Pricing of cross-currency interest rate derivatives

on
 Graphics Processing Units

Duy Minh Dang
Department of Computer Science
University of Toronto
Toronto, Canada
dmdang@cs.toronto.edu
Joint work with Christina Christara and Ken Jackson

Workshop on Parallel and Distributed Computing in Finance IEEE International Parallel \& Distributed Processing Symposium Atlanta, USA, April 19 - 23, 2010

(1) Power Reverse Dual Currency (PRDC) swaps

(2) The model and the associated PDE
(3) GPU-based parallel numerical methods
(4) Numerical results
(5) Summary and future work

PRDC swaps

- Long-dated swaps (≥ 30 years)
- Two currencies: domestic and foreign (unit zero-coupon bond prices P_{d} and P_{f})
- PRDC coupons in exchange for domestic LIBOR payments (funding leg)
- Two parties: the issuer (pays PRDC coupons) and the investor (pays LIBOR)
- PRDC coupon and LIBOR rates are applied on the domestic currency principal N_{d}

Tenor structure: $T_{0}<T_{1}<\ldots<T_{\beta-1}<T_{\beta}, \quad \nu_{\alpha} \equiv \nu\left(T_{\alpha-1}, T_{\alpha}\right)=T_{\alpha}-T_{\alpha-1}$
At each of the times $T_{\alpha}, \alpha=1, \ldots, \beta-1$, the issuer

- receives $\nu_{\alpha} N_{d} L_{d}\left(T_{\alpha-1}, T_{\alpha}\right)$, where $L_{d}\left(T_{\alpha-1}, T_{\alpha}\right)=\frac{1-P_{d}\left(T_{\alpha-1}, T_{\alpha}\right)}{\nu\left(T_{\alpha-1}, T_{\alpha}\right) P_{d}\left(T_{\alpha-1}, T_{\alpha}\right)}$
- pays PRDC coupon amount $\nu_{\alpha} N_{d} C_{\alpha}$, where the coupon rate C_{α} has the structure

$$
C_{\alpha}=\min \left(\max \left(c_{f} \frac{s\left(T_{\alpha}\right)}{f_{\alpha}}-c_{d}, b_{f}\right), b_{c}\right)
$$

- $s\left(T_{\alpha}\right)$: the spot FX-rate at time T_{α}
- f_{α} : scaling factor, usually is set to the forward FX rate $F\left(0, T_{\alpha}\right)=\frac{P_{f}\left(0, T_{\alpha}\right)}{P_{d}\left(0, T_{\alpha}\right)} s(0)$
- c_{d}, c_{f} : domestic and foreign coupon rates; b_{f}, b_{c} : a cap and a floor
- In the standard case $\left(b_{f}=0\right.$ and $\left.b_{c}=\infty\right), C_{\alpha}$ is a call option on the spot FX rate

$$
C_{\alpha}=h_{\alpha} \max \left(s\left(T_{\alpha}\right)-k_{\alpha}, 0\right), \quad h_{\alpha}=\frac{c_{f}}{f_{\alpha}}, k_{\alpha}=\frac{f_{\alpha} c_{d}}{c_{f}}
$$

Bermudan cancelable PRDC swaps

The issuer has the right to cancel the underlying swap at any of the times $\left\{T_{\alpha}\right\}_{\alpha=1}^{\beta-1}$ after the occurrence of any exchange of fund flows scheduled on that date.

- Observation: terminating a swap at T_{α} is the same as
i. continuing the underlying swap, and
ii. entering into the offsetting swap at $T_{\alpha} \Rightarrow$ the issuer has a long position in an associated offsetting Bermudan swaption
- Pricing framework: dividing the pricing of a Bermudan cancelable PRDC swap into
i. the pricing of the underlying PRDC swap (a "vanilla" PRDC swap), and
ii. the pricing of the associated offsetting Bermudan swaption
- Notations
- $u_{\alpha}^{c}(t)$ and $u_{\alpha}^{f}(t)$: value at time t of the coupon and the LIBOR part scheduled after T_{α}, respectively
- $u_{\alpha}^{h}(t)$: value at time t of the offsetting Bermudan swaption that has only the dates $\left\{T_{\alpha+1}, \ldots, T_{\beta-1}\right\}$ as exercise opportunities
- $u_{\alpha}^{e}(t)$: value at time t of all fund flows in the offsetting swap scheduled after T_{α}
- $u_{\beta-1}^{h}\left(T_{\beta-1}\right)=u_{\beta-1}^{e}\left(T_{\beta-1}\right)=0$
- Note: $u_{\alpha}^{h}\left(T_{\alpha}\right)$ is the "hold value" and $u_{\alpha}^{e}\left(T_{\alpha}\right)$ is the "exercise value" of the option at time T_{α}

Backward pricing algorithm

$$
\begin{aligned}
& u_{0}^{c}\left(T_{0}\right) \stackrel{\substack{\text { solve PDE } \\
\leftarrow \\
\text { GPU1 }}-N_{d} C_{1}+u_{2}^{c}\left(T_{1}\right) .}{\left(T_{0}\right)} \\
& \begin{aligned}
& u_{0}^{h}\left(T_{0}\right) \\
& \text { solve PDE } \\
& \leftarrow \text { GPU2 } \\
& u^{\prime}-- \max (\underbrace{u_{1}^{e}\left(T_{1}\right)}_{-\left(u_{2}^{c}\left(T_{2}\right)+u_{2}^{f}\left(T_{2}\right)\right)}, u_{1}^{h}\left(T_{1}\right))
\end{aligned}
\end{aligned}
$$

- $u_{\alpha}^{f}\left(T_{\alpha}\right)$: obtained by the "fixed notional" method, not by solving a PDE
- Price of the underlying PRDC swap: $u_{0}^{f}\left(T_{0}\right)+u_{0}^{c}\left(T_{0}\right)$
- Price of the Bermudan cancelable PRDC swap: $\left(u_{0}^{f}\left(T_{0}\right)+u_{0}^{c}\left(T_{0}\right)\right)+u_{0}^{h}\left(T_{0}\right)$

The pricing model

Consider the following model under domestic risk neutral measure

$$
\begin{aligned}
\frac{d s(t)}{s(t)} & =\left(r_{d}(t)-r_{f}(t)\right) d t+\gamma(t, s(t)) d W_{s}(t) \\
d r_{d}(t) & =\left(\theta_{d}(t)-\kappa_{d}(t) r_{d}(t)\right) d t+\sigma_{d}(t) d W_{d}(t) \\
d r_{f}(t) & =\left(\theta_{f}(t)-\kappa_{f}(t) r_{f}(t)-\rho_{f s}(t) \sigma_{f}(t) \gamma(t, s(t))\right) d t+\sigma_{f}(t) d W_{f}(t)
\end{aligned}
$$

- $r_{i}(t), i=d, f:$ domestic and foreign interest rates with mean reversion rate and volatility functions $\kappa_{i}(t)$ and $\sigma_{i}(t)$
- $s(t)$: the spot FX rate (units domestic currency per one unit foreign currency)
- $W_{d}(t), W_{f}(t)$, and $W_{s}(t)$ are correlated Brownian motions with

$$
d W_{d}(t) d W_{s}(t)=\rho_{d s} d t, d W_{f}(t) d W_{s}(t)=\rho_{f s} d t, d W_{d}(t) d W_{f}(t)=\rho_{d f} d t
$$

- Local volatility function $\gamma(t, s(t))=\xi(t)\left(\frac{s(t)}{L(t)}\right)^{\varsigma(t)-1}$
- $\xi(t)$: relative volatility function
- $\varsigma(t)$: constant elasticity of variance (CEV) parameter
- $L(t)$: scaling constant (e.g. the forward FX rate $F(0, t)$)

The 3-D pricing PDE

Let $u=u\left(s, r_{d}, r_{f}, t\right)$ be the value of a security at time t, with a terminal payoff measurable with respect to the σ-algebra at maturity time $T_{\text {end }}$ and without intermediate payments. On $\mathbb{R}_{+}^{3} \times\left[T_{\text {start }}, T_{\text {end }}\right)$, u satisfies the PDE

$$
\begin{aligned}
\frac{\partial u}{\partial t}+\mathcal{L} u & \equiv \frac{\partial u}{\partial t}+\left(r_{d}-r_{f}\right) s \frac{\partial u}{\partial s} \\
& +\left(\theta_{d}(t)-\kappa_{d}(t) r_{d}\right) \frac{\partial u}{\partial r_{d}}+\left(\theta_{f}(t)-\kappa_{f}(t) r_{f}-\rho_{f S} \sigma_{f}(t) \gamma(t, s(t))\right) \frac{\partial u}{\partial r_{f}} \\
& +\frac{1}{2} \gamma^{2}(t, s(t)) s^{2} \frac{\partial^{2} u}{\partial s^{2}}+\frac{1}{2} \sigma_{d}^{2}(t) \frac{\partial^{2} u}{\partial r_{d}^{2}}+\frac{1}{2} \sigma_{f}^{2}(t) \frac{\partial^{2} u}{\partial r_{f}^{2}} \\
& +\rho_{d S} \sigma_{d}(t) \gamma(t, s(t)) s \frac{\partial^{2} u}{\partial r_{d} \partial s} \\
& +\rho_{f S} \sigma_{f}(t) \gamma(t, s(t)) s \frac{\partial^{2} u}{\partial r_{f} \partial s}+\rho_{d f} \sigma_{d}(t) \sigma_{f}(t) \frac{\partial^{2} u}{\partial r_{d} \partial r_{f}}-r_{d} u=0
\end{aligned}
$$

- Derivation: Multi-dimensional Itô's formula
- Boundary conditions: Dirichlet-type "stopped process" boundary conditions
- Backward PDE: the change of variable $\tau=T_{\text {end }}-t$
- Difficulties: High-dimensionality, cross-derivative terms

Discretization

- Space: Second-order central finite differences on uniform mesh
- Time: ADI technique based on Hundsdorfer and Verwer (HV) approach
- \mathbf{u}^{m} : the vector of approximate values
- \mathbf{A}_{0}^{m} : matrix of all mixed derivatives terms; $\mathbf{A}_{i}^{m}, i=1, \ldots, 3$: matrices of the second-order spatial derivative in the s-, $r_{d^{-}}$, and r_{s} - directions, respectively
- $\mathbf{g}_{i}^{m}, i=0, \ldots, 3$: vectors obtained from the boundary conditions
- $\mathbf{A}^{m}=\sum_{i=0}^{3} \mathbf{A}_{i}^{m} ; \mathbf{g}^{m}=\sum_{i=0}^{3} \mathbf{g}_{i}^{m}$

Timestepping HV scheme from time t_{m-1} to t_{m} :

Phase 1:

$$
\begin{aligned}
\mathbf{v}_{0} & =\mathbf{u}^{m-1}+\Delta \tau\left(\mathbf{A}^{m-1} \mathbf{u}^{m-1}+\mathbf{g}^{m-1}\right), \\
\underbrace{\left(\mathbf{I}-\frac{1}{2} \Delta \tau \mathbf{A}_{i}^{m}\right)}_{\widehat{\mathbf{A}}_{i}^{m}} \mathbf{v}_{i} & =\underbrace{\mathbf{v}_{i-1}-\frac{1}{2} \Delta \tau \mathbf{A}_{i}^{m-1} \mathbf{u}^{m-1}+\frac{1}{2} \Delta \tau\left(\mathbf{g}_{i}^{m}-\mathbf{g}_{i}^{m-1}\right)}_{\widehat{\mathbf{v}}_{i}}, \quad i=1,2,3,
\end{aligned}
$$

Phase 2:

$$
\begin{aligned}
\widetilde{\mathbf{v}}_{0} & =\mathbf{v}_{0}+\frac{1}{2} \Delta \tau\left(\mathbf{A}^{m} \mathbf{v}_{3}-\mathbf{A}^{m-1} \mathbf{u}^{m-1}\right)+\frac{1}{2} \Delta \tau\left(\mathbf{g}^{m}-\mathbf{g}^{m-1}\right) \\
\left(\mathbf{I}-\frac{1}{2} \Delta \tau \mathbf{A}_{i}^{m}\right) \widetilde{\mathbf{v}}_{i} & =\widetilde{\mathbf{v}}_{i-1}-\frac{1}{2} \Delta \tau \mathbf{A}_{i}^{m} \mathbf{v}_{3}, \quad i=1,2,3 \\
\mathbf{u}^{m} & =\widetilde{\mathbf{v}}_{3}
\end{aligned}
$$

Parallel algorithm overview

- Focus on the parallelism within one timestep via a parallelization of the HV scheme
- With respect to the CUDA implementation, the two phases of the HV scheme are essentially the same. Hence, we focus on describing the parallelization of the first phase.
- Main steps of Phase 1 :
- Step a.1: computes the matrices $\mathbf{A}_{i}^{m}, i=0,1,2,3$, the matrices $\widehat{\mathbf{A}}_{i}^{m}, i=1,2,3$, the products $\mathbf{A}_{i}^{m} \mathbf{u}^{m-1}, i=0,1,2,3$, and the vector \mathbf{v}_{0};
- Step a.2: computes $\widehat{\mathbf{v}}_{1}$ and solves $\widehat{\mathbf{A}}_{1}^{m} \mathbf{v}_{1}=\widehat{\mathbf{v}}_{1}$;
- Step a.3: computes $\widehat{\mathbf{v}}_{2}$ and solves $\widehat{\mathbf{A}}_{2}^{m} \mathbf{v}_{2}=\widehat{\mathbf{v}}_{2}$;
- Step a.4: computes $\widehat{\mathbf{v}}_{3}$ and solves $\widehat{\mathbf{A}}_{3}^{m} \mathbf{v}_{3}=\widehat{\mathbf{v}}_{3}$;
- Steps a.2, a.3, and a. 4 are inherently parallelizable (block-diagonal, with tridiagonal blocks)
- Step a.1, on the other hand, the computation of the products $\mathbf{A}_{i}^{m} \mathbf{u}^{m-1}$ is more difficult to parallelize efficiently.

Phase 1 - Step a.1: Overview

Grid partitioning/assignment of gridpoints to threads

- computational grid of size $n \times p \times q$ is partitioned into 3-D blocks of size $n_{b} \times p_{b} \times q$, each of which can be viewed as consisting of q 2-D blocks, referred to as tiles, of size $n_{b} \times p_{b}$.
- A grid of $\operatorname{ceil}\left(n / n_{b}\right) \times \operatorname{ceil}\left(p / p_{b}\right)$ threadblocks is invoked, each of which consists of an $n_{b} \times p_{b}$ array of threads.
- Each threadblock does a q-iteration loop, processing an $n_{b} \times p_{b}$ tile at each iteration, i.e. each thread does a q-iteration loop, processing one gridpoint at each iteration

Computation details of a threadblock at each iteration

- loads from the global memory to its shared memory the components of \mathbf{u}^{m-1} corresponding to a tile, and the associated halo values;
- computes the respective rows of matrices \mathbf{A}_{i}^{m} and $\widehat{\mathbf{A}}_{i}^{m}$, and respective entries of $\mathbf{A}_{i}^{m} \mathbf{u}^{m-1}$ and \mathbf{v}_{0}
- copies new rows and new values from the shared memory to the global memory

Phase 1 - Step a.1: Computation of $\mathbf{v}_{\mathbf{0}}$

During the k th iteration, each threadblock

1. loads from the global memory into its shared memory the old data (vector \mathbf{u}^{m-1}) corresponding to the $(k+1)$ st tile, and the associated halos (in the s - and r_{d}-directions), if any,
2. computes and stores new values for the k th tile using data of the $(k-1) s t, k$ th and $(k+1) s t$ tiles, and of the associated halos, if any,
3. copies the newly computed data of the k th tile from the shared memory to the global memory, and frees the shared memory locations taken by the data of the $(k-1)$ st tile, and associated

Figure: An example of $n_{b} \times p_{b}=8 \times 8$ tiles with halos. halos, if any, so that they can be used in the next iteration.

Memory coalescing: fully coalesced loading for interior data of a tile and halos along the s-direction (North and South), but not for halos along the r_{d}-direction (East and West)

Phase 1 - Steps a.2/a.3/a.4: Tridiagonal solves

- Motivated by the block structure of the tridiagonal matrices $\widehat{\mathbf{A}}_{i}^{m}=\mathbf{I}-\frac{1}{2} \Delta \tau \mathbf{A}_{i}^{m}$
- Based on the parallelism arising from independent tridiagonal solutions, rather than the parallelism within each one
- When solved in one direction, the data are partitioned with respect to the other two
- Assign each tridiagonal system to one of the threads
- Example: $\underbrace{\left(\mathbf{I}-\frac{1}{2} \Delta \tau \mathbf{A}_{1}^{m}\right)}_{\widehat{\mathbf{A}}_{1}^{m}} \mathbf{v}_{1}=\underbrace{\mathbf{v}_{0}-\frac{1}{2} \Delta \tau \mathbf{A}_{1}^{m-1} \mathbf{u}^{m-1}+\frac{1}{2} \Delta \tau\left(\mathbf{g}_{1}^{m}-\mathbf{g}_{1}^{m-1}\right)}_{\widehat{\mathbf{v}}_{1}}$,
i. Partition $\widehat{\mathbf{A}}_{1}^{m}$ and $\widehat{\mathbf{v}}_{1}$ into $p q$ independent $n \times n$ tridiagonal systems
ii. Assign each tridiagonal system to one of $p q$ threads.
iii. Use multiple 2-D threadblocks of identical size $r_{t} \times c_{t}$, i.e. a 2-D grid of threadblocks of size ceil $\left(\frac{p}{r_{t}}\right) \times \operatorname{ceil}\left(\frac{q}{c_{t}}\right)$ is invoked.
- Memory coalescence: fully achieved for the tridiagonal solves in the $r_{d^{-}}$and r_{f} directions, but not in the s-direction.
Could be improved by renumbering gridpoints between steps of the first phase.

Market Data

- Two economies: Japan (domestic) and US (foreign)
- Initial spot FX rate: $s(0)=105$
- Interest rate curves, volatility parameters, correlations:

$$
\rho_{d f}=25 \%
$$

$$
\begin{array}{llll}
P_{d}(0, T)=\exp (-0.02 \times T) & \sigma_{d}(t)=0.7 \% & \kappa_{d}(t)=0.0 \% & \rho_{d S}=-15 \% \\
P_{f}(0, T)=\exp (-0.05 \times T) & \sigma_{f}(t)=1.2 \% & \kappa_{f}(t)=5.0 \% & \rho_{f S}=-15 \%
\end{array}
$$

- Local volatility function:

period (years)	$(\xi(t))$	$(\varsigma(t))$	period (years)	$(\xi(t))$	$(\varsigma(t))$
(0 0.5]	9.03\%	-200\%	$\left(\begin{array}{ll}7 & 10\end{array}\right]$	13.30\%	-24\%
$\left(\begin{array}{ll}0.5 & 1\end{array}\right]$	8.87\%	-172\%	$\left(\begin{array}{ll}10 & 15\end{array}\right]$	18.18\%	10\%
$\left(\begin{array}{ll}1 & 3\end{array}\right]$	8.42\%	-115\%	$\left(\begin{array}{ll}15 & 20\end{array}\right]$	16.73\%	38\%
$\left(\begin{array}{ll}3 & 5\end{array}\right]$	8.99\%	-65\%	(20 25]	13.51\%	38\%
$\left(\begin{array}{ll}5 & 7\end{array}\right]$	10.18\%	-50\%	$\left(\begin{array}{ll}25 & 30\end{array}\right]$	13.51\%	38\%

- Truncated computational domain:

$$
\left\{\left(s, r_{d}, r_{f}\right) \in[0, S] \times\left[0, R_{d}\right] \times\left[0, R_{f}\right]\right\} \equiv\{[0,305] \times[0,0.06] \times[0,0.15]\}
$$

Specification

Bermudan cancelable PRDC swaps

- Principal: N_{d} (JPY); Settlement/Maturity dates: 23 Apr. 2010/23 Nov. 2040
- Details: paying annual PRDC coupon, receiving JPY LIBOR

Year	coupon (FX options)	funding leg
1	$\max \left(c_{f} \frac{s(1)}{F(0,1)}-c_{d}, 0\right) N_{d}$	$L_{d}(0,1) N_{d}$
\cdots	\ldots	\ldots
29	$\max \left(c_{f} \frac{s(29)}{F(0,29)}-c_{d}, 0\right) N_{d}$	$L_{d}(28,29) N_{d}$

- Leverage level

level	low	medium	high
c_{f}	4.5%	6.25%	9.00%
c_{d}	2.25%	4.36%	8.10%

- The payer has the right to cancel the swap on each of $\left\{T_{\alpha}\right\}_{\alpha=1}^{\beta-1}, \beta=30$ (years)

Architectures

- Xeon running at 2.0 GHz host system with a NVIDIA Tesla S870 (four Tesla C870 GPUs, 16 multi-processors, each containing 8 processors running at 1.35 GHz , and 16 KB of shared memory)
- The tile sizes are chosen to be $n_{b} \times p_{b} \equiv 16 \times 4$ (for Step a.1), and $r_{t} \times c_{t} \equiv 16 \times 4$ (for Steps a.2, a.3, a.4), which appears to be optimal on Tesla C870.

Prices and convergence

leverage	$\begin{array}{\|cccc\|} \hline \mathrm{m} & \mathrm{n} & \mathrm{p} & \mathrm{q} \\ (t) & (s) & \left(r_{d}\right) & \left(r_{f}\right) \\ \hline \end{array}$			underlying swap			cancelable swap		
				$\begin{gathered} \hline \text { value } \\ \text { (\%) } \\ \hline \hline \end{gathered}$	change	ratio	value (\%)	change	ratio
low	$4 \quad 24$	12	12	-11.1510			11.2936		
	848	24	24	-11.1205	3.0e-4		11.2829	$1.1 \mathrm{e}-4$	
	1696	48	48	-11.1118	8.6e-5	3.6	11.2806	2.3e-5	4.4
	32192	96	96	-11.1094	$2.4 \mathrm{e}-5$	3.7	11.2801	$5.8 \mathrm{e}-6$	4.0
medium	$4 \quad 24$	12	12	-12.9418			13.6638		
	848	24	24	-12.7495	$1.9 \mathrm{e}-3$		13.8012	$1.3 \mathrm{e}-3$	
	1696	48	48	-12.7033	4.6e-4	4.1	13.8399	$3.9 \mathrm{e}-4$	3.5
	32192	96	96	-12.6916	$1.2 \mathrm{e}-4$	3.9	13.8507	$1.1 \mathrm{e}-4$	3.6
high	424	12	12	-11.2723			19.3138		
	848	24	24	-11.2097	6.2e-4		19.5689	$2.5 \mathrm{e}-3$	
	1696	48	48	-11.1932	$1.4 \mathrm{e}-4$	3.8	19.6256	5.6e-4	4.4
	32192	96	96	-11.1889	4.3e-5	3.8	19.6402	$1.4 \mathrm{e}-4$	3.8

Computed prices and convergence results for the underlying swap and cancelable swap with the FX skew model

Parallel speedup

$\begin{array}{r} m \\ (t) \end{array}$	$\begin{array}{r} n \\ (s) \\ \hline \end{array}$	$\begin{array}{r} p \\ \left(r_{d}\right) \\ \hline \end{array}$	$\begin{array}{r} q \\ \left(r_{f}\right) \\ \hline \end{array}$	underlying swap (one Tesla C870)			
				value (\%)	$\begin{array}{r} \mathrm{CPU} \\ \text { time (s.) } \\ \hline \end{array}$	$\begin{array}{r} \mathrm{GPU} \\ \text { time (s.) } \end{array}$	$\begin{array}{r} \text { speed } \\ \text { up } \\ \hline \end{array}$
4	24	12	12	-11.1510	2.10	0.89	2.4
8	48	24	24	-11.1205	31.22	2.53	12.3
16	96	48	48	-11.1118	492.51	23.68	20.8
32	192	96	96	-11.1094	7870.27	356.12	22.1

$\begin{array}{r} m \\ (t) \end{array}$	$\begin{array}{r} n \\ (s) \\ \hline \end{array}$	$\begin{array}{r} p \\ \left(r_{d}\right) \\ \hline \end{array}$	$\begin{array}{r} q \\ \left(r_{f}\right) \\ \hline \end{array}$	cancelable swap (two Tesla C870)			
				value (\%)	$\begin{array}{r} \mathrm{CPU} \\ \text { time (s.) } \end{array}$	$\begin{array}{r} \text { GPU } \\ \text { time (s.) } \\ \hline \end{array}$	$\begin{array}{r} \text { speed } \\ \text { up } \end{array}$
4	24	12	12	11.2936	4.35	0.89	4.9
8	48	24	24	11.2828	63.98	2.53	25.2
16	96	48	48	11.2806	1016.33	23.68	42.9
32	192	96	96	11.2802	15796.95	356.12	44.3

Computed prices and timing results for the underlying swap and cancelable swap for the low-leverage case

Summary and future work

Summary

- GPU-based algorithm for pricing exotic cross-currency interest rate derivatives under a FX local volatility skew model via a PDE approach, with strong emphasis on Bermudan cancelable PRDC swaps
- The parallel algorithm is based on
i. partitioning the pricing of cancelable PRDC swaps into two entirely independent pricing subproblems in each period of the tenor structure
ii. efficient parallelization on GPUs of the HV ADI scheme at each timestep for the efficient solution of each of these subproblems
- Results indicate speedup of 44 with two Tesla C870, for the cancellable swap.

Ongoing projects

- Exotic features: knockout, FX-TARN (interesting)
- GPU-based parallel methods for pricing multi-asset American options (penalty + ADI)
Future work
- Numerical methods: non-uniform/adaptive grids, higher-order ADI schemes
- Modeling: stochastic models/regime switch for the volatility of the spot FX rate, multi-factor models for the short rates
- Parallelization: extension to multi-GPU platforms

Thank you!

(1) D. M. Dang, C. C. Christara, K. R. Jackson and A. Lakhany (2009)

A PDE pricing framework for cross-currency interest rate derivatives
Available at http://ssrn.com/abstract $=1502302$
(2) D. M. Dang (2009)

Pricing of cross-currency interest rate derivatives on Graphics Processing Units Available at http://ssrn.com/abstract $=1498563$
(3) D. M. Dang, C. C. Christara and K. R. Jackson (2010)

GPU pricing of exotic cross-currency interest rate derivatives with a foreign exchange volatility skew model
Available at http://ssrn.com/abstract $=1549661$
(- D. M. Dang, C. C. Christara and K. R. Jackson (2010)
Parallel implementation on GPUs of ADI finite difference methods for parabolic PDEs with applications in finance
Available at http://ssrn.com/abstract $=1580057$

More at http://ssrn.com/author=1173218

