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High-Level Synthesis

� Ease of programming
� No HDL coding required for 

application acceleration
� Abstraction of communication function

� Provides built-in support
� Methods to gain speedup

� Pipelining of loops
� High-performance library functions 

� Mitigation of race conditions
� Signals
� Semaphores 

� Communication
� Buffered streaming transfers
� DMA transfers

e.g. Impulse-C tool flow
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High-Level Synthesis Verification

� HLS simulation
� Executes source on CPU
� Does not provide accurate 

verification 

� HDL simulation and analyzers
� Provide accurate verification
� Productivity lowered by the need to 

understand machine-generated HDL

� Verification framework needed
� Maintains high abstraction level and 

provides accurate verification
� Programmers are not required to 

understand HDL or HDL tools
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ANSI-C Assertion Debugging
� Error checking

� Used to check if variables are in an acceptable range

� Example usage
� int num,i,x[10];

while(num==0)
{

num=x[i];
i++
assert(i<10);

}

� Failure actions
� Failure information is printed to stderr

� assert_test.c:7: main: Assertion `i==0' failed.
� W:X: Y: Assertion ' Z' failed.
� W = file name; X = line number; Y = function name; Z= expression

� Program terminated using abort()

� Assertion checking switch
� #define NDEBUG
� Disables assertion checking

assert_test.c:7: main: 
Assertion 'i == 0' failed.

assert(i == 0);

Assertion Output

Assertion Code



5

Related Research

� Assertion languages and libraries
� VHDL assertion statements
� SystemVerilog Assertions (SVA)
� Open Verification Library (OVL) 
� Property Specification Language (PSL)

� Commercial assertion tools
� Temento’s DiaLite

� Academic debugging tools
� Camera’s debugging environment
� Sea Cucumber synthesizing compiler

� Logic analyzers
� Xilinx’s ChipScope
� Altera’s SignalTap
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Verification Framework Overview

memtest_hw.c:14: Assertion 

'address >= 0' failed. 

HLS Assert

assert(address >= 0);

Assertion Output

Assertion Code
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� Assertion-based verification usage

� Document and check for conditions 
that should never occur during 
execution

� In-circuit verification process

� Open application files in GUI

� Single-click instrumentation

� Converts assertions to if statements

� Generates communication channels

� Creates software function to display 
errors and program abort if failure 
detected

� Use standard tool flow to 
compile/execute

� Assertion failure output during 
execution

� Seamlessly transfer assertions from 
simulation to runtime
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Standard Assertion

� Assertion conversion 
� FPGA side

� Assert statement changed to if 
statement 

� False evaluation 
� FPGA side

� Sends a message with a 
unique identifier

� Assertion notification 
� CPU side

� Function to receive, decode, 
and display failed assertions

� ANSI-C output format
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Assertion Optimizations

� Parallelization
� Assertion checking can slow down the application

� Move assertion checkers to a separate parallel process

� Communication can slow down pipelined assertions
� Move communication calls to a third process 

Standard Optimized
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Failure communication

Check assertion

App. line 1

App. line 4

App. line 3

App. line 2 Check assertion

Failure communication
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State-machine Comparison

Original Standard assertion Optimized assertion

assert((j <= 0 || a[0] == i) && (b[0] == 2 || i > 0));

Array data retrieval 
requires an extra state

Boolean operators
require many additional states

9
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Assertion Optimizations

� Resource replication
� Application and assertion are competing for data access 

� Replicate data structure (e.g., duplicated block RAM that is 
dedicated for assertion read access)

Standard Optimized
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App. read a[1] Communication

Assert read a[1]

App. read a[0] 

Application

Application

App. read a[1] Assert read a[1]

Communication

Application
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Assertion Optimizations
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� Resource sharing
� Minimize FPGA resources usage of 

assertions 
� Reuse assertion checking and 

communication resources amongst all 
assertion calls
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In-Circuit Verification Case Study

� Assertion in Line 6 shows 
Impulse-C translation mistake
� Simulation

� 64-bit comparison of 
4294967286 > 4294967296 
evaluates to false

� Execution on target platform
� 5-bit comparison of 22 > 0 

evaluates to true

� Assertion in Line 8 shows 
user translation mistake
� Impulse-C simulation requires 

C code for HDL function

� Behaviors of C code and HDL 
may not be the same 

� Assertions can be used to 
check that behaviors match

1   co_uint64 c2, c1;

2   co_int32 address, array[20], out;

3   c2 = 4294967286; c1 = 4294967296;

4   if (c2 > c1) address = c2 - c1;

5   else address = 0;

6   assert(address >= 0);

7   out = user_hdl(address);

8   assert((30 > out) && (out > 20));

9   array[address] = out;

Impulse-C design, XD1000, Stratix-II (EP2S180)
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Debugging Case Study

� assert(0);

� Used to “trace” execution

� To find when an application 
fails to complete (hangs)

� Positive indicator rather than 
negative indicator 

� NABORT 

� Stops application from aborting

� Output comparison

� Line numbers of the failed 
assertions 

� Software simulation vs. platform execution

� Hang occurred at a memory read at end of loop

� Solution

� Memory read replaced with memory write 

� Correction allowed the process to complete execution

263    for ( i = 1; i < status; i++ ) {
264       IF_SIM(printf("HW:DE:%i\n",i);)
265       assert(0); 
…
392       assert(0);
393       co_memory_readblock(…);
394       assert(0);
395    }
396    assert(0);
297    co_signal_post(done, status);

Impulse-C design, XD1000, Stratix-II (EP2S180)
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Application Case Studies
� Triple-DES

� Optimized assertions
� No latency overhead
� FPGA overhead to the right

� Standard assertions
� More ALUT (+0.125%)
� Higher freq. (144.74MHz)

� Edge detection
� Optimized assertions

� No performance overhead
� FPGA overhead to the right

� Standard assertions
� Less ALUTs (+0.03%)

EP2S180 Original Assert Overhead

Logic Used
(out of 143520)

13677
(9.53%)

13851
(9.65%)

+174
(+0.12%)

Comb. ALUT
(out of 143520)

7929
(5.52%)

8025
(5.59%)

+96
(+0.07%)

Registers
(out of 143520)

10019 
(6.98%)

10055 
(7.01%)

+36 
(+0.03%)

Block RAM 
(9383040 bits)

222912 
(2.37%)

223488 
(2.38%)

+221
(+0.04%)

Frequency 
(MHz)

145.71 141.98 -3.73
(-2.56%)

EP2S180 Original Assert Overhead

Logic Used
(out of 143520)

12250
(8.54%)

12273 
(8.56%)

+23
(+0.02%)

Comb. ALUT
(out of 143520)

6726 
(4.69%)

6809 
(4.75%)

+83 
(+0.06%)

Registers
(out of 143520)

9371 
(6.53%)

9417 
(6.56%)

+46 
(+0.03%)

Block RAM 
(9383040 bits)

141120 
(1.50%)

141696 
(1.51%)

+576 
(+0.01%)

Frequency 
(MHz)

77.52 79.31 +1.79
(+2.31%)

Impulse-C design, XD1000, Stratix-II (EP2S180)



15

Scalability Case Study
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� Resource overhead
� Optimized shown to right

� 128 processes 
� 4.07% ALUTs standard

� 1.34% of ALUTs optimized
� Over a 3x improvement

� Frequency overhead
� Shown in graph to right

� 128 processes 
� 154MHz standard 

� 18.8% overhead 

� 189MHz optimized 
� 18.5% improvement

Impulse-C design, XD1000, Stratix-II (EP2S180)
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Performance Overhead Case Study

� Single-comparison 
assertion
� Lower bound on  

optimization 
improvements

� Scalar variable
� Optimized overhead 

reduced to zero

� Array
� Optimized overhead 

� Rate reduced to zero

� Latency reduced 

Impulse-C design, XD1000, Stratix-II (EP2S180)
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Conclusions

� Created first framework/tool (to our knowledge) for 
HLS in-circuit assertion-based verification
� Familiar and easy to use ANSI-C assertions

� Automated conversion for Impulse C

� Application case studies performed
� Low area and frequency overhead

� Highly scalable

� Minimal to no change of application’s state machine

� Future work
� Fully automate generation of optimized assertions

� Add capability to check timing via assertions
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Questions
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