Parallelizing a Black-Scholes Solver based on Finite Elements and Sparse Grids PDCoF @ IPDPS 2010

Hans-Joachim Bungartz, Alexander Heinecke, *Dirk Pflüger*, and Stefanie Schraufstetter

Scientific Computing in Computer Science, Technische Universität München

April 19-23, 2010

Dirk Pflüger: Parallelizing a Black-Scholes Solver based on Finite Elements and Sparse Grids PDCoF @ IPDPS 2010, April 19–23, 2010

Overview

ТШП

Financial Option Pricing

Options (contracts) reserve the right (no obligation)

- to buy (call option) or sell (put option)
- a certain good (asset, underlying) S
- at some point of time t
- for an agreed price K

Useful, e.g., to limit potential loss (hedge against risks)

ТШ

Financial Option Pricing

Options (contracts) reserve the right (no obligation)

- to buy (call option) or sell (put option)
- a certain good (asset, underlying) S
- at some point of time t
- for an agreed price K

Useful, e.g., to limit potential loss (hedge against risks)

Many different types. Consider, e.g., expiration time t:

- European options: t = T
- American options: $t \in [0, T]$
- Bermudan options: $t \in \{t_0, t_1, \ldots, t_n\}$

(Payoff function at expiration time serves as end condition for pricing)

Financial Option Pricing (2)

Problem

• How to price an option (determine its current fair value $V(\vec{S}, t_0)$)?

Frequently used mathematical model: Black-Scholes equation

• Model underlying stock's price S(t) as stochastic Wiener process

$$\mathrm{d}S(t) = \mu S(t) \mathrm{d}t + \sigma S(t) \mathrm{d}W(t)$$

• Obtain general Black-Scholes equation

$$\frac{\partial V}{\partial t} + \frac{1}{2} \sum_{i,j=1}^{d} \sigma_i \sigma_j \rho_{ij} S_i S_j \frac{\partial^2 V}{\partial S_i \partial S_j} + \sum_{i=1}^{d} \mu_i S_i \frac{\partial V}{\partial S_i} - rV = 0$$

with volatilities σ_i , drifts μ_i , risk-free interest rate r, d stocks S_i

Determining the Option Price

In general, no closed form solution

- Price stochastically (MC techniques)
 - Easy to use, implement, parallelize
 - Scaling independent of dimensionality
 - Low(er) convergence rates
 - Greeks (derivatibes) costly to compute

Determining the Option Price

In general, no closed form solution

- Price stochastically (MC techniques)
 - Easy to use, implement, parallelize
 - Scaling independent of dimensionality
 - Low(er) convergence rates
 - Greeks (derivatibes) costly to compute
- Price numerically (discretize PDE via finite differences/ elements/volumes)
 - Hard to derive and solve PDE formulation for complex options
 - Suffer curse of dimensionality
 - Fast convergence rates
 - Greeks faster to derive

Numerical Solution with Finite Elements

- Employ spatial FE discretization
 - Restrict solution to finite dimensional subspace V_N ,

$$V(\vec{S},t) := \sum_{i=1}^{N} \alpha_i(t) \varphi_i(\vec{S}) \in V_N$$

Obtain time-dependent system of linear equations

$$B\frac{\partial}{\partial \tau}\vec{\alpha}(\tau) = -\frac{1}{2}\sum_{i,j=1}^{d}\sigma_{i}\sigma_{j}\rho_{ij}C\vec{\alpha} + \sum_{i=1}^{d}\left(\mu_{i} - \frac{1}{2}\sum_{j=1}^{d}\sigma_{i}\sigma_{j}\rho_{ij}(1+\delta_{ij})\right)D\vec{\alpha} + rB\vec{\alpha}$$

with, e.g., $B_{p,q} := \langle \varphi_{p}, \varphi_{q} \rangle_{L^{2}}$

- Discretize time (Euler/Crank-Nicolson/...)
 - Solve PDE backward in time $\tau := T = t, t = t_0, t_1, \dots, T$

ПΠ

ТЛП

Sparse Grids (1)

Problem: curse of dimensionality

• Straightforward spatial discretization with $h = n^{-1}$ fails: $\mathcal{O}(n^d)$ grid points

Therefore: sparse grids

- Reduce $\mathcal{O}(n^d)$ to $\mathcal{O}(n\log(n)^{d-1})$
- Similar accuracy

πл

Sparse Grids (1)

Problem: curse of dimensionality

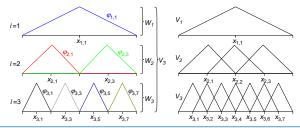
• Straightforward spatial discretization with $h = n^{-1}$ fails: $\mathcal{O}(n^d)$ grid points

Therefore: sparse grids

- Reduce $\mathcal{O}(n^d)$ to $\mathcal{O}(n\log(n)^{d-1})$
- Similar accuracy

Basic idea:

1) Hierarchical basis in 1*d* (here: piecewise linear)

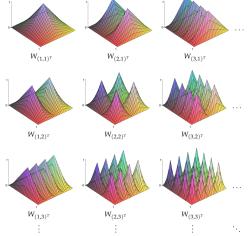


Dirk Pflüger: Parallelizing a Black-Scholes Solver based on Finite Elements and Sparse Grids PDCoF @ IPDPS 2010, April 19–23, 2010

ТШ

Sparse Grids (2)

2) Extension to *d*-dimensional basis functions via tensor product approach

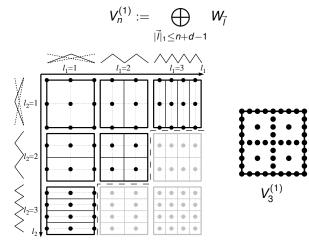


Dirk Pflüger: Parallelizing a Black-Scholes Solver based on Finite Elements and Sparse Grids PDCoF @ IPDPS 2010, April 19–23, 2010

ТШТ

Sparse Grids (3)

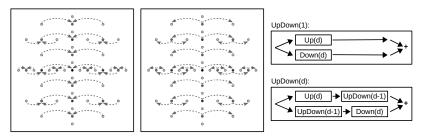
Sparse grid space $V_n^{(1)}$ (take only most important sub spaces):



Parallelization

Parallelization on shared memory systems (multi-/many-core)

- Difficult to parallelize (no data/domain splitting)
- Application of matrices requires multi-recursive algorithms



Parallelization of critical parts using OpenMP 3.0's task concept

New task for each recursive descend

пπ

Parallel Results

- Hardware
 - Mobile Intel Penryn Core2Duo (2×2.26 GHz)
 - Two-socket Intel Nehalem (8×2.93 GHz, Quick Path Interconnect)
 - Two-socket AMD Shanghai (8×2.4 GHz, Hypertransport)
 - Two-socket AMD Istanbul (24×2.6 GHz, Hypertransport)
 - Multi-socket systems all NUMA
 - Measure parallel efficiency on *n* cores

$$E_n := \frac{t_1}{t_n \cdot n}$$

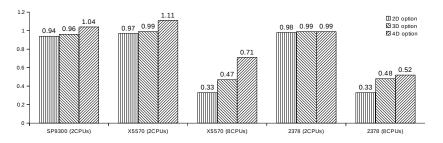
Parallel Results (2)

Example: Intel Xeon X5570 (Nehalem)

option type		1 thread	2 threads		4 threads		8 threads	
d	r	<i>t</i> ₁ (s)	<i>t</i> ₂ (s)	E ₂	<i>t</i> ₄ (s)	E_4	<i>t</i> ₈ (s)	E ₈
2	0.00	580	300	0.97	220	0.66	220	0.33
	0.05	610	310	0.98	230	0.66	230	0.33
3	0.00	3,060	1,540	0.99	950	0.81	810	0.47
	0.05	3,060	1,540	0.99	970	0.79	810	0.47
4	0.00	26,860	12,100	1.11	6,960	0.97	4,760	0.71
	0.05	26,900	12,150	1.11	7,000	0.96	4,790	0.70
5	0.00	176,700					23,600	0.94

- Task size has to be big enough
- Super-linear speed-up possible (cache sharing)

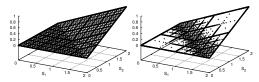
Parallel Results (3)



- Parallelization strongly memory bounded
- Memory access equally distributed
- Intel's 32 KB 8-way level-one cache better suited than AMD's 64 KB 2-way level-one cache
- Similarly QPI better suited than Hypertransport

Conclusions and Future Work

- Sparse Grids enable FE discretizations in dimensions *d* > 3
- Parallelization of multi-recursive algorithms with OMP tasks
- Strongly memory bounded
 - Parallel efficiency depends on chache-associativity
 - and bandwith of memory access
- First experiments:
 - Adaptively refined sparse grids
 - OMP's built-in task load balancing works very well



Conclusions and Future Work

- Sparse Grids enable FE discretizations in dimensions *d* > 3
- Parallelization of multi-recursive algorithms with OMP tasks
- Strongly memory bounded
 - Parallel efficiency depends on chache-associativity
 - and bandwith of memory access
- First experiments:
 - Adaptively refined sparse grids
 - OMP's built-in task load balancing works very well

Ongoing and future work:

- Even higher-dimensional options (spatial adaptivity, optimize algorithms)
- Improve memory access pattern

