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Introduction

23/4/2010

• Two-dimensional advection PDE
• 3-point stencil operations

• Can be solved using
• Gauss-Seidel-like solver (in-place algorithm)
• Jacobi-like solver (out-of-place algorithm)

• Performance depends on:
• Efficient usage of computational resources
• Available memory bandwidth
• Processor local storage capacity

• Platform of choice for experimentation:
• Cell Broadband Engine
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Cell Broadband Engine
• Heterogeneous, 9-core processor

• 1 PowerPC Processor Element (PPE) – a typical 64-bit PowerPC core
• 8 Synergistic Processor Elements (SPEs) – SIMD processor architecture 

oriented towards high performance floating-point arithmetic

• Software-controlled memory hierarchy
• No hardware controlled cache
• Instead, each SPE has a 256 KB programmer-controlled local store

• Memory Flow Controller (MFC) on every SPE
• Supports asynchronous DMA transfers
• Can handle many outstanding transactions

• Processing elements communicate via high-bandwidth Element 
Interconnect Bus (EIB)
• 204.6 GB/s
• Provides the potential of more efficient usage of memory bandwidth
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Motivation
• Evaluate Cell B/E as a platform for executing the 

advection PDE solver
• Explore optimization techniques and determine the 

contribution of each one to execution performance
• Compare in-place and out-of-place versions of the solver 

in terms of:
• raw performance
• total completion time (convergence rate / raw performance)
• programmability
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Implementation
• Blocking

 Split matrix into blocks so that each one fits in the local store
 Block boundaries have to be exchanged between neighboring processors
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• Assignment of blocks to SPEs
• Assign each SPE whole 

block-columns
• This way, boundaries in the 

vertical direction are kept 
inside the SPE

• Need to exchange boundary 
values only in the horizontal 
direction
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Optimizations
• Multi-buffering

 Transfer old / new blocks to / from memory while performing computations on 
current block, overlap computation / communication

 CBE provides the option of using asynchronous DMA transfers

• Vectorization
 Apply same operation to more that one data at once
 SPE vector registers are 128-bit wide        4 single-precision floating-point values 

in each vector
 Theoretically, performance x4 for single-precision
 In practice, benefits are higher than that since SPEs are exclusively SIMD 

processors        manipulating scalar operands includes significant overhead

• Block-major layout
 All block elements in consecutive memory addresses
 Instead of standard C row-major order
 Possible to transfer the whole block at once instead of row-by-row
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Optimizations
• Instruction scheduling

 Exploit heterogeneous pipelines to continuously stream data into the FP pipeline 
(even pipeline)

 Load data in time using odd pipeline so that even pipeline does not stall waiting 
for them

 Compiler tries to automatically accomplish this task; however, programmer has to 
assist the compiler by manually optimizing many parts of the application

• Block tiling
 Group iterations into “super-iterations”
 Exchange boundary values at the end of every super-iteration
 More data are exchanged per transfer, since SPE has to send / receive boundary 

values for every iteration in the super-iteration group
 But fewer transfers take place        less total communication overhead
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In-place vs. Out-of-place
• Out-of-place algorithm

• Jacobi-like approach
• Uses neighbor values from last iteration
• Known to be slower at convergence speed, since computation 

does not use the most up-to-date data
• Data independence: easy to vectorize the algorithm
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while(!converged())
{

n = (++loops)%2;
for(i = 1; i < Y; i++)

for(j = 1; j < X; j++)
U[1-n][i][j] = (1 + 2*a*dt/dx) * U[n][i][j] –

a*dt/dx * (U[n][i-1][j] + U[n][i][j-1]);
}
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In-place vs. Out-of-place
• In-place algorithm

• Gauss-Seidel-like approach
• Uses neighbor values from current iteration
• Known to be faster at convergence speed, since computation 

uses the most up-to-date data
• Data dependencies make vectorization difficult
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while(!converged())
{

n = (++loops)%2;
for(i = 1; i < Y; i++)

for(j = 1; j < X; j++)
U[1-n][i][j] = (1 + 2*a*dt/dx) * U[n][i][j] –

a*dt/dx * (U[1-n][i-1][j] + U[1-n][i][j-1]);
}
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In-place: Vectorization
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• Idea: traversing blocks in diagonal order
• No dependence between elements in successive diagonals

• Diagonal traversal of block creates lead-in and lead-out areas
• Difficult to vectorize poor performance
• Need to minimize them        elongated block shape
• Experimentation: 8 x 512 was the best choice
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In-place: Vectorization
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• Problem: Diagonal elements not in consecutive memory addresses, 
need shuffling operations to form vectors

• Avoid shuffling each time the block is traversed
→ Permanently reorder elements in memory
→ Diagonal-major layout applied to each block separately
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Experimental Evaluation
• Performed on a PlayStation3 console

• 3.2 GHz Cell
• 6 SPEs
• 256 MB XDR RAM
• Debian/GNU Linux – kernel 2.6.24
• Cell SDK 3.1

• Measurements include
• Performance in GFLOPS = f (# of SPEs)

• Total execution time = f (# of SPEs)

• Performance breakdown – contribution of each optimization 
technique
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GFLOPS – Number of SPEs
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• Out-of-place algorithm: 
performance results 
near theoretical peak

• In-place algorithm: 
performance results 
nearly half the 
theoretical peak
• Data dependencies do not 

allow continuous streaming 
of data into the even 
pipeline

• Almost linear speedup for both algorithms
• Good overlap of computation and communication
• Divergence for 5 SPEs in in-place: due to uneven 

assignment of blocks to SPEs
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Convergence Time - Steps
Grid Size Steps (iterations) to converge

In-place Out-of-place
512 x 512 1305 2232
1024 x 1024 2340 4410
2048 x 2048 4455 8595
3072 x 3072 6570 12735
4096 x 4096 8685 16875
6144 x 6144 12870 25155
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• In-place algorithm runs 
approximately twice as fast as 
out-of-place

→ Total execution time between 
the two algorithms is almost the 
same

• Out-of-place algorithm takes 
about twice as many steps to 
reach the converged solution 
point compared to in-place
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In-place performance improvements
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In the 
presence of all 
other 
optimizations,
manual 
instruction 
scheduling 
almost doubles 
performance
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Out-of-place performance improvements
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Manual 
instruction 
scheduling still a 
determining 
factor; better 
scheduling 
opportunities

Block-major 
layout prevents 
EIB congestion



23/4/2010

Conclusions
• Overall execution time of both algorithms is similar, in-

place being marginally faster
• Out-of place is simpler to implement
• In-place can be improved further by extending computations to 

more than one time steps concurrently (but code starts becoming 
overly complex)

• Taking advantage of as many architectural 
characteristics as possible plays important role

• But so does programmability
→ Tradeoff between performance and ease of programming

Numerical criteria cannot be the sole factor when 
choosing an algorithm
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Conclusions
• Block-major layout technique can reduce communication 

overhead; prevents EIB congestion
• Diagonal traversal proved to be a key point in vectorizing

the in-place solver
• Producing code capable of fully exploiting the 

heterogeneous pipelines is the most significant factor in 
achieving high performance
• Compiler optimizations alone yield performance far below the 

potential peak
• Manual code optimizations (esp. instruction scheduling) is time-

consuming
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Future Work
• Implementation of same application on GPGPU 

platforms
• Three-dimensional advection PDE
• Other PDEs
• Other numerical schemes (e.g. multi-coloring schemes 

like Red-Black)
• Techniques to achieve better automatic instruction 

scheduling – research on compilers

• Questions?
{grokos, gpeteinatos, gkouv, goumas, kkourt, nkoziris}@cslab.ece.ntua.gr
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Thank You
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