
April 19, 2010

High-Level Synthesis Techniques for

In-Circuit Assertion-Based Verification

John Curreri

Ph.D. Candidate of ECE, University of Florida

Dr. Greg Stitt

Assistant Professor of ECE, University of Florida

Dr. Alan D. George

Professor of ECE, University of Florida

Name=speaker

2

High-Level Synthesis

� Ease of programming
� No HDL coding required for

application acceleration
� Abstraction of communication function

� Provides built-in support
� Methods to gain speedup

� Pipelining of loops
� High-performance library functions

� Mitigation of race conditions
� Signals
� Semaphores

� Communication
� Buffered streaming transfers
� DMA transfers

e.g. Impulse-C tool flow

HLS

Simulation

C Source

HDL

HDL

Simulation

Logic

Analyzer

Framework

Presentation

Framework

Instrumentation

High-Level Synthesis Verification

� HLS simulation
� Executes source on CPU
� Does not provide accurate

verification

� HDL simulation and analyzers
� Provide accurate verification
� Productivity lowered by the need to

understand machine-generated HDL

� Verification framework needed
� Maintains high abstraction level and

provides accurate verification
� Programmers are not required to

understand HDL or HDL tools

4

ANSI-C Assertion Debugging
� Error checking

� Used to check if variables are in an acceptable range

� Example usage
� int num,i,x[10];

while(num==0)
{

num=x[i];
i++
assert(i<10);

}

� Failure actions
� Failure information is printed to stderr

� assert_test.c:7: main: Assertion `i==0' failed.
� W:X: Y: Assertion ' Z' failed.
� W = file name; X = line number; Y = function name; Z= expression

� Program terminated using abort()

� Assertion checking switch
� #define NDEBUG
� Disables assertion checking

assert_test.c:7: main:
Assertion 'i == 0' failed.

assert(i == 0);

Assertion Output

Assertion Code

5

Related Research

� Assertion languages and libraries
� VHDL assertion statements
� SystemVerilog Assertions (SVA)
� Open Verification Library (OVL)
� Property Specification Language (PSL)

� Commercial assertion tools
� Temento’s DiaLite

� Academic debugging tools
� Camera’s debugging environment
� Sea Cucumber synthesizing compiler

� Logic analyzers
� Xilinx’s ChipScope
� Altera’s SignalTap

66

Verification Framework Overview

memtest_hw.c:14: Assertion

'address >= 0' failed.

HLS Assert

assert(address >= 0);

Assertion Output

Assertion Code

C
P
U

F
P
G
A

� Assertion-based verification usage

� Document and check for conditions
that should never occur during
execution

� In-circuit verification process

� Open application files in GUI

� Single-click instrumentation

� Converts assertions to if statements

� Generates communication channels

� Creates software function to display
errors and program abort if failure
detected

� Use standard tool flow to
compile/execute

� Assertion failure output during
execution

� Seamlessly transfer assertions from
simulation to runtime

7

Standard Assertion

� Assertion conversion
� FPGA side

� Assert statement changed to if
statement

� False evaluation
� FPGA side

� Sends a message with a
unique identifier

� Assertion notification
� CPU side

� Function to receive, decode,
and display failed assertions

� ANSI-C output format

8

Assertion Optimizations

� Parallelization
� Assertion checking can slow down the application

� Move assertion checkers to a separate parallel process

� Communication can slow down pipelined assertions
� Move communication calls to a third process

Standard Optimized

1

2

3

4C
lo

c
k
 c

y
c
le

s

App. line 1

App. line 2

Failure communication

Check assertion

App. line 1

App. line 4

App. line 3

App. line 2 Check assertion

Failure communication

9

State-machine Comparison

Original Standard assertion Optimized assertion

assert((j <= 0 || a[0] == i) && (b[0] == 2 || i > 0));

Array data retrieval
requires an extra state

Boolean operators
require many additional states

9

10

Assertion Optimizations

� Resource replication
� Application and assertion are competing for data access

� Replicate data structure (e.g., duplicated block RAM that is
dedicated for assertion read access)

Standard Optimized

1

2

3

4C
lo

c
k
 c

y
c
le

s

App. read a[0]

App. read a[1] Communication

Assert read a[1]

App. read a[0]

Application

Application

App. read a[1] Assert read a[1]

Communication

Application

11

Assertion Optimizations

P P P P P P P P

32 32 32 32

1

4

1 1 1

Impulse C wrapper

32

Impulse C wrapper

C
32 32

32 32

A A A A A A A A

P

A

C

Application process

Assertion checker

Failure communication

Standard Optimized

C C C C

� Resource sharing
� Minimize FPGA resources usage of

assertions
� Reuse assertion checking and

communication resources amongst all
assertion calls

12

In-Circuit Verification Case Study

� Assertion in Line 6 shows
Impulse-C translation mistake
� Simulation

� 64-bit comparison of
4294967286 > 4294967296
evaluates to false

� Execution on target platform
� 5-bit comparison of 22 > 0

evaluates to true

� Assertion in Line 8 shows
user translation mistake
� Impulse-C simulation requires

C code for HDL function

� Behaviors of C code and HDL
may not be the same

� Assertions can be used to
check that behaviors match

1 co_uint64 c2, c1;

2 co_int32 address, array[20], out;

3 c2 = 4294967286; c1 = 4294967296;

4 if (c2 > c1) address = c2 - c1;

5 else address = 0;

6 assert(address >= 0);

7 out = user_hdl(address);

8 assert((30 > out) && (out > 20));

9 array[address] = out;

Impulse-C design, XD1000, Stratix-II (EP2S180)

13

Debugging Case Study

� assert(0);

� Used to “trace” execution

� To find when an application
fails to complete (hangs)

� Positive indicator rather than
negative indicator

� NABORT

� Stops application from aborting

� Output comparison

� Line numbers of the failed
assertions

� Software simulation vs. platform execution

� Hang occurred at a memory read at end of loop

� Solution

� Memory read replaced with memory write

� Correction allowed the process to complete execution

263 for (i = 1; i < status; i++) {
264 IF_SIM(printf("HW:DE:%i\n",i);)
265 assert(0);
…
392 assert(0);
393 co_memory_readblock(…);
394 assert(0);
395 }
396 assert(0);
297 co_signal_post(done, status);

Impulse-C design, XD1000, Stratix-II (EP2S180)

14

Application Case Studies
� Triple-DES

� Optimized assertions
� No latency overhead
� FPGA overhead to the right

� Standard assertions
� More ALUT (+0.125%)
� Higher freq. (144.74MHz)

� Edge detection
� Optimized assertions

� No performance overhead
� FPGA overhead to the right

� Standard assertions
� Less ALUTs (+0.03%)

EP2S180 Original Assert Overhead

Logic Used
(out of 143520)

13677
(9.53%)

13851
(9.65%)

+174
(+0.12%)

Comb. ALUT
(out of 143520)

7929
(5.52%)

8025
(5.59%)

+96
(+0.07%)

Registers
(out of 143520)

10019
(6.98%)

10055
(7.01%)

+36
(+0.03%)

Block RAM
(9383040 bits)

222912
(2.37%)

223488
(2.38%)

+221
(+0.04%)

Frequency
(MHz)

145.71 141.98 -3.73
(-2.56%)

EP2S180 Original Assert Overhead

Logic Used
(out of 143520)

12250
(8.54%)

12273
(8.56%)

+23
(+0.02%)

Comb. ALUT
(out of 143520)

6726
(4.69%)

6809
(4.75%)

+83
(+0.06%)

Registers
(out of 143520)

9371
(6.53%)

9417
(6.56%)

+46
(+0.03%)

Block RAM
(9383040 bits)

141120
(1.50%)

141696
(1.51%)

+576
(+0.01%)

Frequency
(MHz)

77.52 79.31 +1.79
(+2.31%)

Impulse-C design, XD1000, Stratix-II (EP2S180)

15

Scalability Case Study

150

160

170

180

190

200

210

0 16 32 48 64 80 96 112 128

Processes with Assertion

F
re

q
u
e
n
c
y
 (
M

H
z
)

 _

Orignal Optimized
Unoptimized

0.0%
0.2%

0.4%
0.6%

0.8%
1.0%

1.2%
1.4%

1.6%

0 16 32 48 64 80 96 112 128

Processes with Assertion

R
e
s
o
u
rc

e
 O

v
e
rh

e
a
d

 _

Logic Used Comb ALUT Registers

Block RAM Routing

� Resource overhead
� Optimized shown to right

� 128 processes
� 4.07% ALUTs standard

� 1.34% of ALUTs optimized
� Over a 3x improvement

� Frequency overhead
� Shown in graph to right

� 128 processes
� 154MHz standard

� 18.8% overhead

� 189MHz optimized
� 18.5% improvement

Impulse-C design, XD1000, Stratix-II (EP2S180)

16

Performance Overhead Case Study

� Single-comparison
assertion
� Lower bound on

optimization
improvements

� Scalar variable
� Optimized overhead

reduced to zero

� Array
� Optimized overhead

� Rate reduced to zero

� Latency reduced

Impulse-C design, XD1000, Stratix-II (EP2S180)

17

Conclusions

� Created first framework/tool (to our knowledge) for
HLS in-circuit assertion-based verification
� Familiar and easy to use ANSI-C assertions

� Automated conversion for Impulse C

� Application case studies performed
� Low area and frequency overhead

� Highly scalable

� Minimal to no change of application’s state machine

� Future work
� Fully automate generation of optimized assertions

� Add capability to check timing via assertions

18

Questions

19

References
1. Deepchip, “Mindshare vs. marketshare,” http://www.deepchip.com/items/snug07-01.html, March

2008.

2. D. Pellerin and Thibault, Practical FPGA Programming in C. Prentice Hall PTR, 2005.

3. D. Poznanovic, “Application development on the SRC Computers, Inc. systems,” in Parallel and

Distributed Processing Symposium, 2005. Proceedings. 19th IEEE International, April 2005, pp.

78a–78a.

4. Impulse Accelerated Technologies, “Codeveloper’s users guide,” 2008.

5. GNU, “The GNU C library reference manual,” http://www.gnu.org/software/libc/manual, March 2009.

6. Accellera, “SystemVerilog 3.1a language reference manual,” http://www.eda.org/sv/SystemVerilog

3.1a.pdf, May 2004.

7. Accellera, “OVL open verification library manual, ver. 2.4,” http://www.accellera.org/activities/ovl,
March 2009.

8. Accellera, “PSL language reference manual, ver. 1.1,” http://www.eda.org/vfv/docs/PSL-v1.1.pdf,

June 2004.

9. M. Pellauer, M. Lis, D. Baltus, and R. Nikhil, “Synthesis of synchronous assertions with guarded

atomic actions,” in Formal Methods and Models for Co-Design, 2005. MEMOCODE ’05.

Proceedings. Third ACM and IEEE International Conference on, July 2005, pp. 15–24.

10. M. Boule, J.-S. Chenard, and Z. Zilic, “Assertion checkers in verification, silicon debug and in-field
diagnosis,” in Quality Electronic Design, 2007. ISQED ’07. 8th International Symposium on, March

2007, pp. 613–620.

20

References
11. M. Kakoee, M. Riazati, and S. Mohammadi, “Enhancing the testability of RTL designs using

efficiently synthesized assertions,” in Quality Electronic Design, 2008. ISQED 2008. 9th
International Symposium on, March 2008, pp. 230–235.

12. K. Camera and R. Brodersen, “An integrated debugging environment for fpga computing platforms,”

in Field Programmable Logic and Applications, 2008. FPL 2008. International Conference on, Sept.

2008, pp. 311–316.

13. Xilinx, “ChipScope pro 10.1 software and cores user guide,” http://www.xilinx.com/ise/verification/

chipscope pro sw cores 10 1 ug029.pdf, March 2008.

14. Altera, “Design debugging using the SignalTap ii embedded logic analyzer,”
http://www.altera.com/literature/hb/qts/qts qii53009.pdf, March 2009.

15. K. Hemmert, J. Tripp, B. Hutchings, and P. Jackson, “Source level debugger for the sea cucumber

synthesizing compiler,” in Field-Programmable Custom Computing Machines, 2003. FCCM 2003.

11th Annual IEEE Symposium on, April 2003, pp. 228–237.

16. G. D. Micheli, Synthesis and Optimization of Digital Circuits. McGraw-Hill, 1994.

17. XtremeData Inc., “XD1000 FPGA coprocessor module for socket 940,”

http://www.xtremedatainc.com/pdf/XD1000 Brief.pdf.

18. NIST, “Data encryption standard (DES),” http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf,
October 1999.

