

� Familiar, portable, customizable

� Our Goal: Develop a new S.P. architecture that:

� Excels at high-throughput workloads

Is naturally capable of high utilization of datapath
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� Is naturally capable of high utilization of datapath

� Challenges:

� Memory latency

� Pipeline latency and hazards

� Exploiting parallelism

� Scaling
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Inspiration: GPU Architecture

� Multithreading

� Tolerate memory and pipeline latencies

� Vector instructions

� Data-level parallelism, scaling

� Multiple processors
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� Multiple processors

� Scaling

Long-term goal: FPGA-specific design using above

This work: FPGA implementation of a GPU 
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Overview

� A GPU-based system

� NVIDIA’s Cg

� AMD’s CTM r5xx ISA

� A GPU-inspired architecture
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� Overcoming port limitations

� Avoiding stalls

� Preliminary results

� Simulation based on Xtremedata XD1000
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A GPU-Based System

A GPU-Inspired Soft Processor

A GPU-Based System

6



GPU Shader Processors

Shader

Program

( Xo,Yo)

Fetch( n,x,y)

Data

Register 

File

Constant
Registers
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Input Buffers
Registers

Output Buffer

Xo

Yo

Separate in/out buffers simplify memory coherence



NVIDIA’s Cg Language (C-like)

Cg Shader 

Program 
struct data_out {

float4 sum : COLOR;

};

data_out      multadd(float2 coord : TEXCOORD0,

uniform sampler2D A: TEXUNIT0,
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uniform sampler2D A: TEXUNIT0,

uniform sampler2D B: TEXUNIT1)  {

data_out r;

float4 offset = {1.0f, 1.0f, 1.0f, 1.0f};

r.sum = tex2D(A,coord)*tex2D(B,coord)+offset;

return r;

}
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Matrix-matrix element-wise multiplication + offset



AMD’s CTM r5xx ISA (simplified)

multadd:

TEX r1, r0 s1

TEX r0, r0 s0

MAD o0, r1 r0 c0

Loads

ALU op
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MAD o0, r1 r0 c0

END A    B   C

Source regsDest regs
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ALU op

Each register is a 4-element vector



A GPU-Inspired Architecture

A GPU-Inspired Soft Processor

A GPU-Inspired Architecture
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Soft Processor Architecture
Soft Processor

Coordinate Generator

Register File

Config
HT 

Slave

A B C

TEX

A

FPGA 
Block-
RAMs
have 
only 2 
ports!
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HT 

Master
Output Register

ALU

TEX

Fifo

Fifo

64 
Cycles!

305 cycles!

Must tolerate port limitations and latencies



Overcoming Port Limitations

� Problem: central register file:

� Needs four reads and two writes per cycle

� FPGA block RAMs have only two ports

� Solution: exploit symmetry of threads
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� Symmetry: every thread executes same inst sequence

� Group threads into batches of four

� Fetch operands across batches in lock-step
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Only read one operand per thread per cycle



Reading Operands Across Batch

multadd:

TEX r1 r0 s1

TEX r0 r0 s0

MAD o0 r1 r0 c0

END

multadd:

TEX r1 r0 s1

TEX r0 r0 s0

MAD o0 r1 r0 c0

END

multadd:

TEX r1 r0 s1

TEX r0 r0 s0

MAD o0 r1 r0 c0

END

multadd:

TEX r1 r0 s1

TEX r0 r0 s0

MAD o0 r1 r0 c0

END

Batch (of 4 threads)

A GPU-Inspired Soft Processor

Three cycles to read operands:

1) Read A’s

2) Read B’s

3) Read C’s

Only read one operand per thread per cycle



Transposed RegFile Access

T3
RF

T2
RF

T1
RF

T0
RF
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Avoiding ALU Pipeline Bubbles

� Problem: long pipeline and memory latency

� Frequent stalls lead to underutilized ALU datapath

� Solution: exploit abundance of threads

� Store contexts for multiple batches of threads
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� Store contexts for multiple batches of threads

� Issue instructions from different batches to hide latencies
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Requires logic to issue-from and manage batches

How many batches do we need to avoid bubbles?
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Issuing from Multiple Batches

ALU

Batch:
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ALU
Pipeline

Ideally ALU is fully utilized



Methodology and Results
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Methodology and Results
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Simulation Methodology

� SystemC-based simulation

� Parameterized to model XD1000

� Assume conservative 100Mhz soft processor clock

� Cycle accurate at the block interfaces
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� Cycle accurate at the block interfaces

� Models HyperTransport (bandwidth and latency)

� currently 8-bit HT, capable of 16-bit HT

� Benchmarks

� photon: monte-carlo heat-transfer sim (ALU-intensive)

� matmatmult: dense matrix multiplication (mem-intensive)
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ALU Utilization (8-bit HT)
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ALU Utilization (8-bit HT)
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Utilized MemoryNot ALU Data Hazard

Matmatmult is bottlenecked on memory bandwidth



ALU Utilization (16-bit HT)
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Utilized MemoryNot ALU Data Hazard

32 batches is sufficient



Conclusions
� GPU-inspired soft processor architecture

� exploits multithreading, vector operations

� Thread symmetry and batching allows:

� tolerating limited block RAM ports

� tolerating long memory and pipeline latencies
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� tolerating long memory and pipeline latencies

� 32 batches sufficient 

� to achieve 100% ALU utilization

� Future work:

� customize programming model and arch. to FPGAs

� exploit longer vectors, multiple CPUs, custom ops
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