
23/4/2010

Solving the advection PDE
on the Cell Broadband

Engine

Georgios Rokos, Gerassimos
Peteinatos, Georgia Kouveli, Georgios

Goumas, Kornilios Kourtis and
Nectarios Koziris

23/4/2010

23/4/2010

Introduction

23/4/2010

• Two-dimensional advection PDE
• 3-point stencil operations

• Can be solved using
• Gauss-Seidel-like solver (in-place algorithm)
• Jacobi-like solver (out-of-place algorithm)

• Performance depends on:
• Efficient usage of computational resources
• Available memory bandwidth
• Processor local storage capacity

• Platform of choice for experimentation:
• Cell Broadband Engine

23/4/2010

Cell Broadband Engine
• Heterogeneous, 9-core processor

• 1 PowerPC Processor Element (PPE) – a typical 64-bit PowerPC core
• 8 Synergistic Processor Elements (SPEs) – SIMD processor architecture

oriented towards high performance floating-point arithmetic

• Software-controlled memory hierarchy
• No hardware controlled cache
• Instead, each SPE has a 256 KB programmer-controlled local store

• Memory Flow Controller (MFC) on every SPE
• Supports asynchronous DMA transfers
• Can handle many outstanding transactions

• Processing elements communicate via high-bandwidth Element
Interconnect Bus (EIB)
• 204.6 GB/s
• Provides the potential of more efficient usage of memory bandwidth

23/4/2010

23/4/2010

Motivation
• Evaluate Cell B/E as a platform for executing the

advection PDE solver
• Explore optimization techniques and determine the

contribution of each one to execution performance
• Compare in-place and out-of-place versions of the solver

in terms of:
• raw performance
• total completion time (convergence rate / raw performance)
• programmability

23/4/2010

23/4/2010

Implementation
• Blocking

 Split matrix into blocks so that each one fits in the local store
 Block boundaries have to be exchanged between neighboring processors

23/4/2010

• Assignment of blocks to SPEs
• Assign each SPE whole

block-columns
• This way, boundaries in the

vertical direction are kept
inside the SPE

• Need to exchange boundary
values only in the horizontal
direction

23/4/2010

Optimizations
• Multi-buffering

 Transfer old / new blocks to / from memory while performing computations on
current block, overlap computation / communication

 CBE provides the option of using asynchronous DMA transfers

• Vectorization
 Apply same operation to more that one data at once
 SPE vector registers are 128-bit wide 4 single-precision floating-point values

in each vector
 Theoretically, performance x4 for single-precision
 In practice, benefits are higher than that since SPEs are exclusively SIMD

processors manipulating scalar operands includes significant overhead

• Block-major layout
 All block elements in consecutive memory addresses
 Instead of standard C row-major order
 Possible to transfer the whole block at once instead of row-by-row

23/4/2010

23/4/2010

Optimizations
• Instruction scheduling

 Exploit heterogeneous pipelines to continuously stream data into the FP pipeline
(even pipeline)

 Load data in time using odd pipeline so that even pipeline does not stall waiting
for them

 Compiler tries to automatically accomplish this task; however, programmer has to
assist the compiler by manually optimizing many parts of the application

• Block tiling
 Group iterations into “super-iterations”
 Exchange boundary values at the end of every super-iteration
 More data are exchanged per transfer, since SPE has to send / receive boundary

values for every iteration in the super-iteration group
 But fewer transfers take place less total communication overhead

23/4/2010

23/4/2010

In-place vs. Out-of-place
• Out-of-place algorithm

• Jacobi-like approach
• Uses neighbor values from last iteration
• Known to be slower at convergence speed, since computation

does not use the most up-to-date data
• Data independence: easy to vectorize the algorithm

23/4/2010

while(!converged())
{

n = (++loops)%2;
for(i = 1; i < Y; i++)

for(j = 1; j < X; j++)
U[1-n][i][j] = (1 + 2*a*dt/dx) * U[n][i][j] –

a*dt/dx * (U[n][i-1][j] + U[n][i][j-1]);
}

23/4/2010

In-place vs. Out-of-place
• In-place algorithm

• Gauss-Seidel-like approach
• Uses neighbor values from current iteration
• Known to be faster at convergence speed, since computation

uses the most up-to-date data
• Data dependencies make vectorization difficult

23/4/2010

while(!converged())
{

n = (++loops)%2;
for(i = 1; i < Y; i++)

for(j = 1; j < X; j++)
U[1-n][i][j] = (1 + 2*a*dt/dx) * U[n][i][j] –

a*dt/dx * (U[1-n][i-1][j] + U[1-n][i][j-1]);
}

23/4/2010

In-place: Vectorization

10

• Idea: traversing blocks in diagonal order
• No dependence between elements in successive diagonals

• Diagonal traversal of block creates lead-in and lead-out areas
• Difficult to vectorize poor performance
• Need to minimize them elongated block shape
• Experimentation: 8 x 512 was the best choice

23/4/2010

In-place: Vectorization

11

• Problem: Diagonal elements not in consecutive memory addresses,
need shuffling operations to form vectors

• Avoid shuffling each time the block is traversed
→ Permanently reorder elements in memory
→ Diagonal-major layout applied to each block separately

23/4/2010

Experimental Evaluation
• Performed on a PlayStation3 console

• 3.2 GHz Cell
• 6 SPEs
• 256 MB XDR RAM
• Debian/GNU Linux – kernel 2.6.24
• Cell SDK 3.1

• Measurements include
• Performance in GFLOPS = f (# of SPEs)

• Total execution time = f (# of SPEs)

• Performance breakdown – contribution of each optimization
technique

12

23/4/2010

GFLOPS – Number of SPEs

13

• Out-of-place algorithm:
performance results
near theoretical peak

• In-place algorithm:
performance results
nearly half the
theoretical peak
• Data dependencies do not

allow continuous streaming
of data into the even
pipeline

• Almost linear speedup for both algorithms
• Good overlap of computation and communication
• Divergence for 5 SPEs in in-place: due to uneven

assignment of blocks to SPEs

23/4/2010

Convergence Time - Steps
Grid Size Steps (iterations) to converge

In-place Out-of-place
512 x 512 1305 2232
1024 x 1024 2340 4410
2048 x 2048 4455 8595
3072 x 3072 6570 12735
4096 x 4096 8685 16875
6144 x 6144 12870 25155

14

• In-place algorithm runs
approximately twice as fast as
out-of-place

→ Total execution time between
the two algorithms is almost the
same

• Out-of-place algorithm takes
about twice as many steps to
reach the converged solution
point compared to in-place

23/4/2010

In-place performance improvements

15

In the
presence of all
other
optimizations,
manual
instruction
scheduling
almost doubles
performance

23/4/2010

Out-of-place performance improvements

16

Manual
instruction
scheduling still a
determining
factor; better
scheduling
opportunities

Block-major
layout prevents
EIB congestion

23/4/2010

Conclusions
• Overall execution time of both algorithms is similar, in-

place being marginally faster
• Out-of place is simpler to implement
• In-place can be improved further by extending computations to

more than one time steps concurrently (but code starts becoming
overly complex)

• Taking advantage of as many architectural
characteristics as possible plays important role

• But so does programmability
→ Tradeoff between performance and ease of programming

Numerical criteria cannot be the sole factor when
choosing an algorithm

23/4/2010

23/4/2010

Conclusions
• Block-major layout technique can reduce communication

overhead; prevents EIB congestion
• Diagonal traversal proved to be a key point in vectorizing

the in-place solver
• Producing code capable of fully exploiting the

heterogeneous pipelines is the most significant factor in
achieving high performance
• Compiler optimizations alone yield performance far below the

potential peak
• Manual code optimizations (esp. instruction scheduling) is time-

consuming

23/4/2010

23/4/2010

Future Work
• Implementation of same application on GPGPU

platforms
• Three-dimensional advection PDE
• Other PDEs
• Other numerical schemes (e.g. multi-coloring schemes

like Red-Black)
• Techniques to achieve better automatic instruction

scheduling – research on compilers

• Questions?
{grokos, gpeteinatos, gkouv, goumas, kkourt, nkoziris}@cslab.ece.ntua.gr

23/4/2010

23/4/2010

Thank You

20

	Solving the advection PDE on the Cell Broadband Engine
	Introduction
	Cell Broadband Engine
	Motivation
	Implementation
	Optimizations
	Optimizations
	In-place vs. Out-of-place
	In-place vs. Out-of-place
	In-place: Vectorization
	In-place: Vectorization
	Experimental Evaluation
	GFLOPS – Number of SPEs
	Convergence Time - Steps
	In-place performance improvements
	Out-of-place performance improvements
	Conclusions
	Conclusions
	Future Work
	Slide Number 20

