Evolving Hybrid Time-Shuffled Behavior of Agents

NIDISC 2010, April 19, Atlanta

Motivation

Develop efficient GA-based methods that allow to find the optimal local behavior of moving agents.

- Hybrid behavior: mixture of different behaviors (strategies)
 - Is mixing effective?
 - In which way can we mix it?
- Applications with agents
 - Simulation of "real" worlds
 - Artificial worlds
 - Distributed algorithms
 - Routing ...

- Given is a 2D-Cellular Automaton (CA) with moving agents.
- Initially, the *information* is distributed mutually exclusive.
- All agents shall exchange all their information.
- Information is exchanged and propagated when agents meet with a cell in between them.

- Given is a 2D-Cellular Automaton (CA) with moving agents.
- Initially, the information is distributed mutually exclusive.
- All agents shall exchange all their information.
- Information is exchanged and propagated when agents meet with a cell in between them.

- Given is a 2D-Cellular Automaton (CA) with moving agents.
- Initially, the information is distributed mutually exclusive.
- All agents shall exchange all their information.
- Information is exchanged and propagated when agents meet with a cell in between them.

1100

Problem Statement: All-to-All Communication

- Given is a 2D-Cellular Automaton (CA) with moving agents.
- Initially, the information is distributed mutually exclusive.
- All agents shall exchange all their information.
- Information is exchanged and propagated when agents meet with a cell in between them.

initial information: 1000

0011

0011

1100

- Given is a 2D-Cellular Automaton (CA) with moving agents.
- Initially, the information is distributed mutually exclusive.
- All agents shall exchange all their information.
- Information is exchanged and propagated when agents meet with a cell in between them.

- Given is a 2D-Cellular Automaton (CA) with moving agents.
- Initially, the information is distributed mutually exclusive.
- All agents shall exchange all their information.
- Information is exchanged and propagated when agents meet with a cell in between them.

- Given is a 2D-Cellular Automaton (CA) with moving agents.
- Initially, the *information* is distributed mutually exclusive.
- All agents shall exchange all their information.
- Information is exchanged and propagated when agents meet with a cell in between them.

- Given is a 2D-Cellular Automaton (CA) with moving agents.
- Initially, the information is distributed mutually exclusive.
- All agents shall exchange all their information.
- Information is exchanged and propagated when agents meet with a cell in between them.

	\rightarrow 0	1	2	→3
nitial information:	1000	0100	0010	0001
	1100	1100	0010	0001
	1100	1100	0011	0011
	1100	1111	0011	1111
	1111	1111	1111	1111

Cellular Automata Model: Modeling Moving Agents

Agents are directed: N, E, S, W

front cell F reads and copies the agent

current cell C deletes the agent from itself

Cellular Automata Model: Extended Neighborhood

 Conflict resolution requires an extended neighborhood (Manhattan Distance 2)

Cellular Automata Model: Modeling Agent Behavior (I)

- Agents react on inputs from the neighbor cells.
- Agents are controlled by finite state machines (FSM) with limited complexity.
- The output of the FSM activates an action, that is checked for conformity.
 - Turn Right/Left (+ move ahead if possible): R, L, Rm, Lm

Cellular Automata Model: Modeling Agent Behavior (II)

Decision between the actions Lm, Rm, L and R is defined by a finite state machine (e.g., 6-states).

state table, defining the behavior (algorithm) of an agent, used as genome

x	0						1						input
S	0	1	2	3	4	5	0	1	2	3	4	5	state
s',y	1,1	5,0	3,0	4,1	5,1	3,0	1,0	2,1	3,1	4,0	5,1	0,0	nextstate, output
action	R	L	R	L	R	L	Lm	Rm	Rm	Lm	Rm	Lm	action
i	0	1	2	3	4	5	6	7	8	9	10	11	index used in GA

Goal of this particular investigation

Develop efficient GA-based methods that allow to find the optimal local behavior of moving agents.

• NIDISC 2009

- non-hybrid behavior vs. hybrid behavior
- hybrid behavior by separately evolving FSMs for subtasks and joining FSMs by *time-shuffling*

NIDISC 2010

- Can hybrid behavior be evolved directly (not separately)?
- Is directly evolving more efficient than separately evolving?

The Time-Shuffling Technique

 Time-shuffling exploits the individual abilities of two different algorithms (strategies) by alternating them in time.

- FSMs A and B are used alternately, changing every TCAgenerations.
- ■Note that AB ≠ BA
- T can be different for A and B (T_A and T_B)
- here: FSM with 6
 states, T varied from
 1-600

The Problem Set of Initial Configurations

- A given set of initial configurations of the environments.
 - 20 environments with 33x33 cells
 - k = 16 agents placed randomly in the grid with a random direction

Types of Evolved Algorithms

From NIDISC 2009:

- Z: non-hybrid (one FSM), evolved on entire set (A and B)
- XY_T: hybrid (two FSMs, one shuffle period), evolved separately (X on subset A, Y on subset B)

New:

- UV_T: hybrid (two FSMs, one shuffle period), evolved directly on entire set (A and B)
- U_TV_T: hybrid (two FSMs, two shuffle periods), evolved directly on entire set (A and B)

Each FSM is assigned to a certain fitness value F

$$F = 10^{5}(16 - a_{i}) + 10^{4}(1 - c) + g$$

- a_i: no. of completely informed agents (with bit vector 11...1)
- c = 1, if any information was exchanged, else c = 0
- g: the number of CA-generations needed to fulfill the task completely (all agents are informed)
- Lower values for F indicate a better fitness.
- **F** = **s**, if the task was solved for the simulated environment.

Island Model GA

• Hybrid Genome:

- state table(FSM-A) + state table (FSM B) + T
 - (search space: 600 · 12²⁴)
- state table(FSM-A) + state table (FSM B) + T_A + T_B
 - (search space: 600² · 12²⁴)
- *P* populations of *N* individuals are updated in each generation. In each generation *M* children are produced in each population.
- The union of the current *N* individuals and the *M* children
 - sorted according to their fitness
 - *N* best are selected forming the next population.

Crossover Techniques

Each component either taken from parent A or parent B

- Technique a: value T of one of the parents chosen
- Technique b: childs value T is average of parents' values

 $\bullet \rightarrow UV_{\tau}-a, UV_{\tau}-b, U_{\tau}V_{\tau}-a, U_{\tau}V_{\tau}-b$

Best Fitness Values (I)

NIDISC 2010, April 19, Atlanta | Computer Architecture Group, Dept. of Computer Science | 22

Specialists vs. Allrounders

How do U and V behave as non-hybrid algorithms?

- cannot solve any of the environments
- X: "specialist" for subset A
- Y: "specialist" for subset B
- Z: "allrounder" for entire set
- two "specialists" time-shuffled XY_T are better than an "allrounder" Z
- two "allrounders" time-shuffled ZZ_T are better than an "allrounder" Z, but worse than XY_T
- Best combination comprises U and V that are only good in combination.

Strategy of the Agents

Conclusion and Future Work

Conclusion

- Hybrid algorithms were evolved for the All-to-all communication task with different methods.
- Crossover technique *a* is better than *b*.
- Directly evolving is more effective than separately evolving.
- The computing time for evolution can be reduced by including the time-shuffling period in the genome.

Future work

- Optimize separately evolving (saves time by parallelizing) to produce good hybrid algorithms
- Varying the complexity of the FSMs
- Time-Shuffle more than 2 FSMs
- Comparing with other Heuristics
- Using Hardware-Support (FPGAs)

Thank you for your attention!

The Frankfurt Fabulous Creature Image Source: Frankfurt Zoo (www.zoo-frankfurt.de)

APPENDIX

NIDISC 2010, April 19, Atlanta | Computer Architecture Group, Dept. of Computer Science | 28

Cellular Automata Model: Modeling Agent Behavior

Cellular Automata Model: Cell State

Cellular Automata Model: Cell Rule

If (cell type == EMPTY):

- Find neighboring AGENT with direction to "me".
- If there is exactly one agent, copy agents' *control state* and *direction* and perform FSM transition.
- Update *direction*, change cell type to AGENT.

If (cell type == AGENT):

- Detect possibility of movement (obstacle, conflicts).
- If possible, change cell type to EMPTY
- If not, perform FSM transition and update *direction*, *control state* and *information bit vector*.

If (cell type == OBSTACLE):

- Do nothing

Island Model GA: Parameter Settings

- *P* = 7 populations with **N** = 100 individuals each
- *M* = 10 offsprings
- $p_1 = 2\%$ immigration rate (chosen from other population) $1-p_1 = 98\%$ complement of immigration rate (chosen from own population)
- $p_2 = 9\%$ mutation rate

NIDISC 2010, April 19, Atlanta | Computer Architecture Group, Dept. of Computer Science | 33

Island Model GA: Parent Selection

- Two parents are chosen for each population.
- First parent is chosen from the own population with a probability of (1-p₁) and second parent from an arbitrary other population with the probability of p₁ (immigration rate).

NIDISC 2010, April 19, Atlanta | Computer Architecture Group, Dept. of Computer Science | 34

Island Model GA: Uniform Crossover

- Each new component *i* of the genome string is taken from either the first parent or the second parent with a probability of 50%.
- Thereby the next state and the output is taken from either parent at position *i*.

x			()			1					
S	0	1	2	3	4	5	0	1	2	3	4	5
s',y	1,1	5,0	3,0	4,1	5,1	3,0	1,0	2,1	3,1	4,0	5,1	0,0
action	R	L	L	R	R	L	Lm	Rm	Rm	Lm	Rm	Lm
i	0	1	2	3	4	5	6	7	8	9	10	11

Island Model GA: Mutation

- The string being modified by the crossover is afterwards mutated with a probability of *p*₂.
- If a mutation shall be performed, an arbitrary position *i* is chosen and a new value (randomly choosen from the set of valid values) is replacing the existing one.
- Thereby the next state and the output is randomly changed at position *i*.

x				D		1						
S	0	1	2	3	4	5	0	1	2	3	4	5
s',y	1,1	5,0	3,0	4,1	5,1	3,0	1,0	2,1	3,1	4,0	5,1	0,0
action	R	L	L	R	R	L	Lm	Rm	Rm	Lm	Rm	Lm
i	0	1	2	3	4	5	6	7	8	9	10	11

Simulation Details

- 6 independend runs of the GA for each type of algorithm
- •UV (per run):
 - 10,000 generations \rightarrow 700,000 tested algorithms
 - 700,000.20 environments = 14,000,000 simulations
- •XY (per run):
 - 10,000 generations \rightarrow 700,000 tested algorithms
 - 700,000.10 environments = 7,000,000 simulations
 - 600·10·10 (2·Top10) = 60,000 Time-Shuffled algorithms
 - 60,000·20 environments = 1,200,000 simulations
- Z (per run):
 - 10,200 generations \rightarrow 714,000 tested algorithms
 - •714,000·20 environments = 14,280,000 simulations

Best Fitness Values (I)

Туре	t	F(avrg)	TOP1 Algorithm	F(TOP1)	6 independent runs of
Z	7.13h	626.5	3L4R3L4R0R2R-3R4L1L5L0R2R	605.6	
			X = 3R2R4L2R5L4L-3R0L1L5R0R3L		the GA for each type
$\mathbf{X}\mathbf{Y}_{T}$	7.11h	554.2	Y = 2L3L1R4L1R3L-2L0R5R4L1L3R	497.3	
			T = 377		
			U = 1L2L1R5L3L2R-4L3L5L5L3R3R		Directly evolving is
UV _⊺ -a	6.29h	424.1	V = 1L0L0L5R3R5R-1L4L1R2L1R1L	405.2	mara affactiva
			T = 48		more ellective.
			U = 2L5L0L4R3R1L-4L2L5R4R0R4L		
UV⊤-b	6.52h	432.0	V = 3R4L5L1L2L1L-3R4L4L0L0R3R	407.6	
			T = 40		
			U = 2R5L3R5L4R1R-1R5L0R2L2L1R		
U⊤V⊤-a	6.46h	406.4	V = 4R5L3L5R2R3R-2R5L1R5R3L1R	369.4	
			T _U = 60; T _V = 12		
			U = 2R5L0L0L2L0R-5L5L1L4L3L1R		
$U_T V_T - b$	7.68h	420.0	V = 5L3R1L1R0R2R-4L2R1L1R1L3L	356.9	
			$T_{\rm H} = 60; T_{\rm V} = 36$		

Best Fitness Values (II)

Robustness Test

(1) 80 environments with varying number of agents

- completely successful with same strategy
- needs longer for less agents
- (2) 24 manually designed environments with obstacles
 - successful for 19/24 environments
 - difficulties when middle is blocked (only border) or narrow gaps exist

