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GPU Architecture and CUDA

• Streaming Multiprocessor – the computational cores 

of the GPU.

• Composed of 8 Scalar 

Processors (SPs) and 16KB of 
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Processors (SPs) and 16KB of 

(fast) Shared Memory.

• Multi-threaded instruction issue 

unit and 2 Special Function 

Units.



GPU Architecture and CUDA

• Threads are grouped into

warps (32 per warp)

• Warps are grouped 

into blocks, and blocks 

into a grid.
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into a grid.

• Each block executes on 

only one SM, but 

multiple blocks can 

execute on a single 

SM.
Image Source: NVIDIA CUDA Programming Guide 2.3



Why GPUs?
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• A single GPU has a significant amount more potential 

compute power than a single CPU.

• Adding more CPUs to reach the level of a GPU is expensive.

Image Source: NVIDIA CUDA Programming Guide 2.3



Why GPUs?

• Significant computational power:

– 1 teraFLOPS of performance on high end Nvidia GT200 GPU.

• Massive parallelism:
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• Massive parallelism:

– Thousands of threads in flight.

• Memory bottleneck still exists:

– Hundreds of cycles to access data in global memory.



Why Irregular Algorithms?

• Unpredictable and unstructured data access 

patterns,  more difficult to parallelize efficiently than 

regular algorithms.
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• Study the effects of memory issues on the GPU – can 

the computational power and parallelism available 

outweigh the memory bottleneck?

• Less existing work on irregular algorithms compared 

to regular algorithms on the GPU.
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Matrix Parenthesization

Given a series of matrices:

A * B * CA * B * C

Determine an order of multiplication such that

the number of scalar multiplications are minimized.
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Matrix Parenthesization

• Consider two options in this example:

(A * B) * C A * (B * C)

• Assume dimensions are:

A – 100 x 1 B – 1 x 1 C – 1 x 1
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(A * B) * C A * (B * C)

(A * B) = (100 * 1 * 1) = 100 ops

AB * C = (100 * 1 * 1) = 100 ops

200 operations total

(B * C) = (1 * 1 * 1) = 1 op

A * BC = (100 * 1 * 1) = 100 ops

101 operations total



Matrix Parenthesization

• Bottom-up, dynamic programming approach.
— Optimal solution for each chain dependent on structure of 

input data.

• Smallest sub-problems are solved first (matrix chain • Smallest sub-problems are solved first (matrix chain 

of length 1).

• Reuse the previously computed sub-problem 

solutions for longer chains.
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Matrix Parenthesization
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Matrix Parenthesization
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Matrix Parenthesization
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Breadth First Search
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Matrix Parenthesization

• Synchronous algorithm, runs through diagonals in 

solution array each “phase”.

• Phases of GPU computation controlled by CPU loop.

• Each GPU thread responsible for one cell in current 

diagonal of optimal costs matrix.
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Matrix Parenthesization
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Breadth First Search

• Synchronous traversal of graph.

• Phases of GPU computation controlled by CPU loop.

• Single thread manages one node in the graph.
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Breadth First Search

• Grid graphs only, traversal structure is similar to 

matrix parenthesization.

Phase 0
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Results – Matrix Parenthesization
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Results – Matrix Parenthesization
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• Only a block size of 512 typically displayed noticeably worse 

performance



Results – Breadth First Search
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•Worse performance on GPU – however, a linearly 

increasing execution time!



Results – Breadth First Search
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• As with matrix parenthesization, no significant effects of 

thread block size on execution time are observed.



Results – Phase Performance

• Matrix Parenthesization – Gradual increase in 

execution time of phase groups. 

• Lowers at halfway point but never drops down fully.
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Results - Matrix Parenthesization

• Losing parallelism at 

each subsequent phase.

• Yet individual threads • Yet individual threads 

have more work to do in 

the later phases 

(optimal cost 

determination for longer 

and longer chains)
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Results – Phase Performance

• Breadth First Search – higher execution time at 

start/end and middle phases.
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Results – Breadth First Search

• Peak at middle not 

unexpected (largest 

number of active 

threads, greatest global 

memory accesses)memory accesses)

• Beginning/end phases a 

surprise, unsure exactly 

what is causing the 

peaks.
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Future Work

• Currently, all GPU threads are launched even if they 

have no work to accomplish this phase.

— Improved performance likely if we only launch threads 

that have work to do in the phase.

• CPU is used only to manage synchronization between 

phases.

— Perhaps the CPU can do some useful work as well.
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Conclusions

• Global memory latency is likely the significant factor 

impacting the performance of both algorithms.

• Irregular memory access prohibits memory • Irregular memory access prohibits memory 

optimization strategies.

• Enforced synchronization acts as another cause of 

performance degradations.
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Conclusions

• The GPU provides significant computational power 

and parallelism.

• Global memory acts as a serious bottleneck for • Global memory acts as a serious bottleneck for 

applications on the GPU, especially irregular 

applications.
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