
Computer

Architecture

Group

Evolving Hybrid Time-Shuffled Behavior of

Agents

NIDISC 2010, April 19, Atlanta

Patrick Ediger and Rolf Hoffmann

NIDISC 2010, April 19, Atlanta | Computer Architecture Group, Dept. of Computer Science | 1

Image Source: www.kulturschnitte.de (Claudia Lohmann)

Motivation

NIDISC 2010, April 19, Atlanta | Computer Architecture Group, Dept. of Computer Science | 2

 Hybrid behavior: mixture of different behaviors (strategies)

 Is mixing effective?

 In which way can we mix it?

 Applications with agents

 Simulation of “real” worlds

 Artificial worlds

 Distributed algorithms

 Routing ...

Develop efficient GA-based methods that allow to find the

optimal local behavior of moving agents.

Problem Statement: All-to-All Communication

Given is a 2D-Cellular Automaton (CA) with

moving agents.

 Initially, the information is distributed mutually

exclusive.

All agents shall exchange all their information.

 Information is exchanged and propagated

when agents meet with a cell in between them.

NIDISC 2010, April 19, Atlanta | Computer Architecture Group, Dept. of Computer Science | 3

1000 00100100 0001initial information:

0 1 2 3

Problem Statement: All-to-All Communication

Given is a 2D-Cellular Automaton (CA) with

moving agents.

 Initially, the information is distributed mutually

exclusive.

All agents shall exchange all their information.

 Information is exchanged and propagated

when agents meet with a cell in between them.

NIDISC 2010, April 19, Atlanta | Computer Architecture Group, Dept. of Computer Science | 4

1000 00100100 0001initial information:

0 1 2 3

1100 00101100 0001

C

Problem Statement: All-to-All Communication

Given is a 2D-Cellular Automaton (CA) with

moving agents.

 Initially, the information is distributed mutually

exclusive.

All agents shall exchange all their information.

 Information is exchanged and propagated

when agents meet with a cell in between them.

NIDISC 2010, April 19, Atlanta | Computer Architecture Group, Dept. of Computer Science | 5

1000 00100100 0001initial information:

0 1 2 3

1100 00101100 0001

Problem Statement: All-to-All Communication

Given is a 2D-Cellular Automaton (CA) with

moving agents.

 Initially, the information is distributed mutually

exclusive.

All agents shall exchange all their information.

 Information is exchanged and propagated

when agents meet with a cell in between them.

NIDISC 2010, April 19, Atlanta | Computer Architecture Group, Dept. of Computer Science | 6

1000 00100100 0001initial information:

0 1 2 3

1100 00101100 0001

1100 00111100 0011

C

Problem Statement: All-to-All Communication

Given is a 2D-Cellular Automaton (CA) with

moving agents.

 Initially, the information is distributed mutually

exclusive.

All agents shall exchange all their information.

 Information is exchanged and propagated

when agents meet with a cell in between them.

NIDISC 2010, April 19, Atlanta | Computer Architecture Group, Dept. of Computer Science | 7

1000 00100100 0001initial information:

0 1 2 3

1100 00101100 0001

1100 00111100 0011

1100 00111111 1111

C

Problem Statement: All-to-All Communication

Given is a 2D-Cellular Automaton (CA) with

moving agents.

 Initially, the information is distributed mutually

exclusive.

All agents shall exchange all their information.

 Information is exchanged and propagated

when agents meet with a cell in between them.

NIDISC 2010, April 19, Atlanta | Computer Architecture Group, Dept. of Computer Science | 8

1000 00100100 0001initial information:

0 1 2 3

1100 00101100 0001

1100 00111100 0011

1100 00111111 1111

Problem Statement: All-to-All Communication

Given is a 2D-Cellular Automaton (CA) with

moving agents.

 Initially, the information is distributed mutually

exclusive.

All agents shall exchange all their information.

 Information is exchanged and propagated

when agents meet with a cell in between them.

NIDISC 2010, April 19, Atlanta | Computer Architecture Group, Dept. of Computer Science | 9

1000 00100100 0001initial information:

0 1 2 3

1100 00101100 0001

1100 00111100 0011

1100 00111111 1111

1111 11111111 1111

C

Problem Statement: All-to-All Communication

Given is a 2D-Cellular Automaton (CA) with

moving agents.

 Initially, the information is distributed mutually

exclusive.

All agents shall exchange all their information.

 Information is exchanged and propagated

when agents meet with a cell in between them.

NIDISC 2010, April 19, Atlanta | Computer Architecture Group, Dept. of Computer Science | 10

1000 00100100 0001initial information:

0 1 2 3

1100 00101100 0001

1100 00111100 0011

1100 00111111 1111

1111 11111111 1111

Cellular Automata Model:

Modeling Moving Agents

C F

Agents are directed: N, E, S, W

current cell C deletes

the agent from itself

front cell F reads and

copies the agent

NIDISC 2010, April 19, Atlanta | Computer Architecture Group, Dept. of Computer Science | 11

Cellular Automata Model:

Extended Neighborhood

C F FC

Conflict resolution requires an extended neighborhood

(Manhattan Distance 2)

Deleting by current cell C and copying by the front

cell F must be consistent and thus based on the

same information.

NIDISC 2010, April 19, Atlanta | Computer Architecture Group, Dept. of Computer Science | 12

Cellular Automata Model:

Modeling Agent Behavior (I)

Agents react on inputs from the neighbor cells.

Agents are controlled by finite state machines (FSM) with

limited complexity.

The output of the FSM activates an action, that is checked

for conformity.

Turn Right/Left (+ move ahead if possible): R, L, Rm, Lm

Check for
conformity

Control
automaton

(FSM)

Inputs from
neighbor cells

action

NIDISC 2010, April 19, Atlanta | Computer Architecture Group, Dept. of Computer Science | 13

x 0 1

s 0 1 2 3 4 5 0 1 2 3 4 5

s',y 1,1 5,0 3,0 4,1 5,1 3,0 1,0 2,1 3,1 4,0 5,1 0,0

action R L R L R L Lm Rm Rm Lm Rm Lm

i 0 1 2 3 4 5 6 7 8 9 10 11

Decision between the actions Lm, Rm, L and R is defined

by a finite state machine (e.g., 6-states).

state graph

Lm

10

35

2

4
Lm

Lm

Rm

Rm

RmL
R L

L

R
L

x=0 (blocked)
x=1 (free)

R

state table, defining the behavior (algorithm) of an agent, used as genome

input
state
nextstate, output
action
index used in GA

NIDISC 2010, April 19, Atlanta | Computer Architecture Group, Dept. of Computer Science | 14

Cellular Automata Model:

Modeling Agent Behavior (II)

Goal of this particular investigation

NIDISC 2010, April 19, Atlanta | Computer Architecture Group, Dept. of Computer Science | 15

NIDISC 2009

non-hybrid behavior vs. hybrid behavior

hybrid behavior by separately evolving FSMs for subtasks

and joining FSMs by time-shuffling

NIDISC 2010

Can hybrid behavior be evolved directly (not separately)?

 Is directly evolving more efficient than separately evolving?

Develop efficient GA-based methods that allow to find the

optimal local behavior of moving agents.

The Time-Shuffling Technique

Time-shuffling exploits the individual abilities of two different

algorithms (strategies) by alternating them in time.

FSM A

FSM B

t mod T

enable input x

t mod T

y

yA

yB

FSMs A and B are

used alternately,

changing every T CA-

generations.

Note that AB ≠ BA

T can be different for

A and B (TA and TB)

here: FSM with 6

states, T varied from

1-600

NIDISC 2010, April 19, Atlanta | Computer Architecture Group, Dept. of Computer Science | 16

The Problem Set of Initial Configurations

A given set of initial configurations of the environments.

 20 environments with 33x33 cells

 k = 16 agents placed randomly in the grid with a random direction

…

…

A

B

9

1910

0

 Subset A: 10

environments with

border

 Subset B: 10

environments with

wrap-around

NIDISC 2010, April 19, Atlanta | Computer Architecture Group, Dept. of Computer Science | 17

Types of Evolved Algorithms

NIDISC 2010, April 19, Atlanta | Computer Architecture Group, Dept. of Computer Science | 18

From NIDISC 2009:

Z: non-hybrid (one FSM), evolved on entire set (A and B)

XYT: hybrid (two FSMs, one shuffle period), evolved

separately (X on subset A, Y on subset B)

New:

UVT: hybrid (two FSMs, one shuffle period), evolved

directly on entire set (A and B)

UTVT: hybrid (two FSMs, two shuffle periods), evolved

directly on entire set (A and B)

Each FSM is assigned to a certain fitness value F

F = 105(16 – ai) + 104(1 – c) + g

Fitness Function

ai: no. of completely informed agents (with bit vector 11…1)

c = 1, if any information was exchanged, else c = 0

g: the number of CA-generations needed to fulfill the task
completely (all agents are informed)

Lower values for F indicate a better fitness.

F = s, if the task was solved for the simulated environment.

NIDISC 2010, April 19, Atlanta | Computer Architecture Group, Dept. of Computer Science | 19

Island Model GA

Hybrid Genome:

 state table(FSM-A) + state table (FSM B) + T

 (search space: 600 ∙ 1224)

 state table(FSM-A) + state table (FSM B) + TA + TB

 (search space: 6002 ∙ 1224)

P populations of N individuals are updated in each

generation. In each generation M children are produced in

each population.

The union of the current N individuals and the M children

 sorted according to their fitness

N best are selected forming the next population.

NIDISC 2010, April 19, Atlanta | Computer Architecture Group, Dept. of Computer Science | 20

Crossover Techniques

NIDISC 2010, April 19, Atlanta | Computer Architecture Group, Dept. of Computer Science | 21

s',y 1,1 5,0 3,0 4,1 5,1 3,0 1,0 2,1 3,1 4,0 5,1 0,0

FSM A FSM B
s',y 4,0 2,0 4,1 1,0 1,1 5,0 0,0 3,1 1,0 4,0 3,0 0,1

TA TB

134 27

s',y 2,1 4,1 2,0 4,0 0,1 1,1 3,0 2,1 5,0 2,0 4,1 0,1 s',y 1,0 2,1 3,1 3,0 5,0 4,1 0,1 0,1 2,1 5,0 5,1 2,1 421 12

Parent 1

Parent 2

s',y 2,1 5,0 2,0 4,0 5,1 3,0 1,0 2,1 5,0 4,0 4,1 0,0 s',y 4,0 2,0 4,1 3,0 5,0 4,1 0,1 3,1 1,0 5,0 5,1 0,1 421 12 Child (a)

s',y 2,1 4,1 3,0 4,1 0,1 1,1 1,0 2,1 3,1 2,0 4,1 0,1 s',y 1,0 2,0 4,1 3,0 1,1 5,0 0,1 0,1 1,0 4,0 3,0 2,1 277 19 Child (b)

Each component either taken from parent A or parent B

Technique a: value T of one of the parents chosen

Technique b: childs value T is average of parents„ values

 UVT-a, UVT-b, UTVT-a, UTVT-b

Best Fitness Values (I)

NIDISC 2010, April 19, Atlanta | Computer Architecture Group, Dept. of Computer Science | 22

UTVT-b

UTVT-a

UVT-b

UVT-a

Averaged over 6

independent

runs of the GA

Crossover

technique a is

more efficient than

technique b.

GA with 2 shuffle

periods finds better

algorithms, but is

less reliable.

406 (UTVT-a)

420

(UTVT-b)

432

(UVT-b)

424 (UVT-a)

F
it
n
e
s
s
 F

Computation Time [h]

Best Fitness Values (II)

NIDISC 2010, April 19, Atlanta | Computer Architecture Group, Dept. of Computer Science | 23

UTVT-a

Z

XYT

Directly evolving

is more efficient.

-26.6%
-0.5h

separately evolved (554)

non-hybrid (627)

2 shuffle periods

crossover techn. a

directly evolved (406)

F
it
n
e
s
s
 F

Computation Time [h]

Specialists vs. Allrounders

NIDISC 2010, April 19, Atlanta | Computer Architecture Group, Dept. of Computer Science | 24

How do U and V behave as non-hybrid algorithms?

cannot solve any of the environments

X: “specialist” for subset A

Y: “specialist” for subset B

Z: “allrounder” for entire set

 two “specialists” time-shuffled XYT are better than an
“allrounder” Z

 two “allrounders” time-shuffled ZZT are better than an
“allrounder” Z, but worse than XYT

Best combination comprises U and V that are only good in
combination.

Strategy of the Agents

steps: 0 30 60 90 120

150 180 210 240

NIDISC 2010, April 19, Atlanta | Computer Architecture Group, Dept. of Computer Science | 25

Conclusion and Future Work

Future work

Optimize separately evolving

(saves time by parallelizing) to

produce good hybrid algorithms

 Varying the complexity of the

FSMs

 Time-Shuffle more than 2 FSMs

Comparing with other Heuristics

Using Hardware-Support (FPGAs)

Conclusion

Hybrid algorithms were evolved

for the All-to-all communication

task with different methods.

Crossover technique a is better

than b.

Directly evolving is more

effective than separately

evolving.

 The computing time for evolution

can be reduced by including the

time-shuffling period in the

genome.

NIDISC 2010, April 19, Atlanta | Computer Architecture Group, Dept. of Computer Science | 26

Thank you for your attention!

NIDISC 2010, April 19, Atlanta | Computer Architecture Group, Dept. of Computer Science | 27

The Frankfurt Fabulous Creature

Image Source: Frankfurt Zoo (www.zoo-frankfurt.de)

NIDISC 2010, April 19, Atlanta | Computer Architecture Group, Dept. of Computer Science | 28

APPENDIX

Cellular Automata Model:

Modeling Agent Behavior

Check for
conformity:

if (conflict) then
X, else Xm

Control
automaton

(FSM)

2 desired actions:

R (right), L (left) 4 actions:

Rm, R, Lm, L

Xm = move ahead to the

front cell and turn

X = stay on the current

cell and turn

Always walk ahead,

if possible

conflict conditions

X Xm/X

NIDISC 2010, April 19, Atlanta | Computer Architecture Group, Dept. of Computer Science | 29

Cellular Automata Model:

Cell State

Cell type

Direction

Control state

∈ {EMPTY, AGENT, OBSTACLE}

∈ {N, E, S, W} Used only for borders

behavior (FSM state)

NIDISC 2010, April 19, Atlanta | Computer Architecture Group, Dept. of Computer Science | 30

Information bit vector for communication

Cellular Automata Model:

Cell Rule

If (cell type == EMPTY):

- Find neighboring AGENT with direction to “me”.

- If there is exactly one agent, copy agents‟ control state and direction and
perform FSM transition.

- Update direction, change cell type to AGENT.

If (cell type == AGENT):
- Detect possibility of movement (obstacle, conflicts).

- If possible, change cell type to EMPTY

- If not, perform FSM transition and update direction, control state and
information bit vector.

If (cell type == OBSTACLE):
- Do nothing

NIDISC 2010, April 19, Atlanta | Computer Architecture Group, Dept. of Computer Science | 31

Island Model GA:

Parameter Settings

P = 7 populations with N = 100 individuals each

M = 10 offsprings

p1 = 2% immigration rate (chosen from other population)

1-p1 = 98% complement of immigration rate (chosen from own population)

p2 = 9% mutation rate

NIDISC 2010, April 19, Atlanta | Computer Architecture Group, Dept. of Computer Science | 32

Island Model GA:

Parent Selection

Two parents are chosen for

each population.

First parent is chosen from

the own population with a

probability of (1-p1) and

second parent from an

arbitrary other population

with the probability of p1

(immigration rate) .

...

1-p1
p1

NIDISC 2010, April 19, Atlanta | Computer Architecture Group, Dept. of Computer Science | 33

Island Model GA:

Uniform Crossover

 Each new component i

of the genome string is

taken from either the

first parent or the

second parent with a

probability of 50%.

 Thereby the next state

and the output is

taken from either

parent at position i.

i

(next state and output)

first parent

second parent

offspring

i

s‘ s‘‘

R L

i

L

i

R

s„ s„„
x 0 1

s 0 1 2 3 4 5 0 1 2 3 4 5

s',y 1,1 5,0 3,0 4,1 5,1 3,0 1,0 2,1 3,1 4,0 5,1 0,0

action R L L R R L Lm Rm Rm Lm Rm Lm

i 0 1 2 3 4 5 6 7 8 9 10 11

NIDISC 2010, April 19, Atlanta | Computer Architecture Group, Dept. of Computer Science | 34

Island Model GA:

Mutation

 The string being modified by the

crossover is afterwards mutated with a

probabiltity of p2.

 If a mutation shall be performed, an

arbitrary position i is chosen and a new

value (randomly choosen from the set of

valid values) is replacing the existing one.

 Thereby the next state and the output

is randomly changed at position i.

i

3

L

i

0..5

L/R

x 0 1

s 0 1 2 3 4 5 0 1 2 3 4 5

s',y 1,1 5,0 3,0 4,1 5,1 3,0 1,0 2,1 3,1 4,0 5,1 0,0

action R L L R R L Lm Rm Rm Lm Rm Lm

i 0 1 2 3 4 5 6 7 8 9 10 11

NIDISC 2010, April 19, Atlanta | Computer Architecture Group, Dept. of Computer Science | 35

Simulation Details

NIDISC 2010, April 19, Atlanta | Computer Architecture Group, Dept. of Computer Science | 36

6 independend runs of the GA for each type of algorithm

UV (per run):

10,000 generations  700,000 tested algorithms

700,000∙20 environments = 14,000,000 simulations

XY (per run):

10,000 generations  700,000 tested algorithms

700,000∙10 environments = 7,000,000 simulations

600∙10∙10 (2∙Top10) = 60,000 Time-Shuffled algorithms

60,000∙20 environments = 1,200,000 simulations

Z (per run):

10,200 generations  714,000 tested algorithms

714,000∙20 environments = 14,280,000 simulations

Best Fitness Values (I)

NIDISC 2010, April 19, Atlanta | Computer Architecture Group, Dept. of Computer Science | 37

Type t F(avrg) TOP1 Algorithm F(TOP1)

Z 7.13h 626.5 3L4R3L4R0R2R-3R4L1L5L0R2R 605.6

XYT 7.11h 554.2

X = 3R2R4L2R5L4L-3R0L1L5R0R3L

497.3Y = 2L3L1R4L1R3L-2L0R5R4L1L3R

T = 377

UVT-a 6.29h 424.1

U = 1L2L1R5L3L2R-4L3L5L5L3R3R

405.2V = 1L0L0L5R3R5R-1L4L1R2L1R1L

T = 48

UVT-b 6.52h 432.0

U = 2L5L0L4R3R1L-4L2L5R4R0R4L

407.6V = 3R4L5L1L2L1L-3R4L4L0L0R3R

T = 40

UTVT-a 6.46h 406.4

U = 2R5L3R5L4R1R-1R5L0R2L2L1R

369.4V = 4R5L3L5R2R3R-2R5L1R5R3L1R

TU = 60; TV = 12

UTVT-b 7.68h 420.0

U = 2R5L0L0L2L0R-5L5L1L4L3L1R

356.9V = 5L3R1L1R0R2R-4L2R1L1R1L3L

TU = 60; TV = 36

6 independent runs of

the GA for each type

Directly evolving is

more effective.

Best Fitness Values (II)

NIDISC 2010, April 19, Atlanta | Computer Architecture Group, Dept. of Computer Science | 38

UTVT-b

UTVT-a

UVT-b

UVT-a

Z

XYT

Averaged over

the 6 runs

Directly evolving

is also more

efficient.

Crossover

technique a is

more efficient than

technique b.

-26.6%
-0.5h

UTVT-a (406)

XYT (554)

Z (605)

Variance of Best Fitness Values

NIDISC 2010, April 19, Atlanta | Computer Architecture Group, Dept. of Computer Science | 39

UTVT-a, max(run1-run6)

UTVT-a, min(run1-run6)

UVT-a , max(run1-run6)

UVT-a , min(run1-run6)

GA with two

periods finds better

algorithms, but is

also less reliable

than GA with one

period.

Robustness Test

NIDISC 2010, April 19, Atlanta | Computer Architecture Group, Dept. of Computer Science | 40

(1) 80 environments with varying number of agents
- completely successful with same strategy

- needs longer for less agents

(2) 24 manually designed environments with obstacles
- successful for 19/24 environments

- difficulties when middle is

blocked (only border) or

narrow gaps exist

not solved

solved

