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Introduction
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• Two-dimensional advection PDE
• 3-point stencil operations

• Can be solved using
• Gauss-Seidel-like solver (in-place algorithm)
• Jacobi-like solver (out-of-place algorithm)

• Performance depends on:
• Efficient usage of computational resources
• Available memory bandwidth
• Processor local storage capacity

• Platform of choice for experimentation:
• Cell Broadband Engine
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Cell Broadband Engine
• Heterogeneous, 9-core processor

• 1 PowerPC Processor Element (PPE) – a typical 64-bit PowerPC core
• 8 Synergistic Processor Elements (SPEs) – SIMD processor architecture 

oriented towards high performance floating-point arithmetic

• Software-controlled memory hierarchy
• No hardware controlled cache
• Instead, each SPE has a 256 KB programmer-controlled local store

• Memory Flow Controller (MFC) on every SPE
• Supports asynchronous DMA transfers
• Can handle many outstanding transactions

• Processing elements communicate via high-bandwidth Element 
Interconnect Bus (EIB)
• 204.6 GB/s
• Provides the potential of more efficient usage of memory bandwidth
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Motivation
• Evaluate Cell B/E as a platform for executing the 

advection PDE solver
• Explore optimization techniques and determine the 

contribution of each one to execution performance
• Compare in-place and out-of-place versions of the solver 

in terms of:
• raw performance
• total completion time (convergence rate / raw performance)
• programmability
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Implementation
• Blocking

 Split matrix into blocks so that each one fits in the local store
 Block boundaries have to be exchanged between neighboring processors
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• Assignment of blocks to SPEs
• Assign each SPE whole 

block-columns
• This way, boundaries in the 

vertical direction are kept 
inside the SPE

• Need to exchange boundary 
values only in the horizontal 
direction
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Optimizations
• Multi-buffering

 Transfer old / new blocks to / from memory while performing computations on 
current block, overlap computation / communication

 CBE provides the option of using asynchronous DMA transfers

• Vectorization
 Apply same operation to more that one data at once
 SPE vector registers are 128-bit wide        4 single-precision floating-point values 

in each vector
 Theoretically, performance x4 for single-precision
 In practice, benefits are higher than that since SPEs are exclusively SIMD 

processors        manipulating scalar operands includes significant overhead

• Block-major layout
 All block elements in consecutive memory addresses
 Instead of standard C row-major order
 Possible to transfer the whole block at once instead of row-by-row
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Optimizations
• Instruction scheduling

 Exploit heterogeneous pipelines to continuously stream data into the FP pipeline 
(even pipeline)

 Load data in time using odd pipeline so that even pipeline does not stall waiting 
for them

 Compiler tries to automatically accomplish this task; however, programmer has to 
assist the compiler by manually optimizing many parts of the application

• Block tiling
 Group iterations into “super-iterations”
 Exchange boundary values at the end of every super-iteration
 More data are exchanged per transfer, since SPE has to send / receive boundary 

values for every iteration in the super-iteration group
 But fewer transfers take place        less total communication overhead
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In-place vs. Out-of-place
• Out-of-place algorithm

• Jacobi-like approach
• Uses neighbor values from last iteration
• Known to be slower at convergence speed, since computation 

does not use the most up-to-date data
• Data independence: easy to vectorize the algorithm
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while(!converged())
{

n = (++loops)%2;
for(i = 1; i < Y; i++)

for(j = 1; j < X; j++)
U[1-n][i][j] = (1 + 2*a*dt/dx) * U[n][i][j] –

a*dt/dx * (U[n][i-1][j] + U[n][i][j-1]);
}



23/4/2010

In-place vs. Out-of-place
• In-place algorithm

• Gauss-Seidel-like approach
• Uses neighbor values from current iteration
• Known to be faster at convergence speed, since computation 

uses the most up-to-date data
• Data dependencies make vectorization difficult
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while(!converged())
{

n = (++loops)%2;
for(i = 1; i < Y; i++)

for(j = 1; j < X; j++)
U[1-n][i][j] = (1 + 2*a*dt/dx) * U[n][i][j] –

a*dt/dx * (U[1-n][i-1][j] + U[1-n][i][j-1]);
}
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In-place: Vectorization
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• Idea: traversing blocks in diagonal order
• No dependence between elements in successive diagonals

• Diagonal traversal of block creates lead-in and lead-out areas
• Difficult to vectorize poor performance
• Need to minimize them        elongated block shape
• Experimentation: 8 x 512 was the best choice
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In-place: Vectorization
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• Problem: Diagonal elements not in consecutive memory addresses, 
need shuffling operations to form vectors

• Avoid shuffling each time the block is traversed
→ Permanently reorder elements in memory
→ Diagonal-major layout applied to each block separately
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Experimental Evaluation
• Performed on a PlayStation3 console

• 3.2 GHz Cell
• 6 SPEs
• 256 MB XDR RAM
• Debian/GNU Linux – kernel 2.6.24
• Cell SDK 3.1

• Measurements include
• Performance in GFLOPS = f (# of SPEs)

• Total execution time = f (# of SPEs)

• Performance breakdown – contribution of each optimization 
technique
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GFLOPS – Number of SPEs
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• Out-of-place algorithm: 
performance results 
near theoretical peak

• In-place algorithm: 
performance results 
nearly half the 
theoretical peak
• Data dependencies do not 

allow continuous streaming 
of data into the even 
pipeline

• Almost linear speedup for both algorithms
• Good overlap of computation and communication
• Divergence for 5 SPEs in in-place: due to uneven 

assignment of blocks to SPEs
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Convergence Time - Steps
Grid Size Steps (iterations) to converge

In-place Out-of-place
512 x 512 1305 2232
1024 x 1024 2340 4410
2048 x 2048 4455 8595
3072 x 3072 6570 12735
4096 x 4096 8685 16875
6144 x 6144 12870 25155
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• In-place algorithm runs 
approximately twice as fast as 
out-of-place

→ Total execution time between 
the two algorithms is almost the 
same

• Out-of-place algorithm takes 
about twice as many steps to 
reach the converged solution 
point compared to in-place



23/4/2010

In-place performance improvements
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In the 
presence of all 
other 
optimizations,
manual 
instruction 
scheduling 
almost doubles 
performance
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Out-of-place performance improvements
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Manual 
instruction 
scheduling still a 
determining 
factor; better 
scheduling 
opportunities

Block-major 
layout prevents 
EIB congestion
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Conclusions
• Overall execution time of both algorithms is similar, in-

place being marginally faster
• Out-of place is simpler to implement
• In-place can be improved further by extending computations to 

more than one time steps concurrently (but code starts becoming 
overly complex)

• Taking advantage of as many architectural 
characteristics as possible plays important role

• But so does programmability
→ Tradeoff between performance and ease of programming

Numerical criteria cannot be the sole factor when 
choosing an algorithm
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Conclusions
• Block-major layout technique can reduce communication 

overhead; prevents EIB congestion
• Diagonal traversal proved to be a key point in vectorizing

the in-place solver
• Producing code capable of fully exploiting the 

heterogeneous pipelines is the most significant factor in 
achieving high performance
• Compiler optimizations alone yield performance far below the 

potential peak
• Manual code optimizations (esp. instruction scheduling) is time-

consuming
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Future Work
• Implementation of same application on GPGPU 

platforms
• Three-dimensional advection PDE
• Other PDEs
• Other numerical schemes (e.g. multi-coloring schemes 

like Red-Black)
• Techniques to achieve better automatic instruction 

scheduling – research on compilers

• Questions?
{grokos, gpeteinatos, gkouv, goumas, kkourt, nkoziris}@cslab.ece.ntua.gr
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Thank You
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