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Contribution

● Apply a new multi-core model for independent 
task scheduling on grids

● New local search operator
● Improve previous results



  

Problem description (1)

● Map heterogeneous independent tasks to 
heterogeneous machines
– 512 tasks, 16 machines

● Expected Time to Compute (ETC) model
● Minimize makespan
● Limited execution time (90 s)



  

Problem description (2)

12 ETC instances used: 
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Algorithms (1)

● Cellular genetic algorithm
● Asynchronous



  

Algorithms (2)

Parallelism



  

Algorithms (3)

Representation

machine i

machine j+1

...

...

machine i+1

...

...

machine j

machine j+1

...

...

machine i

machine i+1

...

...

task i

task i+1

...

...

task i

task i+1

...

...

ETC



  

Algorithms (4)
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If Individual 2 has 
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● Representation

● Crossover : 2 point cross-over

2 7 5 9 1 4 0 3 6 8

2 7 5 9 1 4 0 3 6 8



  

Algorithms (5)

Local search
– Select a random task from most loaded machine

– Move to one of the least loaded machines, whose 
new completion time is smallest

– Iterate



  

Algorithms (6)

● Population: 16 x 16 
● Initialize 1 individual with Min-Min
● Threads: 1-4
● Recombination: 1 or 2 point cross-over
● Mutation: move random task to random 

machine
● Local search iterations: 5-10
● Replace if better
● Processor: Xeon 2.8 GHz, 4 cores (2007)



  

Results (1)

Speed-up



  

Results (2)

● Recombination
● Local search 

iterations



  

Results (3)

Comparison of mean makespan 

instance Struggle GA CMA + LTH PA-CGA
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Results (4)

Comparison of mean makespan 

instance Struggle GA CMA + LTH PA-CGA 10s PA-CGA
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Summary

● Parallel asynchronous CGA for multi-core
● Applied to independent task mapping on grids
● Evaluated on benchmark instances
● Improved most results



  

Future work

● Paper extension:
– Experiment with more instances of each ETC class

– Study performance of algorithm with # threads 
(outside runtime considerations)

– Heuristics & population initialization

– Heterogeneous algorithms (parameters)
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