

A New Parallel Asynchronous Cellular Genetic
Algorithm for Mapping in Grids

Frédéric Pinel, Bernabé Dorronsoro, Pascal Bouvry

NIDISC 2010

Outline

● Contribution
● Problem description
● Algorithms
● Results
● Future work

Contribution

● Apply a new multi-core model for independent
task scheduling on grids

● New local search operator
● Improve previous results

Problem description (1)

● Map heterogeneous independent tasks to
heterogeneous machines
– 512 tasks, 16 machines

● Expected Time to Compute (ETC) model
● Minimize makespan
● Limited execution time (90 s)

Problem description (2)

12 ETC instances used:

u_c_hihi.0 u_s_hihi.0 u_i_hihi.0

u_c_hilo.0 u_s_hilo.0 u_i_hilo.0

u_c_lohi.0 u_s_lohi.0 u_i_lohi.0

u_c_lolo.0 u_s_lolo.0 u_i_lolo.0

consistency

task
heterogeneity

machine
consistency

distribution

Algorithms (1)

● Cellular genetic algorithm
● Asynchronous

Algorithms (2)

Parallelism

Algorithms (3)

Representation

machine i

machine j+1

...

...

machine i+1

...

...

machine j

machine j+1

...

...

machine i

machine i+1

...

...

task i

task i+1

...

...

task i

task i+1

...

...

ETC

Algorithms (4)

2 7 5 9 1 4 0 3 6 8

8 5 4 6 9 0 2 1 3 7

If Individual 2 has
better fitness value

Random cut points

8 5 5 9 1 4 2 1 3 7DPX

● Representation

● Crossover : 2 point cross-over

2 7 5 9 1 4 0 3 6 8

2 7 5 9 1 4 0 3 6 8

Algorithms (5)

Local search
– Select a random task from most loaded machine

– Move to one of the least loaded machines, whose
new completion time is smallest

– Iterate

Algorithms (6)

● Population: 16 x 16
● Initialize 1 individual with Min-Min
● Threads: 1-4
● Recombination: 1 or 2 point cross-over
● Mutation: move random task to random

machine
● Local search iterations: 5-10
● Replace if better
● Processor: Xeon 2.8 GHz, 4 cores (2007)

Results (1)

Speed-up

Results (2)

● Recombination
● Local search

iterations

Results (3)

Comparison of mean makespan

instance Struggle GA CMA + LTH PA-CGA

u_c_hihi.0

u_c_hilo.0

u_c_lohi.0

u_c_lolo.0

u_s_hihi.0

u_s_hilo.0

u_s_lohi.0

u_s_lolo.0

u_i_hihi.0

u_i_hilo.0

u_i_lohi.0

u_i_lolo.0

7,752,349.4

155,571.5

250,550.9

5,240.1

4,371,324.5

98,334.6

127,762.5

3,539.4

3,080,025.8

76,307.9

107,294.2

2,610.2

7,554,119.4

154,057.6

247,421.3

5,148.8

4,337,494.6

97426.2

128,216.1

3,488.3

3,054,137.7

75,005.5

106,158.7

2,597.0

7,437,591.3

154,392.8

242,061.8

5,247.9

4,229,018.4

97,424.8

125,579.3

3,526.6

3,011,581.3

74,476.8

104,490.1

2,602.5

Results (4)

Comparison of mean makespan

instance Struggle GA CMA + LTH PA-CGA 10s PA-CGA

u_c_hihi.0

u_c_hilo.0

u_c_lohi.0

u_c_lolo.0

u_s_hihi.0

u_s_hilo.0

u_s_lohi.0

u_s_lolo.0

u_i_hihi.0

u_i_hilo.0

u_i_lohi.0

u_i_lolo.0

7,752,349.4

155,571.5

250,550.9

5,240.1

4,371,324.5

98,334.6

127,762.5

3,539.4

3,080,025.8

76,307.9

107,294.2

2,610.2

7,554,119.4

154,057.6

247,421.3

5,148.8

4,337,494.6

97426.2

128,216.1

3,488.3

3,054,137.7

75,005.5

106,158.7

2,597.0

7,518,600.7

154,963.6

245,012.9

5,261.4

4,277,497.3

97,841.6

126,397.9

3,535.0

3,030,250.8

74,752.8

104,987.8

2,605.5

7,437,591.3

154,392.8

242,061.8

5,247.9

4,229,018.4

97,424.8

125,579.3

3,526.6

3,011,581.3

74,476.8

104,490.1

2,602.5

Summary

● Parallel asynchronous CGA for multi-core
● Applied to independent task mapping on grids
● Evaluated on benchmark instances
● Improved most results

Future work

● Paper extension:
– Experiment with more instances of each ETC class

– Study performance of algorithm with # threads
(outside runtime considerations)

– Heuristics & population initialization

– Heterogeneous algorithms (parameters)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

