
23/4/2010

Solving the advection PDE
on the Cell Broadband

Engine

Georgios Rokos, Gerassimos
Peteinatos, Georgia Kouveli, Georgios

Goumas, Kornilios Kourtis and
Nectarios Koziris

23/4/2010

23/4/2010

Introduction

23/4/2010

• Two-dimensional advection PDE
• 3-point stencil operations

• Can be solved using
• Gauss-Seidel-like solver (in-place algorithm)
• Jacobi-like solver (out-of-place algorithm)

• Performance depends on:
• Efficient usage of computational resources
• Available memory bandwidth
• Processor local storage capacity

• Platform of choice for experimentation:
• Cell Broadband Engine

23/4/2010

Cell Broadband Engine
• Heterogeneous, 9-core processor

• 1 PowerPC Processor Element (PPE) – a typical 64-bit PowerPC core
• 8 Synergistic Processor Elements (SPEs) – SIMD processor architecture

oriented towards high performance floating-point arithmetic

• Software-controlled memory hierarchy
• No hardware controlled cache
• Instead, each SPE has a 256 KB programmer-controlled local store

• Memory Flow Controller (MFC) on every SPE
• Supports asynchronous DMA transfers
• Can handle many outstanding transactions

• Processing elements communicate via high-bandwidth Element
Interconnect Bus (EIB)
• 204.6 GB/s
• Provides the potential of more efficient usage of memory bandwidth

23/4/2010

23/4/2010

Motivation
• Evaluate Cell B/E as a platform for executing the

advection PDE solver
• Explore optimization techniques and determine the

contribution of each one to execution performance
• Compare in-place and out-of-place versions of the solver

in terms of:
• raw performance
• total completion time (convergence rate / raw performance)
• programmability

23/4/2010

23/4/2010

Implementation
• Blocking

 Split matrix into blocks so that each one fits in the local store
 Block boundaries have to be exchanged between neighboring processors

23/4/2010

• Assignment of blocks to SPEs
• Assign each SPE whole

block-columns
• This way, boundaries in the

vertical direction are kept
inside the SPE

• Need to exchange boundary
values only in the horizontal
direction

23/4/2010

Optimizations
• Multi-buffering

 Transfer old / new blocks to / from memory while performing computations on
current block, overlap computation / communication

 CBE provides the option of using asynchronous DMA transfers

• Vectorization
 Apply same operation to more that one data at once
 SPE vector registers are 128-bit wide 4 single-precision floating-point values

in each vector
 Theoretically, performance x4 for single-precision
 In practice, benefits are higher than that since SPEs are exclusively SIMD

processors manipulating scalar operands includes significant overhead

• Block-major layout
 All block elements in consecutive memory addresses
 Instead of standard C row-major order
 Possible to transfer the whole block at once instead of row-by-row

23/4/2010

23/4/2010

Optimizations
• Instruction scheduling

 Exploit heterogeneous pipelines to continuously stream data into the FP pipeline
(even pipeline)

 Load data in time using odd pipeline so that even pipeline does not stall waiting
for them

 Compiler tries to automatically accomplish this task; however, programmer has to
assist the compiler by manually optimizing many parts of the application

• Block tiling
 Group iterations into “super-iterations”
 Exchange boundary values at the end of every super-iteration
 More data are exchanged per transfer, since SPE has to send / receive boundary

values for every iteration in the super-iteration group
 But fewer transfers take place less total communication overhead

23/4/2010

23/4/2010

In-place vs. Out-of-place
• Out-of-place algorithm

• Jacobi-like approach
• Uses neighbor values from last iteration
• Known to be slower at convergence speed, since computation

does not use the most up-to-date data
• Data independence: easy to vectorize the algorithm

23/4/2010

while(!converged())
{

n = (++loops)%2;
for(i = 1; i < Y; i++)

for(j = 1; j < X; j++)
U[1-n][i][j] = (1 + 2*a*dt/dx) * U[n][i][j] –

a*dt/dx * (U[n][i-1][j] + U[n][i][j-1]);
}

23/4/2010

In-place vs. Out-of-place
• In-place algorithm

• Gauss-Seidel-like approach
• Uses neighbor values from current iteration
• Known to be faster at convergence speed, since computation

uses the most up-to-date data
• Data dependencies make vectorization difficult

23/4/2010

while(!converged())
{

n = (++loops)%2;
for(i = 1; i < Y; i++)

for(j = 1; j < X; j++)
U[1-n][i][j] = (1 + 2*a*dt/dx) * U[n][i][j] –

a*dt/dx * (U[1-n][i-1][j] + U[1-n][i][j-1]);
}

23/4/2010

In-place: Vectorization

10

• Idea: traversing blocks in diagonal order
• No dependence between elements in successive diagonals

• Diagonal traversal of block creates lead-in and lead-out areas
• Difficult to vectorize poor performance
• Need to minimize them elongated block shape
• Experimentation: 8 x 512 was the best choice

23/4/2010

In-place: Vectorization

11

• Problem: Diagonal elements not in consecutive memory addresses,
need shuffling operations to form vectors

• Avoid shuffling each time the block is traversed
→ Permanently reorder elements in memory
→ Diagonal-major layout applied to each block separately

23/4/2010

Experimental Evaluation
• Performed on a PlayStation3 console

• 3.2 GHz Cell
• 6 SPEs
• 256 MB XDR RAM
• Debian/GNU Linux – kernel 2.6.24
• Cell SDK 3.1

• Measurements include
• Performance in GFLOPS = f (# of SPEs)

• Total execution time = f (# of SPEs)

• Performance breakdown – contribution of each optimization
technique

12

23/4/2010

GFLOPS – Number of SPEs

13

• Out-of-place algorithm:
performance results
near theoretical peak

• In-place algorithm:
performance results
nearly half the
theoretical peak
• Data dependencies do not

allow continuous streaming
of data into the even
pipeline

• Almost linear speedup for both algorithms
• Good overlap of computation and communication
• Divergence for 5 SPEs in in-place: due to uneven

assignment of blocks to SPEs

23/4/2010

Convergence Time - Steps
Grid Size Steps (iterations) to converge

In-place Out-of-place
512 x 512 1305 2232
1024 x 1024 2340 4410
2048 x 2048 4455 8595
3072 x 3072 6570 12735
4096 x 4096 8685 16875
6144 x 6144 12870 25155

14

• In-place algorithm runs
approximately twice as fast as
out-of-place

→ Total execution time between
the two algorithms is almost the
same

• Out-of-place algorithm takes
about twice as many steps to
reach the converged solution
point compared to in-place

23/4/2010

In-place performance improvements

15

In the
presence of all
other
optimizations,
manual
instruction
scheduling
almost doubles
performance

23/4/2010

Out-of-place performance improvements

16

Manual
instruction
scheduling still a
determining
factor; better
scheduling
opportunities

Block-major
layout prevents
EIB congestion

23/4/2010

Conclusions
• Overall execution time of both algorithms is similar, in-

place being marginally faster
• Out-of place is simpler to implement
• In-place can be improved further by extending computations to

more than one time steps concurrently (but code starts becoming
overly complex)

• Taking advantage of as many architectural
characteristics as possible plays important role

• But so does programmability
→ Tradeoff between performance and ease of programming

Numerical criteria cannot be the sole factor when
choosing an algorithm

23/4/2010

23/4/2010

Conclusions
• Block-major layout technique can reduce communication

overhead; prevents EIB congestion
• Diagonal traversal proved to be a key point in vectorizing

the in-place solver
• Producing code capable of fully exploiting the

heterogeneous pipelines is the most significant factor in
achieving high performance
• Compiler optimizations alone yield performance far below the

potential peak
• Manual code optimizations (esp. instruction scheduling) is time-

consuming

23/4/2010

23/4/2010

Future Work
• Implementation of same application on GPGPU

platforms
• Three-dimensional advection PDE
• Other PDEs
• Other numerical schemes (e.g. multi-coloring schemes

like Red-Black)
• Techniques to achieve better automatic instruction

scheduling – research on compilers

• Questions?
{grokos, gpeteinatos, gkouv, goumas, kkourt, nkoziris}@cslab.ece.ntua.gr

23/4/2010

23/4/2010

Thank You

20

	Solving the advection PDE on the Cell Broadband Engine
	Introduction
	Cell Broadband Engine
	Motivation
	Implementation
	Optimizations
	Optimizations
	In-place vs. Out-of-place
	In-place vs. Out-of-place
	In-place: Vectorization
	In-place: Vectorization
	Experimental Evaluation
	GFLOPS – Number of SPEs
	Convergence Time - Steps
	In-place performance improvements
	Out-of-place performance improvements
	Conclusions
	Conclusions
	Future Work
	Slide Number 20

