
Performance Study of Mapping

Irregular Computations on GPUs

Steven Solomon and Parimala Thulasiraman

University of Manitoba

1

Presented by: Ruppa Thulasiram

What Will Be Covered?

(1) Introduction and Motivation

(2) Algorithms Considered

(3) Implementation of Matrix Parenthesization(3) Implementation of Matrix Parenthesization

(4) Implementation of Breadth First Search

(5) Results

(6) Conclusions and Future Work

2

GPU Architecture and CUDA
S
tr
e
a
m
in
g
 M
u
lt
ip
ro
c
e
s
s
o
rs

3

S
tr
e
a
m
in
g
 M
u
lt
ip
ro
c
e
s
s
o
rs

GPU Architecture and CUDA

• Streaming Multiprocessor – the computational cores

of the GPU.

• Composed of 8 Scalar

Processors (SPs) and 16KB of

4Steven SolomonGPU Architecture

Processors (SPs) and 16KB of

(fast) Shared Memory.

• Multi-threaded instruction issue

unit and 2 Special Function

Units.

GPU Architecture and CUDA

• Threads are grouped into

warps (32 per warp)

• Warps are grouped

into blocks, and blocks

into a grid.

5

into a grid.

• Each block executes on

only one SM, but

multiple blocks can

execute on a single

SM.
Image Source: NVIDIA CUDA Programming Guide 2.3

Why GPUs?

6

• A single GPU has a significant amount more potential

compute power than a single CPU.

• Adding more CPUs to reach the level of a GPU is expensive.

Image Source: NVIDIA CUDA Programming Guide 2.3

Why GPUs?

• Significant computational power:

– 1 teraFLOPS of performance on high end Nvidia GT200 GPU.

• Massive parallelism:

7

• Massive parallelism:

– Thousands of threads in flight.

• Memory bottleneck still exists:

– Hundreds of cycles to access data in global memory.

Why Irregular Algorithms?

• Unpredictable and unstructured data access

patterns, more difficult to parallelize efficiently than

regular algorithms.

8

• Study the effects of memory issues on the GPU – can

the computational power and parallelism available

outweigh the memory bottleneck?

• Less existing work on irregular algorithms compared

to regular algorithms on the GPU.

What Will Be Covered?

(1) Introduction and Motivation

(2) Algorithms Considered

(3) Implementation of Matrix Parenthesization(3) Implementation of Matrix Parenthesization

(4) Implementation of Breadth First Search

(5) Results

(6) Conclusions and Future Work

9

Matrix Parenthesization

Given a series of matrices:

A * B * CA * B * C

Determine an order of multiplication such that

the number of scalar multiplications are minimized.

10

Matrix Parenthesization

• Consider two options in this example:

(A * B) * C A * (B * C)

• Assume dimensions are:

A – 100 x 1 B – 1 x 1 C – 1 x 1

11

(A * B) * C A * (B * C)

(A * B) = (100 * 1 * 1) = 100 ops

AB * C = (100 * 1 * 1) = 100 ops

200 operations total

(B * C) = (1 * 1 * 1) = 1 op

A * BC = (100 * 1 * 1) = 100 ops

101 operations total

Matrix Parenthesization

• Bottom-up, dynamic programming approach.
— Optimal solution for each chain dependent on structure of

input data.

• Smallest sub-problems are solved first (matrix chain • Smallest sub-problems are solved first (matrix chain

of length 1).

• Reuse the previously computed sub-problem

solutions for longer chains.

12

Matrix Parenthesization

Opt(A)

Opt(B)

Phase 0

13

Opt(B)

Opt(C)

Matrix Parenthesization

Opt(A)

Opt(AB) Opt(B)

Phase 0

Phase 1

14

Opt(AB) Opt(B)

Opt(BC) Opt(C)

Phase 1

Matrix Parenthesization

Opt(A)

Opt(AB) Opt(B)

Phase 0

Phase 1

15

Opt(AB) Opt(B)

Opt(ABC) Opt(BC) Opt(C)

Phase 1

Phase 2

Breadth First Search

1

16

0

1

What Will Be Covered?

(1) Introduction and Motivation

(2) Algorithms Considered

(3) Implementation of Matrix Parenthesization(3) Implementation of Matrix Parenthesization

(4) Implementation of Breadth First Search

(5) Results

(6) Conclusions and Future Work

17

Matrix Parenthesization

• Synchronous algorithm, runs through diagonals in

solution array each “phase”.

• Phases of GPU computation controlled by CPU loop.

• Each GPU thread responsible for one cell in current

diagonal of optimal costs matrix.

18

Matrix Parenthesization

Opt(A)

Opt(AB) Opt(B)

Phase 0

Phase 1

19

Opt(AB) Opt(B)

Opt(ABC) Opt(BC) Opt(C)

Phase 1

Phase 2

3 threads2 threads1 thread

What Will Be Covered?

(1) Introduction and Motivation

(2) Algorithms Considered

(3) Implementation of Matrix Parenthesization(3) Implementation of Matrix Parenthesization

(4) Implementation of Breadth First Search

(5) Results

(6) Conclusions and Future Work

20

Breadth First Search

• Synchronous traversal of graph.

• Phases of GPU computation controlled by CPU loop.

• Single thread manages one node in the graph.

21

Breadth First Search

• Grid graphs only, traversal structure is similar to

matrix parenthesization.

Phase 0

22

Phase 1

Phase 2

Phase 3

Phase 4 Phase 5 Phase 6

What Will Be Covered?

(1) Introduction and Motivation

(2) Algorithms Considered

(3) Implementation of Matrix Parenthesization(3) Implementation of Matrix Parenthesization

(4) Implementation of Breadth First Search

(5) Results

(6) Conclusions and Future Work

23

Results – Matrix Parenthesization

450

600

750

E
xe

cu
ti

o
n

 T
im

e
 (

se
co

n
d

s)

Nvidia GTX 260

24

0

150

300

0 500 1000 1500 2000 2500 3000 3500 4000 4500

E
xe

cu
ti

o
n

 T
im

e
 (

se
co

n
d

s)

Matrix Chain Length

Nvidia GTX 260

3.0Ghz Core2Duo

Results – Matrix Parenthesization

8

12

16

20

E
xe

cu
ti

o
n

 T
im

e
 (

se
co

n
d

s)

512

1024

1536

25

0

4

8

0 100 200 300 400 500 600

E
xe

cu
ti

o
n

 T
im

e
 (

se
co

n
d

s)

Thread Block Size

2048

2560

3072

Matrix Chain Length

• Only a block size of 512 typically displayed noticeably worse

performance

Results – Breadth First Search

30

45

60

E
xe

cu
ti

o
n

 T
im

e
 (

m
s)

Nvidia GTX 260

3.0Ghz Core 2 Duo

26

0

15

0 20 40 60 80 100 120 140

E
xe

cu
ti

o
n

 T
im

e
 (

m
s)

Grid Graph Dimensions (square graph)

3.0Ghz Core 2 Duo

•Worse performance on GPU – however, a linearly

increasing execution time!

Results – Breadth First Search

30

45

60

E
xe

cu
ti

o
n

 T
im

e
 (

m
s)

10x10

30x30

50x50

70x70

Grid Graph Dimensions

27

0

15

64 128 192 256 320 384 448 512

E
xe

cu
ti

o
n

 T
im

e
 (

m
s)

Thread Block Size

80x80

90x90

100x100

120x120

• As with matrix parenthesization, no significant effects of

thread block size on execution time are observed.

Results – Phase Performance

• Matrix Parenthesization – Gradual increase in

execution time of phase groups.

• Lowers at halfway point but never drops down fully.

28

Results - Matrix Parenthesization

• Losing parallelism at

each subsequent phase.

• Yet individual threads • Yet individual threads

have more work to do in

the later phases

(optimal cost

determination for longer

and longer chains)

29

Results – Phase Performance

• Breadth First Search – higher execution time at

start/end and middle phases.

30

Results – Breadth First Search

• Peak at middle not

unexpected (largest

number of active

threads, greatest global

memory accesses)memory accesses)

• Beginning/end phases a

surprise, unsure exactly

what is causing the

peaks.

31

What Will Be Covered?

(1) Introduction and Motivation

(2) Algorithms Considered

(3) Implementation of Matrix Parenthesization(3) Implementation of Matrix Parenthesization

(4) Implementation of Breadth First Search

(5) Results

(6) Conclusions and Future Work

32

Future Work

• Currently, all GPU threads are launched even if they

have no work to accomplish this phase.

— Improved performance likely if we only launch threads

that have work to do in the phase.

• CPU is used only to manage synchronization between

phases.

— Perhaps the CPU can do some useful work as well.

33

Conclusions

• Global memory latency is likely the significant factor

impacting the performance of both algorithms.

• Irregular memory access prohibits memory • Irregular memory access prohibits memory

optimization strategies.

• Enforced synchronization acts as another cause of

performance degradations.

34

Conclusions

• The GPU provides significant computational power

and parallelism.

• Global memory acts as a serious bottleneck for • Global memory acts as a serious bottleneck for

applications on the GPU, especially irregular

applications.

35

