
A GPU-Inspired Soft
Processor for High-

Throughput Acceleration

1

Throughput Acceleration

Jeffrey Kingyens and J. Gregory Steffan
Electrical and Computer Engineering

University of Toronto

FGPA-Based Acceleration

� In-socket acceleration platforms

� FPGA and CPU on same motherboard

� Xtremedata, Nallatech, SGI RASC

� How to program them?

A GPU-Inspired Soft Processor

� How to program them?

� HDL is for experts

� Behavioural synthesis is limited

Can we provide a more familiar programming model?

2

XD1000

Potential Solution: Soft Processor

� Advantages of soft processors:

� Familiar, portable, customizable

� Our Goal: Develop a new S.P. architecture that:

� Excels at high-throughput workloads

Is naturally capable of high utilization of datapath

A GPU-Inspired Soft Processor

� Is naturally capable of high utilization of datapath

� Challenges:

� Memory latency

� Pipeline latency and hazards

� Exploiting parallelism

� Scaling

3

Inspiration: GPU Architecture

� Multithreading

� Tolerate memory and pipeline latencies

� Vector instructions

� Data-level parallelism, scaling

� Multiple processors

A GPU-Inspired Soft Processor

� Multiple processors

� Scaling

Long-term goal: FPGA-specific design using above

This work: FPGA implementation of a GPU

4

Overview

� A GPU-based system

� NVIDIA’s Cg

� AMD’s CTM r5xx ISA

� A GPU-inspired architecture

A GPU-Inspired Soft Processor

� Overcoming port limitations

� Avoiding stalls

� Preliminary results

� Simulation based on Xtremedata XD1000

5

A GPU-Based System

A GPU-Inspired Soft Processor

A GPU-Based System

6

GPU Shader Processors

Shader

Program

(Xo,Yo)

Fetch(n,x,y)

Data

Register

File

Constant
Registers

A GPU-Inspired Soft Processor 7

Input Buffers
Registers

Output Buffer

Xo

Yo

Separate in/out buffers simplify memory coherence

NVIDIA’s Cg Language (C-like)

Cg Shader

Program
struct data_out {

float4 sum : COLOR;

};

data_out multadd(float2 coord : TEXCOORD0,

uniform sampler2D A: TEXUNIT0,

A GPU-Inspired Soft Processor

uniform sampler2D A: TEXUNIT0,

uniform sampler2D B: TEXUNIT1) {

data_out r;

float4 offset = {1.0f, 1.0f, 1.0f, 1.0f};

r.sum = tex2D(A,coord)*tex2D(B,coord)+offset;

return r;

}

8

Matrix-matrix element-wise multiplication + offset

AMD’s CTM r5xx ISA (simplified)

multadd:

TEX r1, r0 s1

TEX r0, r0 s0

MAD o0, r1 r0 c0

Loads

ALU op

A GPU-Inspired Soft Processor

MAD o0, r1 r0 c0

END A B C

Source regsDest regs

9

ALU op

Each register is a 4-element vector

A GPU-Inspired Architecture

A GPU-Inspired Soft Processor

A GPU-Inspired Architecture

10

Soft Processor Architecture
Soft Processor

Coordinate Generator

Register File

Config
HT

Slave

A B C

TEX

A

FPGA
Block-
RAMs
have
only 2
ports!

A GPU-Inspired Soft Processor 11

HT

Master
Output Register

ALU

TEX

Fifo

Fifo

64
Cycles!

305 cycles!

Must tolerate port limitations and latencies

Overcoming Port Limitations

� Problem: central register file:

� Needs four reads and two writes per cycle

� FPGA block RAMs have only two ports

� Solution: exploit symmetry of threads

A GPU-Inspired Soft Processor

� Symmetry: every thread executes same inst sequence

� Group threads into batches of four

� Fetch operands across batches in lock-step

12

Only read one operand per thread per cycle

Reading Operands Across Batch

multadd:

TEX r1 r0 s1

TEX r0 r0 s0

MAD o0 r1 r0 c0

END

multadd:

TEX r1 r0 s1

TEX r0 r0 s0

MAD o0 r1 r0 c0

END

multadd:

TEX r1 r0 s1

TEX r0 r0 s0

MAD o0 r1 r0 c0

END

multadd:

TEX r1 r0 s1

TEX r0 r0 s0

MAD o0 r1 r0 c0

END

Batch (of 4 threads)

A GPU-Inspired Soft Processor

Three cycles to read operands:

1) Read A’s

2) Read B’s

3) Read C’s

Only read one operand per thread per cycle

Transposed RegFile Access

T3
RF

T2
RF

T1
RF

T0
RF

A GPU-Inspired Soft Processor 14

3 2 1 0

C

3 2 1 0

B

3 2 1 0

A

Avoiding ALU Pipeline Bubbles

� Problem: long pipeline and memory latency

� Frequent stalls lead to underutilized ALU datapath

� Solution: exploit abundance of threads

� Store contexts for multiple batches of threads

A GPU-Inspired Soft Processor

� Store contexts for multiple batches of threads

� Issue instructions from different batches to hide latencies

15

Requires logic to issue-from and manage batches

How many batches do we need to avoid bubbles?

10 2 3

Issuing from Multiple Batches

ALU

Batch:

A GPU-Inspired Soft Processor

ALU
Pipeline

Ideally ALU is fully utilized

Methodology and Results

A GPU-Inspired Soft Processor

Methodology and Results

17

Simulation Methodology

� SystemC-based simulation

� Parameterized to model XD1000

� Assume conservative 100Mhz soft processor clock

� Cycle accurate at the block interfaces

A GPU-Inspired Soft Processor

� Cycle accurate at the block interfaces

� Models HyperTransport (bandwidth and latency)

� currently 8-bit HT, capable of 16-bit HT

� Benchmarks

� photon: monte-carlo heat-transfer sim (ALU-intensive)

� matmatmult: dense matrix multiplication (mem-intensive)

18

ALU Utilization (8-bit HT)
A

L
U

 U
ti

li
z

a
ti

o
n

 (
%

)

Memory

Not ALU

Data Hazard

100%

80%

60%

A GPU-Inspired Soft Processor 19

A
L

U
 U

ti
li

z
a

ti
o

n
 (

%
)

Number of Hardware Batch Contexts
(Photon)

Utilized

Not ALU
40%

20%

1 2 4 8 16 32 64
0%

ALU Utilization (8-bit HT)

A GPU-Inspired Soft Processor 20

Utilized MemoryNot ALU Data Hazard

Matmatmult is bottlenecked on memory bandwidth

ALU Utilization (16-bit HT)

A GPU-Inspired Soft Processor 2121

Utilized MemoryNot ALU Data Hazard

32 batches is sufficient

Conclusions
� GPU-inspired soft processor architecture

� exploits multithreading, vector operations

� Thread symmetry and batching allows:

� tolerating limited block RAM ports

� tolerating long memory and pipeline latencies

A GPU-Inspired Soft Processor

� tolerating long memory and pipeline latencies

� 32 batches sufficient

� to achieve 100% ALU utilization

� Future work:

� customize programming model and arch. to FPGAs

� exploit longer vectors, multiple CPUs, custom ops

22

