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Introduction

Two-dimensional advection PDE
3-point stencil operations

Can be solved using
Gauss-Seidel-like solver (in-place algorithm)

Jacobi-like solver (out-of-place algorithm)

Performance depends on:

Efficient usage of computational resources
Available memory bandwidth
Processor local storage capacity

Platform of choice for experimentation:
Cell Broadband Engine
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Cell Broadband Engine

Heterogeneous, 9-core processor
1 PowerPC Processor Element (PPE) — a typical 64-bit PowerPC core

8 Synergistic Processor Elements (SPEs) — SIMD processor architecture
oriented towards high performance floating-point arithmetic

Software-controlled memory hierarchy
No hardware controlled cache
Instead, each SPE has a 256 KB programmer-controlled local store

Memory Flow Controller (MFC) on every SPE
Supports asynchronous DMA transfers
Can handle many outstanding transactions

Processing elements communicate via high-bandwidth Element
Interconnect Bus (EIB)

204.6 GB/s

Provides the potential of more efficient usage of memory bandwidth
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Motivation

Evaluate Cell B/E as a platform for executing the
advection PDE solver

Explore optimization technigues and determine the
contribution of each one to execution performance

Compare in-place and out-of-place versions of the solver
In terms of:
raw performance
total completion time (convergence rate / raw performance)
programmability
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Implementation

Blocking

Split matrix into blocks so that each one fits in the local store
Block boundaries have to be exchanged between neighboring processors

Assignment of blocks to SPEs

Assign each SPE whole
block-columns

This way, boundaries in the
vertical direction are kept
inside the SPE

Need to exchange boundary
values only in the horizontal
direction
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Optimizations

Multi-buffering

Transfer old / new blocks to / from memory while performing computations on
current block, overlap computation / communication

CBE provides the option of using asynchronous DMA transfers
Vectorization

Apply same operation to more that one data at once

SPE vector registers are 128-bit wide = 4 single-precision floating-point values
in each vector

Theoretically, performance x4 for single-precision

In practice, benefits are higher than that since SPEs are exclusively SIMD
processors == manipulating scalar operands includes significant overhead

Block-major layout

All block elements in consecutive memory addresses
Instead of standard C row-major order

Possible to transfer the whole block at once instead of row-by-row
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Optimizations

Instruction scheduling

Exploit heterogeneous pipelines to continuously stream data into the FP pipeline
(even pipeline)

Load data in time using odd pipeline so that even pipeline does not stall waiting
for them

Compiler tries to automatically accomplish this task; however, programmer has to
assist the compiler by manually optimizing many parts of the application

Block tiling

Group iterations into “super-iterations”
Exchange boundary values at the end of every super-iteration

More data are exchanged per transfer, since SPE has to send / receive boundary
values for every iteration in the super-iteration group

But fewer transfers take place == less total communication overhead
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In-place vs. Out-of-place

Out-of-place algorithm
Jacobi-like approach
Uses neighbor values from last iteration

Known to be slower at convergence speed, since computation
does not use the most up-to-date data

Data independence: easy to vectorize the algorithm

while(Iconverged())
{
n = (++loops)%2;
for(hi = 1; 1 <Y; 1++)
for(J = 1; J < X; j++)
U[1-n][i]1[]] = (0 + 2*a*dt/dx) * U[n]LilLi] -
a*dt/dx > (UIn1Li-1101 + VInd[db-1D;
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In-place vs. Out-of-place

In-place algorithm
Gauss-Seidel-like approach
Uses neighbor values from current iteration

Known to be faster at convergence speed, since computation
uses the most up-to-date data

Data dependencies make vectorization difficult

while(Iconverged())
{
n = (++loops)%2;
for(h = 1; 1 <Y; 1++)
for(J = 1; J < X; j++)
U[1-n][i][]] = (0 + 2*a*dt/dx) * U[n]LilL)] -
a*dt/dx * (U[1-n]L[i-11[3] + VU[1-n]IilLJ-1D);
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In-place: Vectorization

ldea: traversing blocks in diagonal order
No dependence between elements in successive diagonals

512 Columns
A

~ Rovys

-

Diagonal traversal of block creates lead-in and lead-out areas
Difficult to vectorize ==p poor performance
Need to minimize them =) elongated block shape
Experimentation: 8 x 512 was the best choice
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In-place: Vectorization

Problem: Diagonal elements not in consecutive memory addresses,
need shuffling operations to form vectors

Avoid shuffling each time the block is traversed
Permanently reorder elements in memory
Diagonal-major layout applied to each block separately
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Experimental Evaluation

Performed on a PlayStation3 console
3.2 GHz Cell
6 SPEs
256 MB XDR RAM
Debian/GNU Linux — kernel 2.6.24
Cell SDK 3.1

Measurements include
Performance in GFLOPS = f'(# of SPEs)
Total execution time = /' (# of SPEs)

Performance breakdown — contribution of each optimization
technique
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GFLOPS — Number of SPESs
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Convergence Time - Steps

Grid Size Steps (iterations) to converge
In-place Out-of-place

512 x 512 1305 2232

1024 x 1024 | 2340 4410

2048 x 2048 | 4455 8595

3072 x3072 |6570 12735

4096 x 4096 | 8685 16875
6144 x 6144 | 12870 25155

In-place algorithm runs
approximately twice as fast as
out-of-place

Total execution time between
the two algorithms is almost the
same

Time (sec)

Out-of-place algorithm takes
about twice as many steps to
reach the converged solution
point compared to in-place
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In-place performance improvements
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Out-of-place performance improvements
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Conclusions

Overall execution time of both algorithms is similar, in-
place being marginally faster
Out-of place is simpler to implement

In-place can be improved further by extending computations to
more than one time steps concurrently (but code starts becoming
overly complex)

Taking advantage of as many architectural
characteristics as possible plays important role

But so does programmabillity

Tradeoff between performance and ease of programming

®» Numerical criteria cannot be the sole factor when
choosing an algorithm
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Conclusions

Block-major layout technique can reduce communication
overhead; prevents EIB congestion

Diagonal traversal proved to be a key point in vectorizing
the in-place solver

Producing code capable of fully exploiting the
heterogeneous pipelines is the most significant factor in
achieving high performance

Compiler optimizations alone yield performance far below the
potential peak

Manual code optimizations (esp. instruction scheduling) is time-
consuming
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Future Work

Implementation of same application on GPGPU
platforms

Three-dimensional advection PDE
Other PDEs

Other numerical schemes (e.g. multi-coloring schemes
like Red-Black)

Techniques to achieve better automatic instruction
scheduling — research on compilers

Questions?

{grokos, gpeteinatos, gkouv, goumas, kkourt, nkoziris}@cslab.ece.ntua.gr

O OO O Manonal Fechnical U

e
' s CSL
23/4/2010 Q0 S



23/4/2010



	Solving the advection PDE on the Cell Broadband Engine
	Introduction
	Cell Broadband Engine
	Motivation
	Implementation
	Optimizations
	Optimizations
	In-place vs. Out-of-place
	In-place vs. Out-of-place
	In-place: Vectorization
	In-place: Vectorization
	Experimental Evaluation
	GFLOPS – Number of SPEs
	Convergence Time - Steps
	In-place performance improvements
	Out-of-place performance improvements
	Conclusions
	Conclusions
	Future Work
	Slide Number 20

