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Financial Option Pricing

Options (contracts) reserve the right (no obligation)
to buy (call option) or sell (put option)
a certain good (asset, underlying) S
at some point of time t
for an agreed price K

Useful, e.g., to limit potential loss (hedge against risks)

Many different types. Consider, e.g., expiration time t :
European options: t = T
American options: t ∈ [0,T ]

Bermudan options: t ∈ {t0, t1, . . . , tn}
(Payoff function at expiration time serves as end condition for pricing)
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Financial Option Pricing (2)

Problem
How to price an option (determine its current fair value V (~S, t0))?

Frequently used mathematical model: Black-Scholes equation
Model underlying stock’s price S(t) as stochastic Wiener process

dS(t) = µS(t)dt + σS(t)dW (t)

Obtain general Black-Scholes equation

∂V
∂t

+
1
2

d∑
i,j=1

σiσjρijSiSj
∂2V
∂Si∂Sj

+
d∑

i=1

µiSi
∂V
∂Si
− rV = 0

with volatilities σi , drifts µi , risk-free interest rate r , d stocks Si
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Determining the Option Price

In general, no closed form solution
Price stochastically (MC techniques)

Easy to use, implement, parallelize
Scaling independent of dimensionality
Low(er) convergence rates
Greeks (derivatibes) costly to compute

Price numerically (discretize PDE via finite differences/
elements/volumes)

Hard to derive and solve PDE formulation for complex
options
Suffer curse of dimensionality
Fast convergence rates
Greeks faster to derive
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Numerical Solution with Finite Elements

Employ spatial FE discretization
Restrict solution to finite dimensional subspace VN ,

V (~S, t) :=
N∑

i=1

αi(t)ϕi(~S) ∈ VN

Obtain time-dependent system of linear equations

B
∂

∂τ
~α(τ) = −1

2

d∑
i,j=1

σiσjρijC~α+
d∑

i=1

µi −
1
2

d∑
j=1

σiσjρij(1 + δij)

 D~α+rB~α

with, e.g., Bp,q := 〈ϕp, ϕq〉L2

Discretize time (Euler/Crank-Nicolson/. . . )
Solve PDE backward in time τ := T = t , t = t0, t1, . . . ,T
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Sparse Grids (1)

Problem: curse of dimensionality
Straightforward spatial discretization with h = n−1 fails:
O(nd ) grid points

Therefore: sparse grids
Reduce O(nd ) to O(n log(n)d−1)
Similar accuracy

Basic idea:
1) Hierarchical basis in 1d (here: piecewise linear)
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Sparse Grids (2)

2) Extension to d-dimensional basis functions via tensor product
approach
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Sparse Grids (3)

Sparse grid space V (1)
n (take only most important sub spaces):

V (1)
n :=

⊕
|~l|1≤n+d−1

W~l

l1=1 l1=2 l1=3 l1

l2=1

l2=2

l2=3

l2

V (1)
3
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Parallelization

Parallelization on shared memory systems (multi-/many-core)
Difficult to parallelize (no data/domain splitting)
Application of matrices requires multi-recursive algorithms

Up(d)

Down(d)
+

UpDown(1):

Up(d) UpDown(d-1)

Down(d)UpDown(d-1)
+

UpDown(d):

Parallelization of critical parts using OpenMP 3.0’s task concept
New task for each recursive descend
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Parallel Results

Hardware
Mobile Intel Penryn Core2Duo (2×2.26 GHz)
Two-socket Intel Nehalem (8×2.93 GHz, Quick Path
Interconnect)
Two-socket AMD Shanghai (8×2.4 GHz, Hypertransport)
Two-socket AMD Istanbul (24×2.6 GHz, Hypertransport)

Multi-socket systems all NUMA
Measure parallel efficiency on n cores

En :=
t1

tn · n
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Parallel Results (2)

Example: Intel Xeon X5570 (Nehalem)

option type 1 thread 2 threads 4 threads 8 threads

d r t1 (s) t2 (s) E2 t4 (s) E4 t8 (s) E8

2 0.00 580 300 0.97 220 0.66 220 0.33
0.05 610 310 0.98 230 0.66 230 0.33

3 0.00 3,060 1,540 0.99 950 0.81 810 0.47
0.05 3,060 1,540 0.99 970 0.79 810 0.47

4 0.00 26,860 12,100 1.11 6,960 0.97 4,760 0.71
0.05 26,900 12,150 1.11 7,000 0.96 4,790 0.70

5 0.00 176,700 23,600 0.94

Task size has to be big enough
Super-linear speed-up possible (cache sharing)
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Parallel Results (3)
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Parallelization strongly memory bounded
Memory access equally distributed
Intel’s 32 KB 8-way level-one cache better suited
than AMD’s 64 KB 2-way level-one cache
Similarly QPI better suited than Hypertransport
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Conclusions and Future Work

Sparse Grids enable FE discretizations in dimensions d > 3
Parallelization of multi-recursive algorithms with OMP tasks
Strongly memory bounded

Parallel efficiency depends on chache-associativity
and bandwith of memory access

First experiments:
Adaptively refined sparse grids
OMP’s built-in task load balancing works very well
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Conclusions and Future Work

Sparse Grids enable FE discretizations in dimensions d > 3
Parallelization of multi-recursive algorithms with OMP tasks
Strongly memory bounded

Parallel efficiency depends on chache-associativity
and bandwith of memory access

First experiments:
Adaptively refined sparse grids
OMP’s built-in task load balancing works very well

Ongoing and future work:
Even higher-dimensional options (spatial adaptivity, optimize
algorithms)
Improve memory access pattern
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