
Solving large sparse linear systems in a grid
environment using Java

Raphaël COUTURIER1 Fabienne JÉZÉQUEL2

1Laboratoire d’Informatique de l’Université de Franche-Comté
IUT Belfort-Montbéliard

France

2Laboratoire d’Informatique de Paris 6
Université Pierre et Marie Curie - Paris 6

France

11th IEEE International Workshop on Parallel and Distributed
Scientific and Engineering Computing

April 19-23, 2010
Atlanta, USA

Solving large sparse linear systems in a grid environment using Java PDSEC 2010 1



Our objectives

Our aim is to solve large sparse linear systems in a grid environment
using the Java language and the MPJ library.

MPJ is an implementation of the Java bindings for the MPI standard
http://mpj-express.org.

We compare
a Java code using MPJ
a C code using MPI
a code using the PETSc library.

The PETSc library has been written in C and employs the MPI
standard for all message-passing communication.
http://www-unix.mcs.anl.gov/petsc
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The GMRES method to solve linear systems
Saad & Schultz, 1986

Let Ax = b with A ∈ Rn×n, x , b ∈ Rn and x0 be an initial approximation.

GMRES(A, b, x0, m)
Let r0 = b − Ax0. In m steps, we compute the Krylov subspace

Km(A, r0)=span{r0, Ar0, ..., Am−1r0}.

xm is the unique vector of x0 +Km(A, r0) which minimizes ‖b − Axm‖2.

Because the storage and computational requirements become
prohibitive as m increases, the GMRES method is restarted.

RestartedGMRES(A, b, x0, m)
REPEAT

GMRES(A, b, x0, m)
x0 ← xm

UNTIL convergence
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Decomposition of the linear system (1/2)

The matrix A is split into as many horizontal rectangle matrices as
processors.

The right-hand-side b is split into as many sub-vectors as processors.

Our parallel version of GMRES takes into account the sparsity of the
matrix.

Our aim is to solve a very large system: a typical value for n is 108.

To avoid the storage of the entire vector x on all the processors, x is
split into sub-vectors too.
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Decomposition of the linear system (2/2)

Each processor has to solve Asub × xsub = bsub −Aleft × xleft −Aright × xright .

bandwidth

ArightAleft =X

xleft

xsub

xright

Asub bsub
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Generation of matrices

Because we aim at comparing performance in solving very large
sparse linear systems without long data file transfers, our linear
systems are generated at run time.

Each processor computes specific part of the matrix, so that each
rectangle matrix is automatically distributed on the processors.

Each generated matrix consists of several non-empty diagonals.

Random values are used to compute the matrix entries.

The same random number generator has been used for C and Java.
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Context of the experiments: GRID’5000

GRID’5000 (http://www.grid5000.fr) is an experimental grid
platform that features a total of 5000 cores geographically distributed
on different sites: 9 in France and 1 in Brazil.
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Context of the experiments: deployment on
GRID’5000

Because clusters in GRID’5000 use different operating systems and
libraries, it is possible to deploy a common Linux image on the nodes
reserved for an experiment.

, We can install our operating system with all our libraries.
, Our operating system does not offer services that may slow down

network performance.
/ Deployment is quite long when using many distant sites.
/ When we deploy many nodes, some of them may be not deployed.
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Experiments in a local context
Serial run times measured on the bordereau cluster

size bandwidth solver time iter. error
Java (deploy.) 39.11
Java (no deploy.) 43.14 47 1.3e-85.106 5.102

C 34.31
PETSc 35.97 52 3.6e-8
Java (deploy.) 35.30
Java (no deploy.) 35.35 43 7.5e-95.106 5.103

C 34.08
PETSc 35.29 49 3.6e-8

Comparable run times with the four kinds of computation.
If the bandwidth increases, the run time is similar or decreases.
This trend is particular to our serial executions. In parallel
environments, if the bandwidth increases, the communication
volume also increases and so does the execution time.
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Experiments in a local context
Results obtained on 64 machines of the bordereau cluster

size bandwidth solver time iter. error
Java (deploy.) 142.8
Java (no deploy.) 141.0 43 1.9e-78.108 8.104

C 129.7
PETSc 129.1 49 2.5e-7
Java (deploy.) 231.7
Java (no deploy.) 201.2 45 2.5e-78.108 8.105

C 232.1
PETSc 226.4 53 4.1e-7

The impact of the deployment on performance can be positive or
negative, depending on the matrix.

Except in one case, the C code leads to better performance than the
Java code (with or without deployment).

The C code and the PETSc code lead to comparable performance.

The code in Java or C performs less iterations and leads to a better error
than the PETSc code.
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Experiments in a distant context
Java code without deployment
190 machines located in Lille, Nancy and Sophia (7 clusters involved)

size bandwidth time iter. error
8.108 8.104 73.1 43 1.9e-7
8.108 8.105 208.6 45 2.5e-7
109 105 90.5 43 1.4e-7
109 106 259.2 44 2.1e-7

For the matrix of size 8.108 and bandwidth 8.104, the performance
on 190 processors in a distant context is twice better than on 64
processors in a local context.
For the matrix of size 8.108 and bandwidth 8.105, there is no such
significant difference between the two run times.

If the bandwidth increases, the communication volume also increases
and the impact of communications on run time is greater in a distant
context than in a local context.
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Experiments in a distant context
Java code without deployment
60 machines located in Rennes and Nancy (2 clusters involved)

size bandwidth time iter. error
109 105 123.1 43 1.4e-7
109 106 263.2 44 2.1e-7
2.109 2.105 276.7 43 1.2e-7
2.109 2.106 522.8 44 2.0e-7

For the matrices of size 109, the run times on 60 processors are longer than
on 190 processors:

36 % longer for the matrix of bandwidth 105

1.5 % longer for the matrix of bandwidth 106.

If the bandwidth↗, the communication volume↗.
The impact on run time is greater in a context involving 7 clusters on 3 sites
than in a context involving only 2 distant clusters.

The run times of systems of size 2.109 are about twice that of systems of size
109 having the same size/bandwidth ratio.
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Conclusion

The efficiency of our linear GMRES parallel solver in Java is
comparable :

to the same solver written in C
to the PETSc library.

Our GMRES implementation in Java allows us to solve a sparse
system of size two billions using two geographically distant clusters in
a few minutes.

Java could be more often used for high performance computing.
Its portability is an undeniable advantage on heterogeneous grids.
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Perspectives

Sparse matrix stored in the CSR format
Performance of alternative storage formats (BCSR, BCSD)?

Performance of Java implementation of other linear solvers or
preconditioners?

In our experiments, one process per machine has been run.
Implementation taking into account the number of processors per
machine and the multi-core architecture of the processors?

Implementation of sparse linear solvers on hybrid architectures
consisting of both CPUs and GPUs?
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